You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2530 lines
70KB

  1. /*
  2. Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. This program is free software; you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation; either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program; if not, write to the Free Software
  13. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  14. */
  15. /*
  16. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
  17. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  18. {BGR,RGB}{1,4,8,15,16} support dithering
  19. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  20. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  21. x -> x
  22. YUV9 -> YV12
  23. YUV9/YV12 -> Y800
  24. Y800 -> YUV9/YV12
  25. BGR24 -> BGR32 & RGB24 -> RGB32
  26. BGR32 -> BGR24 & RGB32 -> RGB24
  27. BGR15 -> BGR16
  28. */
  29. /*
  30. tested special converters (most are tested actually but i didnt write it down ...)
  31. YV12 -> BGR16
  32. YV12 -> YV12
  33. BGR15 -> BGR16
  34. BGR16 -> BGR16
  35. YVU9 -> YV12
  36. untested special converters
  37. YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
  38. YV12/I420 -> YV12/I420
  39. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  40. BGR24 -> BGR32 & RGB24 -> RGB32
  41. BGR32 -> BGR24 & RGB32 -> RGB24
  42. BGR24 -> YV12
  43. */
  44. #include <inttypes.h>
  45. #include <string.h>
  46. #include <math.h>
  47. #include <stdio.h>
  48. #include "../config.h"
  49. #include "../mangle.h"
  50. #include <assert.h>
  51. #ifdef HAVE_MALLOC_H
  52. #include <malloc.h>
  53. #else
  54. #include <stdlib.h>
  55. #endif
  56. #ifdef HAVE_ALTIVEC_H
  57. #include <altivec.h>
  58. #endif
  59. #include "swscale.h"
  60. #include "swscale_internal.h"
  61. #include "../cpudetect.h"
  62. #include "../bswap.h"
  63. #include "../libvo/img_format.h"
  64. #include "rgb2rgb.h"
  65. #include "../libvo/fastmemcpy.h"
  66. #undef MOVNTQ
  67. #undef PAVGB
  68. //#undef HAVE_MMX2
  69. //#define HAVE_3DNOW
  70. //#undef HAVE_MMX
  71. //#undef ARCH_X86
  72. //#define WORDS_BIGENDIAN
  73. #define DITHER1XBPP
  74. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  75. #define RET 0xC3 //near return opcode for X86
  76. #ifdef MP_DEBUG
  77. #define ASSERT(x) assert(x);
  78. #else
  79. #define ASSERT(x) ;
  80. #endif
  81. #ifdef M_PI
  82. #define PI M_PI
  83. #else
  84. #define PI 3.14159265358979323846
  85. #endif
  86. //FIXME replace this with something faster
  87. #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
  88. || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
  89. #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
  90. #define isGray(x) ((x)==IMGFMT_Y800)
  91. #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
  92. #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
  93. #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
  94. || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
  95. || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
  96. || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
  97. || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
  98. #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
  99. || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
  100. || isRGB(x) || isBGR(x)\
  101. || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
  102. #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
  103. #define RGB2YUV_SHIFT 16
  104. #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
  105. #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
  106. #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  107. #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
  108. #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
  109. #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
  110. #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
  111. #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  112. #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
  113. extern const int32_t Inverse_Table_6_9[8][4];
  114. /*
  115. NOTES
  116. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  117. TODO
  118. more intelligent missalignment avoidance for the horizontal scaler
  119. write special vertical cubic upscale version
  120. Optimize C code (yv12 / minmax)
  121. add support for packed pixel yuv input & output
  122. add support for Y8 output
  123. optimize bgr24 & bgr32
  124. add BGR4 output support
  125. write special BGR->BGR scaler
  126. */
  127. #define ABS(a) ((a) > 0 ? (a) : (-(a)))
  128. #define MIN(a,b) ((a) > (b) ? (b) : (a))
  129. #define MAX(a,b) ((a) < (b) ? (b) : (a))
  130. #ifdef ARCH_X86
  131. static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
  132. static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
  133. static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
  134. static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL;
  135. static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
  136. static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
  137. static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
  138. static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
  139. static volatile uint64_t __attribute__((aligned(8))) b5Dither;
  140. static volatile uint64_t __attribute__((aligned(8))) g5Dither;
  141. static volatile uint64_t __attribute__((aligned(8))) g6Dither;
  142. static volatile uint64_t __attribute__((aligned(8))) r5Dither;
  143. static uint64_t __attribute__((aligned(8))) dither4[2]={
  144. 0x0103010301030103LL,
  145. 0x0200020002000200LL,};
  146. static uint64_t __attribute__((aligned(8))) dither8[2]={
  147. 0x0602060206020602LL,
  148. 0x0004000400040004LL,};
  149. static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
  150. static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
  151. static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
  152. static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
  153. static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
  154. static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
  155. static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
  156. static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
  157. static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
  158. #ifdef FAST_BGR2YV12
  159. static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000000210041000DULL;
  160. static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
  161. static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
  162. #else
  163. static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000020E540830C8BULL;
  164. static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
  165. static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
  166. #endif
  167. static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL;
  168. static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL;
  169. static const uint64_t w1111 __attribute__((aligned(8))) = 0x0001000100010001ULL;
  170. #endif
  171. // clipping helper table for C implementations:
  172. static unsigned char clip_table[768];
  173. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  174. extern const uint8_t dither_2x2_4[2][8];
  175. extern const uint8_t dither_2x2_8[2][8];
  176. extern const uint8_t dither_8x8_32[8][8];
  177. extern const uint8_t dither_8x8_73[8][8];
  178. extern const uint8_t dither_8x8_220[8][8];
  179. #ifdef ARCH_X86
  180. void in_asm_used_var_warning_killer()
  181. {
  182. volatile int i= bF8+bFC+w10+
  183. bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
  184. M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
  185. if(i) i=0;
  186. }
  187. #endif
  188. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  189. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  190. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  191. {
  192. //FIXME Optimize (just quickly writen not opti..)
  193. int i;
  194. for(i=0; i<dstW; i++)
  195. {
  196. int val=1<<18;
  197. int j;
  198. for(j=0; j<lumFilterSize; j++)
  199. val += lumSrc[j][i] * lumFilter[j];
  200. dest[i]= MIN(MAX(val>>19, 0), 255);
  201. }
  202. if(uDest != NULL)
  203. for(i=0; i<chrDstW; i++)
  204. {
  205. int u=1<<18;
  206. int v=1<<18;
  207. int j;
  208. for(j=0; j<chrFilterSize; j++)
  209. {
  210. u += chrSrc[j][i] * chrFilter[j];
  211. v += chrSrc[j][i + 2048] * chrFilter[j];
  212. }
  213. uDest[i]= MIN(MAX(u>>19, 0), 255);
  214. vDest[i]= MIN(MAX(v>>19, 0), 255);
  215. }
  216. }
  217. #define YSCALE_YUV_2_PACKEDX_C(type) \
  218. for(i=0; i<(dstW>>1); i++){\
  219. int j;\
  220. int Y1=1<<18;\
  221. int Y2=1<<18;\
  222. int U=1<<18;\
  223. int V=1<<18;\
  224. type *r, *b, *g;\
  225. const int i2= 2*i;\
  226. \
  227. for(j=0; j<lumFilterSize; j++)\
  228. {\
  229. Y1 += lumSrc[j][i2] * lumFilter[j];\
  230. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  231. }\
  232. for(j=0; j<chrFilterSize; j++)\
  233. {\
  234. U += chrSrc[j][i] * chrFilter[j];\
  235. V += chrSrc[j][i+2048] * chrFilter[j];\
  236. }\
  237. Y1>>=19;\
  238. Y2>>=19;\
  239. U >>=19;\
  240. V >>=19;\
  241. if((Y1|Y2|U|V)&256)\
  242. {\
  243. if(Y1>255) Y1=255;\
  244. else if(Y1<0)Y1=0;\
  245. if(Y2>255) Y2=255;\
  246. else if(Y2<0)Y2=0;\
  247. if(U>255) U=255;\
  248. else if(U<0) U=0;\
  249. if(V>255) V=255;\
  250. else if(V<0) V=0;\
  251. }
  252. #define YSCALE_YUV_2_RGBX_C(type) \
  253. YSCALE_YUV_2_PACKEDX_C(type)\
  254. r = c->table_rV[V];\
  255. g = c->table_gU[U] + c->table_gV[V];\
  256. b = c->table_bU[U];\
  257. #define YSCALE_YUV_2_PACKED2_C \
  258. for(i=0; i<(dstW>>1); i++){\
  259. const int i2= 2*i;\
  260. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
  261. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
  262. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
  263. int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
  264. #define YSCALE_YUV_2_RGB2_C(type) \
  265. YSCALE_YUV_2_PACKED2_C\
  266. type *r, *b, *g;\
  267. r = c->table_rV[V];\
  268. g = c->table_gU[U] + c->table_gV[V];\
  269. b = c->table_bU[U];\
  270. #define YSCALE_YUV_2_PACKED1_C \
  271. for(i=0; i<(dstW>>1); i++){\
  272. const int i2= 2*i;\
  273. int Y1= buf0[i2 ]>>7;\
  274. int Y2= buf0[i2+1]>>7;\
  275. int U= (uvbuf1[i ])>>7;\
  276. int V= (uvbuf1[i+2048])>>7;\
  277. #define YSCALE_YUV_2_RGB1_C(type) \
  278. YSCALE_YUV_2_PACKED1_C\
  279. type *r, *b, *g;\
  280. r = c->table_rV[V];\
  281. g = c->table_gU[U] + c->table_gV[V];\
  282. b = c->table_bU[U];\
  283. #define YSCALE_YUV_2_PACKED1B_C \
  284. for(i=0; i<(dstW>>1); i++){\
  285. const int i2= 2*i;\
  286. int Y1= buf0[i2 ]>>7;\
  287. int Y2= buf0[i2+1]>>7;\
  288. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  289. int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
  290. #define YSCALE_YUV_2_RGB1B_C(type) \
  291. YSCALE_YUV_2_PACKED1B_C\
  292. type *r, *b, *g;\
  293. r = c->table_rV[V];\
  294. g = c->table_gU[U] + c->table_gV[V];\
  295. b = c->table_bU[U];\
  296. #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
  297. switch(c->dstFormat)\
  298. {\
  299. case IMGFMT_BGR32:\
  300. case IMGFMT_RGB32:\
  301. func(uint32_t)\
  302. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  303. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  304. } \
  305. break;\
  306. case IMGFMT_RGB24:\
  307. func(uint8_t)\
  308. ((uint8_t*)dest)[0]= r[Y1];\
  309. ((uint8_t*)dest)[1]= g[Y1];\
  310. ((uint8_t*)dest)[2]= b[Y1];\
  311. ((uint8_t*)dest)[3]= r[Y2];\
  312. ((uint8_t*)dest)[4]= g[Y2];\
  313. ((uint8_t*)dest)[5]= b[Y2];\
  314. ((uint8_t*)dest)+=6;\
  315. }\
  316. break;\
  317. case IMGFMT_BGR24:\
  318. func(uint8_t)\
  319. ((uint8_t*)dest)[0]= b[Y1];\
  320. ((uint8_t*)dest)[1]= g[Y1];\
  321. ((uint8_t*)dest)[2]= r[Y1];\
  322. ((uint8_t*)dest)[3]= b[Y2];\
  323. ((uint8_t*)dest)[4]= g[Y2];\
  324. ((uint8_t*)dest)[5]= r[Y2];\
  325. ((uint8_t*)dest)+=6;\
  326. }\
  327. break;\
  328. case IMGFMT_RGB16:\
  329. case IMGFMT_BGR16:\
  330. {\
  331. const int dr1= dither_2x2_8[y&1 ][0];\
  332. const int dg1= dither_2x2_4[y&1 ][0];\
  333. const int db1= dither_2x2_8[(y&1)^1][0];\
  334. const int dr2= dither_2x2_8[y&1 ][1];\
  335. const int dg2= dither_2x2_4[y&1 ][1];\
  336. const int db2= dither_2x2_8[(y&1)^1][1];\
  337. func(uint16_t)\
  338. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  339. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  340. }\
  341. }\
  342. break;\
  343. case IMGFMT_RGB15:\
  344. case IMGFMT_BGR15:\
  345. {\
  346. const int dr1= dither_2x2_8[y&1 ][0];\
  347. const int dg1= dither_2x2_8[y&1 ][1];\
  348. const int db1= dither_2x2_8[(y&1)^1][0];\
  349. const int dr2= dither_2x2_8[y&1 ][1];\
  350. const int dg2= dither_2x2_8[y&1 ][0];\
  351. const int db2= dither_2x2_8[(y&1)^1][1];\
  352. func(uint16_t)\
  353. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  354. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  355. }\
  356. }\
  357. break;\
  358. case IMGFMT_RGB8:\
  359. case IMGFMT_BGR8:\
  360. {\
  361. const uint8_t * const d64= dither_8x8_73[y&7];\
  362. const uint8_t * const d32= dither_8x8_32[y&7];\
  363. func(uint8_t)\
  364. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  365. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  366. }\
  367. }\
  368. break;\
  369. case IMGFMT_RGB4:\
  370. case IMGFMT_BGR4:\
  371. {\
  372. const uint8_t * const d64= dither_8x8_73 [y&7];\
  373. const uint8_t * const d128=dither_8x8_220[y&7];\
  374. func(uint8_t)\
  375. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  376. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  377. }\
  378. }\
  379. break;\
  380. case IMGFMT_RG4B:\
  381. case IMGFMT_BG4B:\
  382. {\
  383. const uint8_t * const d64= dither_8x8_73 [y&7];\
  384. const uint8_t * const d128=dither_8x8_220[y&7];\
  385. func(uint8_t)\
  386. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  387. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  388. }\
  389. }\
  390. break;\
  391. case IMGFMT_RGB1:\
  392. case IMGFMT_BGR1:\
  393. {\
  394. const uint8_t * const d128=dither_8x8_220[y&7];\
  395. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  396. for(i=0; i<dstW-7; i+=8){\
  397. int acc;\
  398. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  399. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  400. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  401. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  402. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  403. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  404. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  405. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  406. ((uint8_t*)dest)[0]= acc;\
  407. ((uint8_t*)dest)++;\
  408. }\
  409. \
  410. /*\
  411. ((uint8_t*)dest)-= dstW>>4;\
  412. {\
  413. int acc=0;\
  414. int left=0;\
  415. static int top[1024];\
  416. static int last_new[1024][1024];\
  417. static int last_in3[1024][1024];\
  418. static int drift[1024][1024];\
  419. int topLeft=0;\
  420. int shift=0;\
  421. int count=0;\
  422. const uint8_t * const d128=dither_8x8_220[y&7];\
  423. int error_new=0;\
  424. int error_in3=0;\
  425. int f=0;\
  426. \
  427. for(i=dstW>>1; i<dstW; i++){\
  428. int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
  429. int in2 = (76309 * (in - 16) + 32768) >> 16;\
  430. int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
  431. int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
  432. + (last_new[y][i] - in3)*f/256;\
  433. int new= old> 128 ? 255 : 0;\
  434. \
  435. error_new+= ABS(last_new[y][i] - new);\
  436. error_in3+= ABS(last_in3[y][i] - in3);\
  437. f= error_new - error_in3*4;\
  438. if(f<0) f=0;\
  439. if(f>256) f=256;\
  440. \
  441. topLeft= top[i];\
  442. left= top[i]= old - new;\
  443. last_new[y][i]= new;\
  444. last_in3[y][i]= in3;\
  445. \
  446. acc+= acc + (new&1);\
  447. if((i&7)==6){\
  448. ((uint8_t*)dest)[0]= acc;\
  449. ((uint8_t*)dest)++;\
  450. }\
  451. }\
  452. }\
  453. */\
  454. }\
  455. break;\
  456. case IMGFMT_YUY2:\
  457. func2\
  458. ((uint8_t*)dest)[2*i2+0]= Y1;\
  459. ((uint8_t*)dest)[2*i2+1]= U;\
  460. ((uint8_t*)dest)[2*i2+2]= Y2;\
  461. ((uint8_t*)dest)[2*i2+3]= V;\
  462. } \
  463. break;\
  464. case IMGFMT_UYVY:\
  465. func2\
  466. ((uint8_t*)dest)[2*i2+0]= U;\
  467. ((uint8_t*)dest)[2*i2+1]= Y1;\
  468. ((uint8_t*)dest)[2*i2+2]= V;\
  469. ((uint8_t*)dest)[2*i2+3]= Y2;\
  470. } \
  471. break;\
  472. }\
  473. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  474. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  475. uint8_t *dest, int dstW, int y)
  476. {
  477. int i;
  478. switch(c->dstFormat)
  479. {
  480. case IMGFMT_RGB32:
  481. case IMGFMT_BGR32:
  482. YSCALE_YUV_2_RGBX_C(uint32_t)
  483. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
  484. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
  485. }
  486. break;
  487. case IMGFMT_RGB24:
  488. YSCALE_YUV_2_RGBX_C(uint8_t)
  489. ((uint8_t*)dest)[0]= r[Y1];
  490. ((uint8_t*)dest)[1]= g[Y1];
  491. ((uint8_t*)dest)[2]= b[Y1];
  492. ((uint8_t*)dest)[3]= r[Y2];
  493. ((uint8_t*)dest)[4]= g[Y2];
  494. ((uint8_t*)dest)[5]= b[Y2];
  495. ((uint8_t*)dest)+=6;
  496. }
  497. break;
  498. case IMGFMT_BGR24:
  499. YSCALE_YUV_2_RGBX_C(uint8_t)
  500. ((uint8_t*)dest)[0]= b[Y1];
  501. ((uint8_t*)dest)[1]= g[Y1];
  502. ((uint8_t*)dest)[2]= r[Y1];
  503. ((uint8_t*)dest)[3]= b[Y2];
  504. ((uint8_t*)dest)[4]= g[Y2];
  505. ((uint8_t*)dest)[5]= r[Y2];
  506. ((uint8_t*)dest)+=6;
  507. }
  508. break;
  509. case IMGFMT_RGB16:
  510. case IMGFMT_BGR16:
  511. {
  512. const int dr1= dither_2x2_8[y&1 ][0];
  513. const int dg1= dither_2x2_4[y&1 ][0];
  514. const int db1= dither_2x2_8[(y&1)^1][0];
  515. const int dr2= dither_2x2_8[y&1 ][1];
  516. const int dg2= dither_2x2_4[y&1 ][1];
  517. const int db2= dither_2x2_8[(y&1)^1][1];
  518. YSCALE_YUV_2_RGBX_C(uint16_t)
  519. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  520. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  521. }
  522. }
  523. break;
  524. case IMGFMT_RGB15:
  525. case IMGFMT_BGR15:
  526. {
  527. const int dr1= dither_2x2_8[y&1 ][0];
  528. const int dg1= dither_2x2_8[y&1 ][1];
  529. const int db1= dither_2x2_8[(y&1)^1][0];
  530. const int dr2= dither_2x2_8[y&1 ][1];
  531. const int dg2= dither_2x2_8[y&1 ][0];
  532. const int db2= dither_2x2_8[(y&1)^1][1];
  533. YSCALE_YUV_2_RGBX_C(uint16_t)
  534. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  535. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  536. }
  537. }
  538. break;
  539. case IMGFMT_RGB8:
  540. case IMGFMT_BGR8:
  541. {
  542. const uint8_t * const d64= dither_8x8_73[y&7];
  543. const uint8_t * const d32= dither_8x8_32[y&7];
  544. YSCALE_YUV_2_RGBX_C(uint8_t)
  545. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
  546. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
  547. }
  548. }
  549. break;
  550. case IMGFMT_RGB4:
  551. case IMGFMT_BGR4:
  552. {
  553. const uint8_t * const d64= dither_8x8_73 [y&7];
  554. const uint8_t * const d128=dither_8x8_220[y&7];
  555. YSCALE_YUV_2_RGBX_C(uint8_t)
  556. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
  557. +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
  558. }
  559. }
  560. break;
  561. case IMGFMT_RG4B:
  562. case IMGFMT_BG4B:
  563. {
  564. const uint8_t * const d64= dither_8x8_73 [y&7];
  565. const uint8_t * const d128=dither_8x8_220[y&7];
  566. YSCALE_YUV_2_RGBX_C(uint8_t)
  567. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
  568. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
  569. }
  570. }
  571. break;
  572. case IMGFMT_RGB1:
  573. case IMGFMT_BGR1:
  574. {
  575. const uint8_t * const d128=dither_8x8_220[y&7];
  576. uint8_t *g= c->table_gU[128] + c->table_gV[128];
  577. int acc=0;
  578. for(i=0; i<dstW-1; i+=2){
  579. int j;
  580. int Y1=1<<18;
  581. int Y2=1<<18;
  582. for(j=0; j<lumFilterSize; j++)
  583. {
  584. Y1 += lumSrc[j][i] * lumFilter[j];
  585. Y2 += lumSrc[j][i+1] * lumFilter[j];
  586. }
  587. Y1>>=19;
  588. Y2>>=19;
  589. if((Y1|Y2)&256)
  590. {
  591. if(Y1>255) Y1=255;
  592. else if(Y1<0)Y1=0;
  593. if(Y2>255) Y2=255;
  594. else if(Y2<0)Y2=0;
  595. }
  596. acc+= acc + g[Y1+d128[(i+0)&7]];
  597. acc+= acc + g[Y2+d128[(i+1)&7]];
  598. if((i&7)==6){
  599. ((uint8_t*)dest)[0]= acc;
  600. ((uint8_t*)dest)++;
  601. }
  602. }
  603. }
  604. break;
  605. case IMGFMT_YUY2:
  606. YSCALE_YUV_2_PACKEDX_C(void)
  607. ((uint8_t*)dest)[2*i2+0]= Y1;
  608. ((uint8_t*)dest)[2*i2+1]= U;
  609. ((uint8_t*)dest)[2*i2+2]= Y2;
  610. ((uint8_t*)dest)[2*i2+3]= V;
  611. }
  612. break;
  613. case IMGFMT_UYVY:
  614. YSCALE_YUV_2_PACKEDX_C(void)
  615. ((uint8_t*)dest)[2*i2+0]= U;
  616. ((uint8_t*)dest)[2*i2+1]= Y1;
  617. ((uint8_t*)dest)[2*i2+2]= V;
  618. ((uint8_t*)dest)[2*i2+3]= Y2;
  619. }
  620. break;
  621. }
  622. }
  623. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  624. //Plain C versions
  625. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
  626. #define COMPILE_C
  627. #endif
  628. #ifdef ARCH_POWERPC
  629. #ifdef HAVE_ALTIVEC
  630. #define COMPILE_ALTIVEC
  631. #endif //HAVE_ALTIVEC
  632. #endif //ARCH_POWERPC
  633. #ifdef ARCH_X86
  634. #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
  635. #define COMPILE_MMX
  636. #endif
  637. #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
  638. #define COMPILE_MMX2
  639. #endif
  640. #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
  641. #define COMPILE_3DNOW
  642. #endif
  643. #endif //ARCH_X86
  644. #undef HAVE_MMX
  645. #undef HAVE_MMX2
  646. #undef HAVE_3DNOW
  647. #ifdef COMPILE_C
  648. #undef HAVE_MMX
  649. #undef HAVE_MMX2
  650. #undef HAVE_3DNOW
  651. #undef HAVE_ALTIVEC
  652. #define RENAME(a) a ## _C
  653. #include "swscale_template.c"
  654. #endif
  655. #ifdef ARCH_POWERPC
  656. #ifdef COMPILE_ALTIVEC
  657. #undef RENAME
  658. #define HAVE_ALTIVEC
  659. #define RENAME(a) a ## _altivec
  660. #include "swscale_template.c"
  661. #endif
  662. #endif //ARCH_POWERPC
  663. #ifdef ARCH_X86
  664. //X86 versions
  665. /*
  666. #undef RENAME
  667. #undef HAVE_MMX
  668. #undef HAVE_MMX2
  669. #undef HAVE_3DNOW
  670. #define ARCH_X86
  671. #define RENAME(a) a ## _X86
  672. #include "swscale_template.c"
  673. */
  674. //MMX versions
  675. #ifdef COMPILE_MMX
  676. #undef RENAME
  677. #define HAVE_MMX
  678. #undef HAVE_MMX2
  679. #undef HAVE_3DNOW
  680. #define RENAME(a) a ## _MMX
  681. #include "swscale_template.c"
  682. #endif
  683. //MMX2 versions
  684. #ifdef COMPILE_MMX2
  685. #undef RENAME
  686. #define HAVE_MMX
  687. #define HAVE_MMX2
  688. #undef HAVE_3DNOW
  689. #define RENAME(a) a ## _MMX2
  690. #include "swscale_template.c"
  691. #endif
  692. //3DNOW versions
  693. #ifdef COMPILE_3DNOW
  694. #undef RENAME
  695. #define HAVE_MMX
  696. #undef HAVE_MMX2
  697. #define HAVE_3DNOW
  698. #define RENAME(a) a ## _3DNow
  699. #include "swscale_template.c"
  700. #endif
  701. #endif //ARCH_X86
  702. // minor note: the HAVE_xyz is messed up after that line so don't use it
  703. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  704. {
  705. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  706. if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  707. else return getSplineCoeff( 0.0,
  708. b+ 2.0*c + 3.0*d,
  709. c + 3.0*d,
  710. -b- 3.0*c - 6.0*d,
  711. dist-1.0);
  712. }
  713. static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  714. int srcW, int dstW, int filterAlign, int one, int flags,
  715. SwsVector *srcFilter, SwsVector *dstFilter)
  716. {
  717. int i;
  718. int filterSize;
  719. int filter2Size;
  720. int minFilterSize;
  721. double *filter=NULL;
  722. double *filter2=NULL;
  723. #ifdef ARCH_X86
  724. if(flags & SWS_CPU_CAPS_MMX)
  725. asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
  726. #endif
  727. // Note the +1 is for the MMXscaler which reads over the end
  728. *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
  729. if(ABS(xInc - 0x10000) <10) // unscaled
  730. {
  731. int i;
  732. filterSize= 1;
  733. filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
  734. for(i=0; i<dstW*filterSize; i++) filter[i]=0;
  735. for(i=0; i<dstW; i++)
  736. {
  737. filter[i*filterSize]=1;
  738. (*filterPos)[i]=i;
  739. }
  740. }
  741. else if(flags&SWS_POINT) // lame looking point sampling mode
  742. {
  743. int i;
  744. int xDstInSrc;
  745. filterSize= 1;
  746. filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
  747. xDstInSrc= xInc/2 - 0x8000;
  748. for(i=0; i<dstW; i++)
  749. {
  750. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  751. (*filterPos)[i]= xx;
  752. filter[i]= 1.0;
  753. xDstInSrc+= xInc;
  754. }
  755. }
  756. else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  757. {
  758. int i;
  759. int xDstInSrc;
  760. if (flags&SWS_BICUBIC) filterSize= 4;
  761. else if(flags&SWS_X ) filterSize= 4;
  762. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  763. filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
  764. xDstInSrc= xInc/2 - 0x8000;
  765. for(i=0; i<dstW; i++)
  766. {
  767. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  768. int j;
  769. (*filterPos)[i]= xx;
  770. //Bilinear upscale / linear interpolate / Area averaging
  771. for(j=0; j<filterSize; j++)
  772. {
  773. double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  774. double coeff= 1.0 - d;
  775. if(coeff<0) coeff=0;
  776. filter[i*filterSize + j]= coeff;
  777. xx++;
  778. }
  779. xDstInSrc+= xInc;
  780. }
  781. }
  782. else
  783. {
  784. double xDstInSrc;
  785. double sizeFactor, filterSizeInSrc;
  786. const double xInc1= (double)xInc / (double)(1<<16);
  787. int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
  788. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  789. else if(flags&SWS_X) sizeFactor= 8.0;
  790. else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  791. else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  792. else if(flags&SWS_LANCZOS) sizeFactor= param ? 2.0*param : 6.0;
  793. else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  794. else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  795. else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
  796. else {
  797. sizeFactor= 0.0; //GCC warning killer
  798. ASSERT(0)
  799. }
  800. if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  801. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  802. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  803. if(filterSize > srcW-2) filterSize=srcW-2;
  804. filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
  805. xDstInSrc= xInc1 / 2.0 - 0.5;
  806. for(i=0; i<dstW; i++)
  807. {
  808. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  809. int j;
  810. (*filterPos)[i]= xx;
  811. for(j=0; j<filterSize; j++)
  812. {
  813. double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  814. double coeff;
  815. if(flags & SWS_BICUBIC)
  816. {
  817. double A= param ? -param*0.01 : -0.60;
  818. // Equation is from VirtualDub
  819. if(d<1.0)
  820. coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
  821. else if(d<2.0)
  822. coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
  823. else
  824. coeff=0.0;
  825. }
  826. /* else if(flags & SWS_X)
  827. {
  828. double p= param ? param*0.01 : 0.3;
  829. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  830. coeff*= pow(2.0, - p*d*d);
  831. }*/
  832. else if(flags & SWS_X)
  833. {
  834. double A= param ? param*0.1 : 1.0;
  835. if(d<1.0)
  836. coeff = cos(d*PI);
  837. else
  838. coeff=-1.0;
  839. if(coeff<0.0) coeff= -pow(-coeff, A);
  840. else coeff= pow( coeff, A);
  841. coeff= coeff*0.5 + 0.5;
  842. }
  843. else if(flags & SWS_AREA)
  844. {
  845. double srcPixelSize= 1.0/xInc1;
  846. if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
  847. else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  848. else coeff=0.0;
  849. }
  850. else if(flags & SWS_GAUSS)
  851. {
  852. double p= param ? param*0.1 : 3.0;
  853. coeff = pow(2.0, - p*d*d);
  854. }
  855. else if(flags & SWS_SINC)
  856. {
  857. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  858. }
  859. else if(flags & SWS_LANCZOS)
  860. {
  861. double p= param ? param : 3.0;
  862. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  863. if(d>p) coeff=0;
  864. }
  865. else if(flags & SWS_BILINEAR)
  866. {
  867. coeff= 1.0 - d;
  868. if(coeff<0) coeff=0;
  869. }
  870. else if(flags & SWS_SPLINE)
  871. {
  872. double p=-2.196152422706632;
  873. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  874. }
  875. else {
  876. coeff= 0.0; //GCC warning killer
  877. ASSERT(0)
  878. }
  879. filter[i*filterSize + j]= coeff;
  880. xx++;
  881. }
  882. xDstInSrc+= xInc1;
  883. }
  884. }
  885. /* apply src & dst Filter to filter -> filter2
  886. free(filter);
  887. */
  888. ASSERT(filterSize>0)
  889. filter2Size= filterSize;
  890. if(srcFilter) filter2Size+= srcFilter->length - 1;
  891. if(dstFilter) filter2Size+= dstFilter->length - 1;
  892. ASSERT(filter2Size>0)
  893. filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
  894. for(i=0; i<dstW; i++)
  895. {
  896. int j;
  897. SwsVector scaleFilter;
  898. SwsVector *outVec;
  899. scaleFilter.coeff= filter + i*filterSize;
  900. scaleFilter.length= filterSize;
  901. if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  902. else outVec= &scaleFilter;
  903. ASSERT(outVec->length == filter2Size)
  904. //FIXME dstFilter
  905. for(j=0; j<outVec->length; j++)
  906. {
  907. filter2[i*filter2Size + j]= outVec->coeff[j];
  908. }
  909. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  910. if(outVec != &scaleFilter) sws_freeVec(outVec);
  911. }
  912. free(filter); filter=NULL;
  913. /* try to reduce the filter-size (step1 find size and shift left) */
  914. // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
  915. minFilterSize= 0;
  916. for(i=dstW-1; i>=0; i--)
  917. {
  918. int min= filter2Size;
  919. int j;
  920. double cutOff=0.0;
  921. /* get rid off near zero elements on the left by shifting left */
  922. for(j=0; j<filter2Size; j++)
  923. {
  924. int k;
  925. cutOff += ABS(filter2[i*filter2Size]);
  926. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  927. /* preserve Monotonicity because the core can't handle the filter otherwise */
  928. if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  929. // Move filter coeffs left
  930. for(k=1; k<filter2Size; k++)
  931. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  932. filter2[i*filter2Size + k - 1]= 0.0;
  933. (*filterPos)[i]++;
  934. }
  935. cutOff=0.0;
  936. /* count near zeros on the right */
  937. for(j=filter2Size-1; j>0; j--)
  938. {
  939. cutOff += ABS(filter2[i*filter2Size + j]);
  940. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  941. min--;
  942. }
  943. if(min>minFilterSize) minFilterSize= min;
  944. }
  945. ASSERT(minFilterSize > 0)
  946. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  947. ASSERT(filterSize > 0)
  948. filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
  949. *outFilterSize= filterSize;
  950. if(flags&SWS_PRINT_INFO)
  951. MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  952. /* try to reduce the filter-size (step2 reduce it) */
  953. for(i=0; i<dstW; i++)
  954. {
  955. int j;
  956. for(j=0; j<filterSize; j++)
  957. {
  958. if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
  959. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  960. }
  961. }
  962. free(filter2); filter2=NULL;
  963. //FIXME try to align filterpos if possible
  964. //fix borders
  965. for(i=0; i<dstW; i++)
  966. {
  967. int j;
  968. if((*filterPos)[i] < 0)
  969. {
  970. // Move filter coeffs left to compensate for filterPos
  971. for(j=1; j<filterSize; j++)
  972. {
  973. int left= MAX(j + (*filterPos)[i], 0);
  974. filter[i*filterSize + left] += filter[i*filterSize + j];
  975. filter[i*filterSize + j]=0;
  976. }
  977. (*filterPos)[i]= 0;
  978. }
  979. if((*filterPos)[i] + filterSize > srcW)
  980. {
  981. int shift= (*filterPos)[i] + filterSize - srcW;
  982. // Move filter coeffs right to compensate for filterPos
  983. for(j=filterSize-2; j>=0; j--)
  984. {
  985. int right= MIN(j + shift, filterSize-1);
  986. filter[i*filterSize +right] += filter[i*filterSize +j];
  987. filter[i*filterSize +j]=0;
  988. }
  989. (*filterPos)[i]= srcW - filterSize;
  990. }
  991. }
  992. // Note the +1 is for the MMXscaler which reads over the end
  993. *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
  994. memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
  995. /* Normalize & Store in outFilter */
  996. for(i=0; i<dstW; i++)
  997. {
  998. int j;
  999. double error=0;
  1000. double sum=0;
  1001. double scale= one;
  1002. for(j=0; j<filterSize; j++)
  1003. {
  1004. sum+= filter[i*filterSize + j];
  1005. }
  1006. scale/= sum;
  1007. for(j=0; j<*outFilterSize; j++)
  1008. {
  1009. double v= filter[i*filterSize + j]*scale + error;
  1010. int intV= floor(v + 0.5);
  1011. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1012. error = v - intV;
  1013. }
  1014. }
  1015. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1016. for(i=0; i<*outFilterSize; i++)
  1017. {
  1018. int j= dstW*(*outFilterSize);
  1019. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1020. }
  1021. free(filter);
  1022. }
  1023. #ifdef ARCH_X86
  1024. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1025. {
  1026. uint8_t *fragmentA;
  1027. int imm8OfPShufW1A;
  1028. int imm8OfPShufW2A;
  1029. int fragmentLengthA;
  1030. uint8_t *fragmentB;
  1031. int imm8OfPShufW1B;
  1032. int imm8OfPShufW2B;
  1033. int fragmentLengthB;
  1034. int fragmentPos;
  1035. int xpos, i;
  1036. // create an optimized horizontal scaling routine
  1037. //code fragment
  1038. asm volatile(
  1039. "jmp 9f \n\t"
  1040. // Begin
  1041. "0: \n\t"
  1042. "movq (%%edx, %%eax), %%mm3 \n\t"
  1043. "movd (%%ecx, %%esi), %%mm0 \n\t"
  1044. "movd 1(%%ecx, %%esi), %%mm1 \n\t"
  1045. "punpcklbw %%mm7, %%mm1 \n\t"
  1046. "punpcklbw %%mm7, %%mm0 \n\t"
  1047. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1048. "1: \n\t"
  1049. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1050. "2: \n\t"
  1051. "psubw %%mm1, %%mm0 \n\t"
  1052. "movl 8(%%ebx, %%eax), %%esi \n\t"
  1053. "pmullw %%mm3, %%mm0 \n\t"
  1054. "psllw $7, %%mm1 \n\t"
  1055. "paddw %%mm1, %%mm0 \n\t"
  1056. "movq %%mm0, (%%edi, %%eax) \n\t"
  1057. "addl $8, %%eax \n\t"
  1058. // End
  1059. "9: \n\t"
  1060. // "int $3\n\t"
  1061. "leal 0b, %0 \n\t"
  1062. "leal 1b, %1 \n\t"
  1063. "leal 2b, %2 \n\t"
  1064. "decl %1 \n\t"
  1065. "decl %2 \n\t"
  1066. "subl %0, %1 \n\t"
  1067. "subl %0, %2 \n\t"
  1068. "leal 9b, %3 \n\t"
  1069. "subl %0, %3 \n\t"
  1070. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1071. "=r" (fragmentLengthA)
  1072. );
  1073. asm volatile(
  1074. "jmp 9f \n\t"
  1075. // Begin
  1076. "0: \n\t"
  1077. "movq (%%edx, %%eax), %%mm3 \n\t"
  1078. "movd (%%ecx, %%esi), %%mm0 \n\t"
  1079. "punpcklbw %%mm7, %%mm0 \n\t"
  1080. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1081. "1: \n\t"
  1082. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1083. "2: \n\t"
  1084. "psubw %%mm1, %%mm0 \n\t"
  1085. "movl 8(%%ebx, %%eax), %%esi \n\t"
  1086. "pmullw %%mm3, %%mm0 \n\t"
  1087. "psllw $7, %%mm1 \n\t"
  1088. "paddw %%mm1, %%mm0 \n\t"
  1089. "movq %%mm0, (%%edi, %%eax) \n\t"
  1090. "addl $8, %%eax \n\t"
  1091. // End
  1092. "9: \n\t"
  1093. // "int $3\n\t"
  1094. "leal 0b, %0 \n\t"
  1095. "leal 1b, %1 \n\t"
  1096. "leal 2b, %2 \n\t"
  1097. "decl %1 \n\t"
  1098. "decl %2 \n\t"
  1099. "subl %0, %1 \n\t"
  1100. "subl %0, %2 \n\t"
  1101. "leal 9b, %3 \n\t"
  1102. "subl %0, %3 \n\t"
  1103. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1104. "=r" (fragmentLengthB)
  1105. );
  1106. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1107. fragmentPos=0;
  1108. for(i=0; i<dstW/numSplits; i++)
  1109. {
  1110. int xx=xpos>>16;
  1111. if((i&3) == 0)
  1112. {
  1113. int a=0;
  1114. int b=((xpos+xInc)>>16) - xx;
  1115. int c=((xpos+xInc*2)>>16) - xx;
  1116. int d=((xpos+xInc*3)>>16) - xx;
  1117. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1118. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1119. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1120. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1121. filterPos[i/2]= xx;
  1122. if(d+1<4)
  1123. {
  1124. int maxShift= 3-(d+1);
  1125. int shift=0;
  1126. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1127. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1128. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1129. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1130. a | (b<<2) | (c<<4) | (d<<6);
  1131. if(i+3>=dstW) shift=maxShift; //avoid overread
  1132. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1133. if(shift && i>=shift)
  1134. {
  1135. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1136. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1137. filterPos[i/2]-=shift;
  1138. }
  1139. fragmentPos+= fragmentLengthB;
  1140. }
  1141. else
  1142. {
  1143. int maxShift= 3-d;
  1144. int shift=0;
  1145. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1146. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1147. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1148. a | (b<<2) | (c<<4) | (d<<6);
  1149. if(i+4>=dstW) shift=maxShift; //avoid overread
  1150. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1151. if(shift && i>=shift)
  1152. {
  1153. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1154. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1155. filterPos[i/2]-=shift;
  1156. }
  1157. fragmentPos+= fragmentLengthA;
  1158. }
  1159. funnyCode[fragmentPos]= RET;
  1160. }
  1161. xpos+=xInc;
  1162. }
  1163. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1164. }
  1165. #endif // ARCH_X86
  1166. static void globalInit(){
  1167. // generating tables:
  1168. int i;
  1169. for(i=0; i<768; i++){
  1170. int c= MIN(MAX(i-256, 0), 255);
  1171. clip_table[i]=c;
  1172. }
  1173. }
  1174. static SwsFunc getSwsFunc(int flags){
  1175. #ifdef RUNTIME_CPUDETECT
  1176. #ifdef ARCH_X86
  1177. // ordered per speed fasterst first
  1178. if(flags & SWS_CPU_CAPS_MMX2)
  1179. return swScale_MMX2;
  1180. else if(flags & SWS_CPU_CAPS_3DNOW)
  1181. return swScale_3DNow;
  1182. else if(flags & SWS_CPU_CAPS_MMX)
  1183. return swScale_MMX;
  1184. else
  1185. return swScale_C;
  1186. #else
  1187. #ifdef ARCH_POWERPC
  1188. if(flags & SWS_CPU_CAPS_ALTIVEC)
  1189. return swScale_altivec;
  1190. else
  1191. return swScale_C;
  1192. #endif
  1193. return swScale_C;
  1194. #endif
  1195. #else //RUNTIME_CPUDETECT
  1196. #ifdef HAVE_MMX2
  1197. return swScale_MMX2;
  1198. #elif defined (HAVE_3DNOW)
  1199. return swScale_3DNow;
  1200. #elif defined (HAVE_MMX)
  1201. return swScale_MMX;
  1202. #elif defined (HAVE_ALTIVEC)
  1203. return swScale_altivec;
  1204. #else
  1205. return swScale_C;
  1206. #endif
  1207. #endif //!RUNTIME_CPUDETECT
  1208. }
  1209. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1210. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1211. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1212. /* Copy Y plane */
  1213. if(dstStride[0]==srcStride[0])
  1214. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1215. else
  1216. {
  1217. int i;
  1218. uint8_t *srcPtr= src[0];
  1219. uint8_t *dstPtr= dst;
  1220. for(i=0; i<srcSliceH; i++)
  1221. {
  1222. memcpy(dstPtr, srcPtr, srcStride[0]);
  1223. srcPtr+= srcStride[0];
  1224. dstPtr+= dstStride[0];
  1225. }
  1226. }
  1227. dst = dstParam[1] + dstStride[1]*srcSliceY;
  1228. interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
  1229. return srcSliceH;
  1230. }
  1231. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1232. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1233. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1234. yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1235. return srcSliceH;
  1236. }
  1237. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1238. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1239. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1240. yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1241. return srcSliceH;
  1242. }
  1243. /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
  1244. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1245. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1246. const int srcFormat= c->srcFormat;
  1247. const int dstFormat= c->dstFormat;
  1248. const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
  1249. const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
  1250. const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
  1251. const int dstId= (dstFormat&0xFF)>>2;
  1252. void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
  1253. /* BGR -> BGR */
  1254. if( (isBGR(srcFormat) && isBGR(dstFormat))
  1255. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1256. switch(srcId | (dstId<<4)){
  1257. case 0x34: conv= rgb16to15; break;
  1258. case 0x36: conv= rgb24to15; break;
  1259. case 0x38: conv= rgb32to15; break;
  1260. case 0x43: conv= rgb15to16; break;
  1261. case 0x46: conv= rgb24to16; break;
  1262. case 0x48: conv= rgb32to16; break;
  1263. case 0x63: conv= rgb15to24; break;
  1264. case 0x64: conv= rgb16to24; break;
  1265. case 0x68: conv= rgb32to24; break;
  1266. case 0x83: conv= rgb15to32; break;
  1267. case 0x84: conv= rgb16to32; break;
  1268. case 0x86: conv= rgb24to32; break;
  1269. default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1270. vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
  1271. }
  1272. }else if( (isBGR(srcFormat) && isRGB(dstFormat))
  1273. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1274. switch(srcId | (dstId<<4)){
  1275. case 0x33: conv= rgb15tobgr15; break;
  1276. case 0x34: conv= rgb16tobgr15; break;
  1277. case 0x36: conv= rgb24tobgr15; break;
  1278. case 0x38: conv= rgb32tobgr15; break;
  1279. case 0x43: conv= rgb15tobgr16; break;
  1280. case 0x44: conv= rgb16tobgr16; break;
  1281. case 0x46: conv= rgb24tobgr16; break;
  1282. case 0x48: conv= rgb32tobgr16; break;
  1283. case 0x63: conv= rgb15tobgr24; break;
  1284. case 0x64: conv= rgb16tobgr24; break;
  1285. case 0x66: conv= rgb24tobgr24; break;
  1286. case 0x68: conv= rgb32tobgr24; break;
  1287. case 0x83: conv= rgb15tobgr32; break;
  1288. case 0x84: conv= rgb16tobgr32; break;
  1289. case 0x86: conv= rgb24tobgr32; break;
  1290. case 0x88: conv= rgb32tobgr32; break;
  1291. default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1292. vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
  1293. }
  1294. }else{
  1295. MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1296. vo_format_name(srcFormat), vo_format_name(dstFormat));
  1297. }
  1298. if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
  1299. conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1300. else
  1301. {
  1302. int i;
  1303. uint8_t *srcPtr= src[0];
  1304. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1305. for(i=0; i<srcSliceH; i++)
  1306. {
  1307. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1308. srcPtr+= srcStride[0];
  1309. dstPtr+= dstStride[0];
  1310. }
  1311. }
  1312. return srcSliceH;
  1313. }
  1314. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1315. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1316. rgb24toyv12(
  1317. src[0],
  1318. dst[0]+ srcSliceY *dstStride[0],
  1319. dst[1]+(srcSliceY>>1)*dstStride[1],
  1320. dst[2]+(srcSliceY>>1)*dstStride[2],
  1321. c->srcW, srcSliceH,
  1322. dstStride[0], dstStride[1], srcStride[0]);
  1323. return srcSliceH;
  1324. }
  1325. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1326. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1327. int i;
  1328. /* copy Y */
  1329. if(srcStride[0]==dstStride[0])
  1330. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1331. else{
  1332. uint8_t *srcPtr= src[0];
  1333. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1334. for(i=0; i<srcSliceH; i++)
  1335. {
  1336. memcpy(dstPtr, srcPtr, c->srcW);
  1337. srcPtr+= srcStride[0];
  1338. dstPtr+= dstStride[0];
  1339. }
  1340. }
  1341. if(c->dstFormat==IMGFMT_YV12){
  1342. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1343. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1344. }else{
  1345. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1346. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1347. }
  1348. return srcSliceH;
  1349. }
  1350. /**
  1351. * bring pointers in YUV order instead of YVU
  1352. */
  1353. static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
  1354. if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
  1355. || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
  1356. sortedP[0]= p[0];
  1357. sortedP[1]= p[2];
  1358. sortedP[2]= p[1];
  1359. sortedStride[0]= stride[0];
  1360. sortedStride[1]= stride[2];
  1361. sortedStride[2]= stride[1];
  1362. }
  1363. else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
  1364. {
  1365. sortedP[0]= p[0];
  1366. sortedP[1]=
  1367. sortedP[2]= NULL;
  1368. sortedStride[0]= stride[0];
  1369. sortedStride[1]=
  1370. sortedStride[2]= 0;
  1371. }
  1372. else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
  1373. {
  1374. sortedP[0]= p[0];
  1375. sortedP[1]= p[1];
  1376. sortedP[2]= p[2];
  1377. sortedStride[0]= stride[0];
  1378. sortedStride[1]= stride[1];
  1379. sortedStride[2]= stride[2];
  1380. }else{
  1381. MSG_ERR("internal error in orderYUV\n");
  1382. }
  1383. }
  1384. /* unscaled copy like stuff (assumes nearly identical formats) */
  1385. static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1386. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1387. if(isPacked(c->srcFormat))
  1388. {
  1389. if(dstStride[0]==srcStride[0])
  1390. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1391. else
  1392. {
  1393. int i;
  1394. uint8_t *srcPtr= src[0];
  1395. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1396. int length=0;
  1397. /* universal length finder */
  1398. while(length+c->srcW <= ABS(dstStride[0])
  1399. && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
  1400. ASSERT(length!=0);
  1401. for(i=0; i<srcSliceH; i++)
  1402. {
  1403. memcpy(dstPtr, srcPtr, length);
  1404. srcPtr+= srcStride[0];
  1405. dstPtr+= dstStride[0];
  1406. }
  1407. }
  1408. }
  1409. else
  1410. { /* Planar YUV or gray */
  1411. int plane;
  1412. for(plane=0; plane<3; plane++)
  1413. {
  1414. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1415. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1416. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1417. if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1418. {
  1419. if(!isGray(c->dstFormat))
  1420. memset(dst[plane], 128, dstStride[plane]*height);
  1421. }
  1422. else
  1423. {
  1424. if(dstStride[plane]==srcStride[plane])
  1425. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1426. else
  1427. {
  1428. int i;
  1429. uint8_t *srcPtr= src[plane];
  1430. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1431. for(i=0; i<height; i++)
  1432. {
  1433. memcpy(dstPtr, srcPtr, length);
  1434. srcPtr+= srcStride[plane];
  1435. dstPtr+= dstStride[plane];
  1436. }
  1437. }
  1438. }
  1439. }
  1440. }
  1441. return srcSliceH;
  1442. }
  1443. static int remove_dup_fourcc(int fourcc)
  1444. {
  1445. switch(fourcc)
  1446. {
  1447. case IMGFMT_I420:
  1448. case IMGFMT_IYUV: return IMGFMT_YV12;
  1449. case IMGFMT_Y8 : return IMGFMT_Y800;
  1450. case IMGFMT_IF09: return IMGFMT_YVU9;
  1451. default: return fourcc;
  1452. }
  1453. }
  1454. static void getSubSampleFactors(int *h, int *v, int format){
  1455. switch(format){
  1456. case IMGFMT_UYVY:
  1457. case IMGFMT_YUY2:
  1458. *h=1;
  1459. *v=0;
  1460. break;
  1461. case IMGFMT_YV12:
  1462. case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
  1463. *h=1;
  1464. *v=1;
  1465. break;
  1466. case IMGFMT_YVU9:
  1467. *h=2;
  1468. *v=2;
  1469. break;
  1470. case IMGFMT_444P:
  1471. *h=0;
  1472. *v=0;
  1473. break;
  1474. case IMGFMT_422P:
  1475. *h=1;
  1476. *v=0;
  1477. break;
  1478. case IMGFMT_411P:
  1479. *h=2;
  1480. *v=0;
  1481. break;
  1482. default:
  1483. *h=0;
  1484. *v=0;
  1485. break;
  1486. }
  1487. }
  1488. static uint16_t roundToInt16(int64_t f){
  1489. int r= (f + (1<<15))>>16;
  1490. if(r<-0x7FFF) return 0x8000;
  1491. else if(r> 0x7FFF) return 0x7FFF;
  1492. else return r;
  1493. }
  1494. /**
  1495. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1496. * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
  1497. * @return -1 if not supported
  1498. */
  1499. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1500. int64_t crv = inv_table[0];
  1501. int64_t cbu = inv_table[1];
  1502. int64_t cgu = -inv_table[2];
  1503. int64_t cgv = -inv_table[3];
  1504. int64_t cy = 1<<16;
  1505. int64_t oy = 0;
  1506. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1507. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1508. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1509. c->brightness= brightness;
  1510. c->contrast = contrast;
  1511. c->saturation= saturation;
  1512. c->srcRange = srcRange;
  1513. c->dstRange = dstRange;
  1514. c->uOffset= 0x0400040004000400LL;
  1515. c->vOffset= 0x0400040004000400LL;
  1516. if(!srcRange){
  1517. cy= (cy*255) / 219;
  1518. oy= 16<<16;
  1519. }
  1520. cy = (cy *contrast )>>16;
  1521. crv= (crv*contrast * saturation)>>32;
  1522. cbu= (cbu*contrast * saturation)>>32;
  1523. cgu= (cgu*contrast * saturation)>>32;
  1524. cgv= (cgv*contrast * saturation)>>32;
  1525. oy -= 256*brightness;
  1526. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1527. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1528. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1529. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1530. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1531. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1532. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1533. //FIXME factorize
  1534. return 0;
  1535. }
  1536. /**
  1537. * @return -1 if not supported
  1538. */
  1539. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1540. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1541. *inv_table = c->srcColorspaceTable;
  1542. *table = c->dstColorspaceTable;
  1543. *srcRange = c->srcRange;
  1544. *dstRange = c->dstRange;
  1545. *brightness= c->brightness;
  1546. *contrast = c->contrast;
  1547. *saturation= c->saturation;
  1548. return 0;
  1549. }
  1550. SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
  1551. SwsFilter *srcFilter, SwsFilter *dstFilter){
  1552. SwsContext *c;
  1553. int i;
  1554. int usesVFilter, usesHFilter;
  1555. int unscaled, needsDither;
  1556. int srcFormat, dstFormat;
  1557. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1558. #ifdef ARCH_X86
  1559. if(flags & SWS_CPU_CAPS_MMX)
  1560. asm volatile("emms\n\t"::: "memory");
  1561. #endif
  1562. #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
  1563. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
  1564. #ifdef HAVE_MMX2
  1565. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1566. #elif defined (HAVE_3DNOW)
  1567. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1568. #elif defined (HAVE_MMX)
  1569. flags |= SWS_CPU_CAPS_MMX;
  1570. #elif defined (HAVE_ALTIVEC)
  1571. flags |= SWS_CPU_CAPS_ALTIVEC;
  1572. #endif
  1573. #endif
  1574. if(clip_table[512] != 255) globalInit();
  1575. if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
  1576. /* avoid duplicate Formats, so we don't need to check to much */
  1577. srcFormat = remove_dup_fourcc(origSrcFormat);
  1578. dstFormat = remove_dup_fourcc(origDstFormat);
  1579. unscaled = (srcW == dstW && srcH == dstH);
  1580. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1581. && (dstFormat&0xFF)<24
  1582. && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1583. if(!isSupportedIn(srcFormat))
  1584. {
  1585. MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
  1586. return NULL;
  1587. }
  1588. if(!isSupportedOut(dstFormat))
  1589. {
  1590. MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
  1591. return NULL;
  1592. }
  1593. /* sanity check */
  1594. if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1595. {
  1596. MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1597. srcW, srcH, dstW, dstH);
  1598. return NULL;
  1599. }
  1600. if(!dstFilter) dstFilter= &dummyFilter;
  1601. if(!srcFilter) srcFilter= &dummyFilter;
  1602. c= memalign(64, sizeof(SwsContext));
  1603. memset(c, 0, sizeof(SwsContext));
  1604. c->srcW= srcW;
  1605. c->srcH= srcH;
  1606. c->dstW= dstW;
  1607. c->dstH= dstH;
  1608. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1609. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1610. c->flags= flags;
  1611. c->dstFormat= dstFormat;
  1612. c->srcFormat= srcFormat;
  1613. c->origDstFormat= origDstFormat;
  1614. c->origSrcFormat= origSrcFormat;
  1615. c->vRounder= 4* 0x0001000100010001ULL;
  1616. usesHFilter= usesVFilter= 0;
  1617. if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
  1618. if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
  1619. if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
  1620. if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
  1621. if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
  1622. if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
  1623. if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
  1624. if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
  1625. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1626. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1627. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1628. if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1629. // drop some chroma lines if the user wants it
  1630. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1631. c->chrSrcVSubSample+= c->vChrDrop;
  1632. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1633. if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
  1634. c->chrSrcHSubSample=1;
  1635. c->chrIntHSubSample= c->chrDstHSubSample;
  1636. c->chrIntVSubSample= c->chrSrcVSubSample;
  1637. // note the -((-x)>>y) is so that we allways round toward +inf
  1638. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  1639. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  1640. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  1641. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  1642. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16);
  1643. /* unscaled special Cases */
  1644. if(unscaled && !usesHFilter && !usesVFilter)
  1645. {
  1646. /* yv12_to_nv12 */
  1647. if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
  1648. {
  1649. c->swScale= PlanarToNV12Wrapper;
  1650. }
  1651. /* yuv2bgr */
  1652. if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
  1653. {
  1654. c->swScale= yuv2rgb_get_func_ptr(c);
  1655. }
  1656. if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
  1657. {
  1658. c->swScale= yvu9toyv12Wrapper;
  1659. }
  1660. /* bgr24toYV12 */
  1661. if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
  1662. c->swScale= bgr24toyv12Wrapper;
  1663. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  1664. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1665. && (isBGR(dstFormat) || isRGB(dstFormat))
  1666. && !needsDither)
  1667. c->swScale= rgb2rgbWrapper;
  1668. /* LQ converters if -sws 0 or -sws 4*/
  1669. if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  1670. /* rgb/bgr -> rgb/bgr (dither needed forms) */
  1671. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1672. && (isBGR(dstFormat) || isRGB(dstFormat))
  1673. && needsDither)
  1674. c->swScale= rgb2rgbWrapper;
  1675. /* yv12_to_yuy2 */
  1676. if(srcFormat == IMGFMT_YV12 &&
  1677. (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
  1678. {
  1679. if (dstFormat == IMGFMT_YUY2)
  1680. c->swScale= PlanarToYuy2Wrapper;
  1681. else
  1682. c->swScale= PlanarToUyvyWrapper;
  1683. }
  1684. }
  1685. /* simple copy */
  1686. if( srcFormat == dstFormat
  1687. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  1688. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  1689. )
  1690. {
  1691. c->swScale= simpleCopy;
  1692. }
  1693. if(c->swScale){
  1694. if(flags&SWS_PRINT_INFO)
  1695. MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
  1696. vo_format_name(srcFormat), vo_format_name(dstFormat));
  1697. return c;
  1698. }
  1699. }
  1700. if(flags & SWS_CPU_CAPS_MMX2)
  1701. {
  1702. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  1703. if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  1704. {
  1705. if(flags&SWS_PRINT_INFO)
  1706. MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
  1707. }
  1708. if(usesHFilter) c->canMMX2BeUsed=0;
  1709. }
  1710. else
  1711. c->canMMX2BeUsed=0;
  1712. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  1713. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  1714. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  1715. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  1716. // n-2 is the last chrominance sample available
  1717. // this is not perfect, but noone shuld notice the difference, the more correct variant
  1718. // would be like the vertical one, but that would require some special code for the
  1719. // first and last pixel
  1720. if(flags&SWS_FAST_BILINEAR)
  1721. {
  1722. if(c->canMMX2BeUsed)
  1723. {
  1724. c->lumXInc+= 20;
  1725. c->chrXInc+= 20;
  1726. }
  1727. //we don't use the x86asm scaler if mmx is available
  1728. else if(flags & SWS_CPU_CAPS_MMX)
  1729. {
  1730. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  1731. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  1732. }
  1733. }
  1734. /* precalculate horizontal scaler filter coefficients */
  1735. {
  1736. const int filterAlign= (flags & SWS_CPU_CAPS_MMX) ? 4 : 1;
  1737. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  1738. srcW , dstW, filterAlign, 1<<14,
  1739. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1740. srcFilter->lumH, dstFilter->lumH);
  1741. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  1742. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  1743. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1744. srcFilter->chrH, dstFilter->chrH);
  1745. #ifdef ARCH_X86
  1746. // can't downscale !!!
  1747. if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  1748. {
  1749. c->lumMmx2Filter = (int16_t*)memalign(8, (dstW /8+8)*sizeof(int16_t));
  1750. c->chrMmx2Filter = (int16_t*)memalign(8, (c->chrDstW /4+8)*sizeof(int16_t));
  1751. c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW /2/8+8)*sizeof(int32_t));
  1752. c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
  1753. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  1754. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  1755. }
  1756. #endif
  1757. } // Init Horizontal stuff
  1758. /* precalculate vertical scaler filter coefficients */
  1759. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  1760. srcH , dstH, 1, (1<<12)-4,
  1761. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1762. srcFilter->lumV, dstFilter->lumV);
  1763. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  1764. c->chrSrcH, c->chrDstH, 1, (1<<12)-4,
  1765. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1766. srcFilter->chrV, dstFilter->chrV);
  1767. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  1768. c->vLumBufSize= c->vLumFilterSize;
  1769. c->vChrBufSize= c->vChrFilterSize;
  1770. for(i=0; i<dstH; i++)
  1771. {
  1772. int chrI= i*c->chrDstH / dstH;
  1773. int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  1774. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  1775. nextSlice>>= c->chrSrcVSubSample;
  1776. nextSlice<<= c->chrSrcVSubSample;
  1777. if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  1778. c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
  1779. if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  1780. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  1781. }
  1782. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  1783. c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
  1784. c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
  1785. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  1786. for(i=0; i<c->vLumBufSize; i++)
  1787. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
  1788. for(i=0; i<c->vChrBufSize; i++)
  1789. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
  1790. //try to avoid drawing green stuff between the right end and the stride end
  1791. for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
  1792. for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
  1793. ASSERT(c->chrDstH <= dstH)
  1794. if(flags&SWS_PRINT_INFO)
  1795. {
  1796. #ifdef DITHER1XBPP
  1797. char *dither= " dithered";
  1798. #else
  1799. char *dither= "";
  1800. #endif
  1801. if(flags&SWS_FAST_BILINEAR)
  1802. MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
  1803. else if(flags&SWS_BILINEAR)
  1804. MSG_INFO("\nSwScaler: BILINEAR scaler, ");
  1805. else if(flags&SWS_BICUBIC)
  1806. MSG_INFO("\nSwScaler: BICUBIC scaler, ");
  1807. else if(flags&SWS_X)
  1808. MSG_INFO("\nSwScaler: Experimental scaler, ");
  1809. else if(flags&SWS_POINT)
  1810. MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
  1811. else if(flags&SWS_AREA)
  1812. MSG_INFO("\nSwScaler: Area Averageing scaler, ");
  1813. else if(flags&SWS_BICUBLIN)
  1814. MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
  1815. else if(flags&SWS_GAUSS)
  1816. MSG_INFO("\nSwScaler: Gaussian scaler, ");
  1817. else if(flags&SWS_SINC)
  1818. MSG_INFO("\nSwScaler: Sinc scaler, ");
  1819. else if(flags&SWS_LANCZOS)
  1820. MSG_INFO("\nSwScaler: Lanczos scaler, ");
  1821. else if(flags&SWS_SPLINE)
  1822. MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
  1823. else
  1824. MSG_INFO("\nSwScaler: ehh flags invalid?! ");
  1825. if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
  1826. MSG_INFO("from %s to%s %s ",
  1827. vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
  1828. else
  1829. MSG_INFO("from %s to %s ",
  1830. vo_format_name(srcFormat), vo_format_name(dstFormat));
  1831. if(flags & SWS_CPU_CAPS_MMX2)
  1832. MSG_INFO("using MMX2\n");
  1833. else if(flags & SWS_CPU_CAPS_3DNOW)
  1834. MSG_INFO("using 3DNOW\n");
  1835. else if(flags & SWS_CPU_CAPS_MMX)
  1836. MSG_INFO("using MMX\n");
  1837. else if(flags & SWS_CPU_CAPS_ALTIVEC)
  1838. MSG_INFO("using AltiVec\n");
  1839. else
  1840. MSG_INFO("using C\n");
  1841. }
  1842. if(flags & SWS_PRINT_INFO)
  1843. {
  1844. if(flags & SWS_CPU_CAPS_MMX)
  1845. {
  1846. if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  1847. MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  1848. else
  1849. {
  1850. if(c->hLumFilterSize==4)
  1851. MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
  1852. else if(c->hLumFilterSize==8)
  1853. MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
  1854. else
  1855. MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
  1856. if(c->hChrFilterSize==4)
  1857. MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
  1858. else if(c->hChrFilterSize==8)
  1859. MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
  1860. else
  1861. MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
  1862. }
  1863. }
  1864. else
  1865. {
  1866. #ifdef ARCH_X86
  1867. MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
  1868. #else
  1869. if(flags & SWS_FAST_BILINEAR)
  1870. MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
  1871. else
  1872. MSG_V("SwScaler: using C scaler for horizontal scaling\n");
  1873. #endif
  1874. }
  1875. if(isPlanarYUV(dstFormat))
  1876. {
  1877. if(c->vLumFilterSize==1)
  1878. MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1879. else
  1880. MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1881. }
  1882. else
  1883. {
  1884. if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
  1885. MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  1886. "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1887. else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
  1888. MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1889. else
  1890. MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1891. }
  1892. if(dstFormat==IMGFMT_BGR24)
  1893. MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
  1894. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  1895. else if(dstFormat==IMGFMT_BGR32)
  1896. MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1897. else if(dstFormat==IMGFMT_BGR16)
  1898. MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1899. else if(dstFormat==IMGFMT_BGR15)
  1900. MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1901. MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1902. }
  1903. if(flags & SWS_PRINT_INFO)
  1904. {
  1905. MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1906. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1907. MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1908. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  1909. }
  1910. c->swScale= getSwsFunc(flags);
  1911. return c;
  1912. }
  1913. /**
  1914. * swscale warper, so we don't need to export the SwsContext.
  1915. * assumes planar YUV to be in YUV order instead of YVU
  1916. */
  1917. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1918. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1919. //copy strides, so they can safely be modified
  1920. int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
  1921. int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
  1922. return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  1923. }
  1924. /**
  1925. * swscale warper, so we don't need to export the SwsContext
  1926. */
  1927. int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
  1928. int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
  1929. int srcStride[3];
  1930. int dstStride[3];
  1931. uint8_t *src[3];
  1932. uint8_t *dst[3];
  1933. sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
  1934. sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
  1935. //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
  1936. return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  1937. }
  1938. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1939. float lumaSharpen, float chromaSharpen,
  1940. float chromaHShift, float chromaVShift,
  1941. int verbose)
  1942. {
  1943. SwsFilter *filter= malloc(sizeof(SwsFilter));
  1944. if(lumaGBlur!=0.0){
  1945. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  1946. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  1947. }else{
  1948. filter->lumH= sws_getIdentityVec();
  1949. filter->lumV= sws_getIdentityVec();
  1950. }
  1951. if(chromaGBlur!=0.0){
  1952. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  1953. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  1954. }else{
  1955. filter->chrH= sws_getIdentityVec();
  1956. filter->chrV= sws_getIdentityVec();
  1957. }
  1958. if(chromaSharpen!=0.0){
  1959. SwsVector *g= sws_getConstVec(-1.0, 3);
  1960. SwsVector *id= sws_getConstVec(10.0/chromaSharpen, 1);
  1961. g->coeff[1]=2.0;
  1962. sws_addVec(id, g);
  1963. sws_convVec(filter->chrH, id);
  1964. sws_convVec(filter->chrV, id);
  1965. sws_freeVec(g);
  1966. sws_freeVec(id);
  1967. }
  1968. if(lumaSharpen!=0.0){
  1969. SwsVector *g= sws_getConstVec(-1.0, 3);
  1970. SwsVector *id= sws_getConstVec(10.0/lumaSharpen, 1);
  1971. g->coeff[1]=2.0;
  1972. sws_addVec(id, g);
  1973. sws_convVec(filter->lumH, id);
  1974. sws_convVec(filter->lumV, id);
  1975. sws_freeVec(g);
  1976. sws_freeVec(id);
  1977. }
  1978. if(chromaHShift != 0.0)
  1979. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1980. if(chromaVShift != 0.0)
  1981. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1982. sws_normalizeVec(filter->chrH, 1.0);
  1983. sws_normalizeVec(filter->chrV, 1.0);
  1984. sws_normalizeVec(filter->lumH, 1.0);
  1985. sws_normalizeVec(filter->lumV, 1.0);
  1986. if(verbose) sws_printVec(filter->chrH);
  1987. if(verbose) sws_printVec(filter->lumH);
  1988. return filter;
  1989. }
  1990. /**
  1991. * returns a normalized gaussian curve used to filter stuff
  1992. * quality=3 is high quality, lowwer is lowwer quality
  1993. */
  1994. SwsVector *sws_getGaussianVec(double variance, double quality){
  1995. const int length= (int)(variance*quality + 0.5) | 1;
  1996. int i;
  1997. double *coeff= memalign(sizeof(double), length*sizeof(double));
  1998. double middle= (length-1)*0.5;
  1999. SwsVector *vec= malloc(sizeof(SwsVector));
  2000. vec->coeff= coeff;
  2001. vec->length= length;
  2002. for(i=0; i<length; i++)
  2003. {
  2004. double dist= i-middle;
  2005. coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
  2006. }
  2007. sws_normalizeVec(vec, 1.0);
  2008. return vec;
  2009. }
  2010. SwsVector *sws_getConstVec(double c, int length){
  2011. int i;
  2012. double *coeff= memalign(sizeof(double), length*sizeof(double));
  2013. SwsVector *vec= malloc(sizeof(SwsVector));
  2014. vec->coeff= coeff;
  2015. vec->length= length;
  2016. for(i=0; i<length; i++)
  2017. coeff[i]= c;
  2018. return vec;
  2019. }
  2020. SwsVector *sws_getIdentityVec(void){
  2021. double *coeff= memalign(sizeof(double), sizeof(double));
  2022. SwsVector *vec= malloc(sizeof(SwsVector));
  2023. coeff[0]= 1.0;
  2024. vec->coeff= coeff;
  2025. vec->length= 1;
  2026. return vec;
  2027. }
  2028. void sws_normalizeVec(SwsVector *a, double height){
  2029. int i;
  2030. double sum=0;
  2031. double inv;
  2032. for(i=0; i<a->length; i++)
  2033. sum+= a->coeff[i];
  2034. inv= height/sum;
  2035. for(i=0; i<a->length; i++)
  2036. a->coeff[i]*= inv;
  2037. }
  2038. void sws_scaleVec(SwsVector *a, double scalar){
  2039. int i;
  2040. for(i=0; i<a->length; i++)
  2041. a->coeff[i]*= scalar;
  2042. }
  2043. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2044. int length= a->length + b->length - 1;
  2045. double *coeff= memalign(sizeof(double), length*sizeof(double));
  2046. int i, j;
  2047. SwsVector *vec= malloc(sizeof(SwsVector));
  2048. vec->coeff= coeff;
  2049. vec->length= length;
  2050. for(i=0; i<length; i++) coeff[i]= 0.0;
  2051. for(i=0; i<a->length; i++)
  2052. {
  2053. for(j=0; j<b->length; j++)
  2054. {
  2055. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2056. }
  2057. }
  2058. return vec;
  2059. }
  2060. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2061. int length= MAX(a->length, b->length);
  2062. double *coeff= memalign(sizeof(double), length*sizeof(double));
  2063. int i;
  2064. SwsVector *vec= malloc(sizeof(SwsVector));
  2065. vec->coeff= coeff;
  2066. vec->length= length;
  2067. for(i=0; i<length; i++) coeff[i]= 0.0;
  2068. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2069. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2070. return vec;
  2071. }
  2072. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2073. int length= MAX(a->length, b->length);
  2074. double *coeff= memalign(sizeof(double), length*sizeof(double));
  2075. int i;
  2076. SwsVector *vec= malloc(sizeof(SwsVector));
  2077. vec->coeff= coeff;
  2078. vec->length= length;
  2079. for(i=0; i<length; i++) coeff[i]= 0.0;
  2080. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2081. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2082. return vec;
  2083. }
  2084. /* shift left / or right if "shift" is negative */
  2085. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2086. int length= a->length + ABS(shift)*2;
  2087. double *coeff= memalign(sizeof(double), length*sizeof(double));
  2088. int i;
  2089. SwsVector *vec= malloc(sizeof(SwsVector));
  2090. vec->coeff= coeff;
  2091. vec->length= length;
  2092. for(i=0; i<length; i++) coeff[i]= 0.0;
  2093. for(i=0; i<a->length; i++)
  2094. {
  2095. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2096. }
  2097. return vec;
  2098. }
  2099. void sws_shiftVec(SwsVector *a, int shift){
  2100. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2101. free(a->coeff);
  2102. a->coeff= shifted->coeff;
  2103. a->length= shifted->length;
  2104. free(shifted);
  2105. }
  2106. void sws_addVec(SwsVector *a, SwsVector *b){
  2107. SwsVector *sum= sws_sumVec(a, b);
  2108. free(a->coeff);
  2109. a->coeff= sum->coeff;
  2110. a->length= sum->length;
  2111. free(sum);
  2112. }
  2113. void sws_subVec(SwsVector *a, SwsVector *b){
  2114. SwsVector *diff= sws_diffVec(a, b);
  2115. free(a->coeff);
  2116. a->coeff= diff->coeff;
  2117. a->length= diff->length;
  2118. free(diff);
  2119. }
  2120. void sws_convVec(SwsVector *a, SwsVector *b){
  2121. SwsVector *conv= sws_getConvVec(a, b);
  2122. free(a->coeff);
  2123. a->coeff= conv->coeff;
  2124. a->length= conv->length;
  2125. free(conv);
  2126. }
  2127. SwsVector *sws_cloneVec(SwsVector *a){
  2128. double *coeff= memalign(sizeof(double), a->length*sizeof(double));
  2129. int i;
  2130. SwsVector *vec= malloc(sizeof(SwsVector));
  2131. vec->coeff= coeff;
  2132. vec->length= a->length;
  2133. for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2134. return vec;
  2135. }
  2136. void sws_printVec(SwsVector *a){
  2137. int i;
  2138. double max=0;
  2139. double min=0;
  2140. double range;
  2141. for(i=0; i<a->length; i++)
  2142. if(a->coeff[i]>max) max= a->coeff[i];
  2143. for(i=0; i<a->length; i++)
  2144. if(a->coeff[i]<min) min= a->coeff[i];
  2145. range= max - min;
  2146. for(i=0; i<a->length; i++)
  2147. {
  2148. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2149. MSG_DBG2("%1.3f ", a->coeff[i]);
  2150. for(;x>0; x--) MSG_DBG2(" ");
  2151. MSG_DBG2("|\n");
  2152. }
  2153. }
  2154. void sws_freeVec(SwsVector *a){
  2155. if(!a) return;
  2156. if(a->coeff) free(a->coeff);
  2157. a->coeff=NULL;
  2158. a->length=0;
  2159. free(a);
  2160. }
  2161. void sws_freeFilter(SwsFilter *filter){
  2162. if(!filter) return;
  2163. if(filter->lumH) sws_freeVec(filter->lumH);
  2164. if(filter->lumV) sws_freeVec(filter->lumV);
  2165. if(filter->chrH) sws_freeVec(filter->chrH);
  2166. if(filter->chrV) sws_freeVec(filter->chrV);
  2167. free(filter);
  2168. }
  2169. void sws_freeContext(SwsContext *c){
  2170. int i;
  2171. if(!c) return;
  2172. if(c->lumPixBuf)
  2173. {
  2174. for(i=0; i<c->vLumBufSize; i++)
  2175. {
  2176. if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
  2177. c->lumPixBuf[i]=NULL;
  2178. }
  2179. free(c->lumPixBuf);
  2180. c->lumPixBuf=NULL;
  2181. }
  2182. if(c->chrPixBuf)
  2183. {
  2184. for(i=0; i<c->vChrBufSize; i++)
  2185. {
  2186. if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
  2187. c->chrPixBuf[i]=NULL;
  2188. }
  2189. free(c->chrPixBuf);
  2190. c->chrPixBuf=NULL;
  2191. }
  2192. if(c->vLumFilter) free(c->vLumFilter);
  2193. c->vLumFilter = NULL;
  2194. if(c->vChrFilter) free(c->vChrFilter);
  2195. c->vChrFilter = NULL;
  2196. if(c->hLumFilter) free(c->hLumFilter);
  2197. c->hLumFilter = NULL;
  2198. if(c->hChrFilter) free(c->hChrFilter);
  2199. c->hChrFilter = NULL;
  2200. if(c->vLumFilterPos) free(c->vLumFilterPos);
  2201. c->vLumFilterPos = NULL;
  2202. if(c->vChrFilterPos) free(c->vChrFilterPos);
  2203. c->vChrFilterPos = NULL;
  2204. if(c->hLumFilterPos) free(c->hLumFilterPos);
  2205. c->hLumFilterPos = NULL;
  2206. if(c->hChrFilterPos) free(c->hChrFilterPos);
  2207. c->hChrFilterPos = NULL;
  2208. if(c->lumMmx2Filter) free(c->lumMmx2Filter);
  2209. c->lumMmx2Filter=NULL;
  2210. if(c->chrMmx2Filter) free(c->chrMmx2Filter);
  2211. c->chrMmx2Filter=NULL;
  2212. if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
  2213. c->lumMmx2FilterPos=NULL;
  2214. if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
  2215. c->chrMmx2FilterPos=NULL;
  2216. if(c->yuvTable) free(c->yuvTable);
  2217. c->yuvTable=NULL;
  2218. free(c);
  2219. }