You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3111 lines
104KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #ifdef HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #include "swscale.h"
  67. #include "swscale_internal.h"
  68. #include "rgb2rgb.h"
  69. #include "libavutil/x86_cpu.h"
  70. #include "libavutil/bswap.h"
  71. unsigned swscale_version(void)
  72. {
  73. return LIBSWSCALE_VERSION_INT;
  74. }
  75. #undef MOVNTQ
  76. #undef PAVGB
  77. //#undef HAVE_MMX2
  78. //#define HAVE_3DNOW
  79. //#undef HAVE_MMX
  80. //#undef ARCH_X86
  81. //#define WORDS_BIGENDIAN
  82. #define DITHER1XBPP
  83. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  84. #define RET 0xC3 //near return opcode for X86
  85. #ifdef M_PI
  86. #define PI M_PI
  87. #else
  88. #define PI 3.14159265358979323846
  89. #endif
  90. #define isSupportedIn(x) ( \
  91. (x)==PIX_FMT_YUV420P \
  92. || (x)==PIX_FMT_YUVA420P \
  93. || (x)==PIX_FMT_YUYV422 \
  94. || (x)==PIX_FMT_UYVY422 \
  95. || (x)==PIX_FMT_RGB32 \
  96. || (x)==PIX_FMT_RGB32_1 \
  97. || (x)==PIX_FMT_BGR24 \
  98. || (x)==PIX_FMT_BGR565 \
  99. || (x)==PIX_FMT_BGR555 \
  100. || (x)==PIX_FMT_BGR32 \
  101. || (x)==PIX_FMT_BGR32_1 \
  102. || (x)==PIX_FMT_RGB24 \
  103. || (x)==PIX_FMT_RGB565 \
  104. || (x)==PIX_FMT_RGB555 \
  105. || (x)==PIX_FMT_GRAY8 \
  106. || (x)==PIX_FMT_YUV410P \
  107. || (x)==PIX_FMT_YUV440P \
  108. || (x)==PIX_FMT_GRAY16BE \
  109. || (x)==PIX_FMT_GRAY16LE \
  110. || (x)==PIX_FMT_YUV444P \
  111. || (x)==PIX_FMT_YUV422P \
  112. || (x)==PIX_FMT_YUV411P \
  113. || (x)==PIX_FMT_PAL8 \
  114. || (x)==PIX_FMT_BGR8 \
  115. || (x)==PIX_FMT_RGB8 \
  116. || (x)==PIX_FMT_BGR4_BYTE \
  117. || (x)==PIX_FMT_RGB4_BYTE \
  118. || (x)==PIX_FMT_YUV440P \
  119. || (x)==PIX_FMT_MONOWHITE \
  120. || (x)==PIX_FMT_MONOBLACK \
  121. )
  122. #define isSupportedOut(x) ( \
  123. (x)==PIX_FMT_YUV420P \
  124. || (x)==PIX_FMT_YUYV422 \
  125. || (x)==PIX_FMT_UYVY422 \
  126. || (x)==PIX_FMT_YUV444P \
  127. || (x)==PIX_FMT_YUV422P \
  128. || (x)==PIX_FMT_YUV411P \
  129. || isRGB(x) \
  130. || isBGR(x) \
  131. || (x)==PIX_FMT_NV12 \
  132. || (x)==PIX_FMT_NV21 \
  133. || (x)==PIX_FMT_GRAY16BE \
  134. || (x)==PIX_FMT_GRAY16LE \
  135. || (x)==PIX_FMT_GRAY8 \
  136. || (x)==PIX_FMT_YUV410P \
  137. || (x)==PIX_FMT_YUV440P \
  138. )
  139. #define isPacked(x) ( \
  140. (x)==PIX_FMT_PAL8 \
  141. || (x)==PIX_FMT_YUYV422 \
  142. || (x)==PIX_FMT_UYVY422 \
  143. || isRGB(x) \
  144. || isBGR(x) \
  145. )
  146. #define RGB2YUV_SHIFT 15
  147. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  148. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  149. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  150. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  151. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  152. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  153. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  154. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  155. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  156. extern const int32_t Inverse_Table_6_9[8][4];
  157. static const double rgb2yuv_table[8][9]={
  158. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  159. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  160. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  161. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  162. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  163. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  164. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  165. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  166. };
  167. /*
  168. NOTES
  169. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  170. TODO
  171. more intelligent misalignment avoidance for the horizontal scaler
  172. write special vertical cubic upscale version
  173. Optimize C code (yv12 / minmax)
  174. add support for packed pixel yuv input & output
  175. add support for Y8 output
  176. optimize bgr24 & bgr32
  177. add BGR4 output support
  178. write special BGR->BGR scaler
  179. */
  180. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  181. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  182. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  183. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  184. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  185. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  186. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  187. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  188. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  189. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  190. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  191. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  192. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  193. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  194. 0x0103010301030103LL,
  195. 0x0200020002000200LL,};
  196. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  197. 0x0602060206020602LL,
  198. 0x0004000400040004LL,};
  199. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  200. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  201. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  202. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  203. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  204. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  205. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  206. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  207. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  208. #ifdef FAST_BGR2YV12
  209. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  210. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  211. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  212. #else
  213. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  215. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  216. #endif /* FAST_BGR2YV12 */
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  219. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  220. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  222. DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  223. DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  224. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  225. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUV[2][4]) = {
  226. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  227. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  228. };
  229. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  230. #endif /* defined(ARCH_X86) */
  231. // clipping helper table for C implementations:
  232. static unsigned char clip_table[768];
  233. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  234. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  235. { 1, 3, 1, 3, 1, 3, 1, 3, },
  236. { 2, 0, 2, 0, 2, 0, 2, 0, },
  237. };
  238. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  239. { 6, 2, 6, 2, 6, 2, 6, 2, },
  240. { 0, 4, 0, 4, 0, 4, 0, 4, },
  241. };
  242. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  243. { 17, 9, 23, 15, 16, 8, 22, 14, },
  244. { 5, 29, 3, 27, 4, 28, 2, 26, },
  245. { 21, 13, 19, 11, 20, 12, 18, 10, },
  246. { 0, 24, 6, 30, 1, 25, 7, 31, },
  247. { 16, 8, 22, 14, 17, 9, 23, 15, },
  248. { 4, 28, 2, 26, 5, 29, 3, 27, },
  249. { 20, 12, 18, 10, 21, 13, 19, 11, },
  250. { 1, 25, 7, 31, 0, 24, 6, 30, },
  251. };
  252. #if 0
  253. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  254. { 0, 48, 12, 60, 3, 51, 15, 63, },
  255. { 32, 16, 44, 28, 35, 19, 47, 31, },
  256. { 8, 56, 4, 52, 11, 59, 7, 55, },
  257. { 40, 24, 36, 20, 43, 27, 39, 23, },
  258. { 2, 50, 14, 62, 1, 49, 13, 61, },
  259. { 34, 18, 46, 30, 33, 17, 45, 29, },
  260. { 10, 58, 6, 54, 9, 57, 5, 53, },
  261. { 42, 26, 38, 22, 41, 25, 37, 21, },
  262. };
  263. #endif
  264. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  265. { 0, 55, 14, 68, 3, 58, 17, 72, },
  266. { 37, 18, 50, 32, 40, 22, 54, 35, },
  267. { 9, 64, 5, 59, 13, 67, 8, 63, },
  268. { 46, 27, 41, 23, 49, 31, 44, 26, },
  269. { 2, 57, 16, 71, 1, 56, 15, 70, },
  270. { 39, 21, 52, 34, 38, 19, 51, 33, },
  271. { 11, 66, 7, 62, 10, 65, 6, 60, },
  272. { 48, 30, 43, 25, 47, 29, 42, 24, },
  273. };
  274. #if 0
  275. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  276. { 68, 36, 92, 60, 66, 34, 90, 58, },
  277. { 20, 116, 12, 108, 18, 114, 10, 106, },
  278. { 84, 52, 76, 44, 82, 50, 74, 42, },
  279. { 0, 96, 24, 120, 6, 102, 30, 126, },
  280. { 64, 32, 88, 56, 70, 38, 94, 62, },
  281. { 16, 112, 8, 104, 22, 118, 14, 110, },
  282. { 80, 48, 72, 40, 86, 54, 78, 46, },
  283. { 4, 100, 28, 124, 2, 98, 26, 122, },
  284. };
  285. #endif
  286. #if 1
  287. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  288. {117, 62, 158, 103, 113, 58, 155, 100, },
  289. { 34, 199, 21, 186, 31, 196, 17, 182, },
  290. {144, 89, 131, 76, 141, 86, 127, 72, },
  291. { 0, 165, 41, 206, 10, 175, 52, 217, },
  292. {110, 55, 151, 96, 120, 65, 162, 107, },
  293. { 28, 193, 14, 179, 38, 203, 24, 189, },
  294. {138, 83, 124, 69, 148, 93, 134, 79, },
  295. { 7, 172, 48, 213, 3, 168, 45, 210, },
  296. };
  297. #elif 1
  298. // tries to correct a gamma of 1.5
  299. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  300. { 0, 143, 18, 200, 2, 156, 25, 215, },
  301. { 78, 28, 125, 64, 89, 36, 138, 74, },
  302. { 10, 180, 3, 161, 16, 195, 8, 175, },
  303. {109, 51, 93, 38, 121, 60, 105, 47, },
  304. { 1, 152, 23, 210, 0, 147, 20, 205, },
  305. { 85, 33, 134, 71, 81, 30, 130, 67, },
  306. { 14, 190, 6, 171, 12, 185, 5, 166, },
  307. {117, 57, 101, 44, 113, 54, 97, 41, },
  308. };
  309. #elif 1
  310. // tries to correct a gamma of 2.0
  311. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  312. { 0, 124, 8, 193, 0, 140, 12, 213, },
  313. { 55, 14, 104, 42, 66, 19, 119, 52, },
  314. { 3, 168, 1, 145, 6, 187, 3, 162, },
  315. { 86, 31, 70, 21, 99, 39, 82, 28, },
  316. { 0, 134, 11, 206, 0, 129, 9, 200, },
  317. { 62, 17, 114, 48, 58, 16, 109, 45, },
  318. { 5, 181, 2, 157, 4, 175, 1, 151, },
  319. { 95, 36, 78, 26, 90, 34, 74, 24, },
  320. };
  321. #else
  322. // tries to correct a gamma of 2.5
  323. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  324. { 0, 107, 3, 187, 0, 125, 6, 212, },
  325. { 39, 7, 86, 28, 49, 11, 102, 36, },
  326. { 1, 158, 0, 131, 3, 180, 1, 151, },
  327. { 68, 19, 52, 12, 81, 25, 64, 17, },
  328. { 0, 119, 5, 203, 0, 113, 4, 195, },
  329. { 45, 9, 96, 33, 42, 8, 91, 30, },
  330. { 2, 172, 1, 144, 2, 165, 0, 137, },
  331. { 77, 23, 60, 15, 72, 21, 56, 14, },
  332. };
  333. #endif
  334. const char *sws_format_name(enum PixelFormat format)
  335. {
  336. switch (format) {
  337. case PIX_FMT_YUV420P:
  338. return "yuv420p";
  339. case PIX_FMT_YUVA420P:
  340. return "yuva420p";
  341. case PIX_FMT_YUYV422:
  342. return "yuyv422";
  343. case PIX_FMT_RGB24:
  344. return "rgb24";
  345. case PIX_FMT_BGR24:
  346. return "bgr24";
  347. case PIX_FMT_YUV422P:
  348. return "yuv422p";
  349. case PIX_FMT_YUV444P:
  350. return "yuv444p";
  351. case PIX_FMT_RGB32:
  352. return "rgb32";
  353. case PIX_FMT_YUV410P:
  354. return "yuv410p";
  355. case PIX_FMT_YUV411P:
  356. return "yuv411p";
  357. case PIX_FMT_RGB565:
  358. return "rgb565";
  359. case PIX_FMT_RGB555:
  360. return "rgb555";
  361. case PIX_FMT_GRAY16BE:
  362. return "gray16be";
  363. case PIX_FMT_GRAY16LE:
  364. return "gray16le";
  365. case PIX_FMT_GRAY8:
  366. return "gray8";
  367. case PIX_FMT_MONOWHITE:
  368. return "mono white";
  369. case PIX_FMT_MONOBLACK:
  370. return "mono black";
  371. case PIX_FMT_PAL8:
  372. return "Palette";
  373. case PIX_FMT_YUVJ420P:
  374. return "yuvj420p";
  375. case PIX_FMT_YUVJ422P:
  376. return "yuvj422p";
  377. case PIX_FMT_YUVJ444P:
  378. return "yuvj444p";
  379. case PIX_FMT_XVMC_MPEG2_MC:
  380. return "xvmc_mpeg2_mc";
  381. case PIX_FMT_XVMC_MPEG2_IDCT:
  382. return "xvmc_mpeg2_idct";
  383. case PIX_FMT_UYVY422:
  384. return "uyvy422";
  385. case PIX_FMT_UYYVYY411:
  386. return "uyyvyy411";
  387. case PIX_FMT_RGB32_1:
  388. return "rgb32x";
  389. case PIX_FMT_BGR32_1:
  390. return "bgr32x";
  391. case PIX_FMT_BGR32:
  392. return "bgr32";
  393. case PIX_FMT_BGR565:
  394. return "bgr565";
  395. case PIX_FMT_BGR555:
  396. return "bgr555";
  397. case PIX_FMT_BGR8:
  398. return "bgr8";
  399. case PIX_FMT_BGR4:
  400. return "bgr4";
  401. case PIX_FMT_BGR4_BYTE:
  402. return "bgr4 byte";
  403. case PIX_FMT_RGB8:
  404. return "rgb8";
  405. case PIX_FMT_RGB4:
  406. return "rgb4";
  407. case PIX_FMT_RGB4_BYTE:
  408. return "rgb4 byte";
  409. case PIX_FMT_NV12:
  410. return "nv12";
  411. case PIX_FMT_NV21:
  412. return "nv21";
  413. case PIX_FMT_YUV440P:
  414. return "yuv440p";
  415. default:
  416. return "Unknown format";
  417. }
  418. }
  419. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  420. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  421. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  422. {
  423. //FIXME Optimize (just quickly writen not opti..)
  424. int i;
  425. for (i=0; i<dstW; i++)
  426. {
  427. int val=1<<18;
  428. int j;
  429. for (j=0; j<lumFilterSize; j++)
  430. val += lumSrc[j][i] * lumFilter[j];
  431. dest[i]= av_clip_uint8(val>>19);
  432. }
  433. if (uDest)
  434. for (i=0; i<chrDstW; i++)
  435. {
  436. int u=1<<18;
  437. int v=1<<18;
  438. int j;
  439. for (j=0; j<chrFilterSize; j++)
  440. {
  441. u += chrSrc[j][i] * chrFilter[j];
  442. v += chrSrc[j][i + VOFW] * chrFilter[j];
  443. }
  444. uDest[i]= av_clip_uint8(u>>19);
  445. vDest[i]= av_clip_uint8(v>>19);
  446. }
  447. }
  448. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  449. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  450. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  451. {
  452. //FIXME Optimize (just quickly writen not opti..)
  453. int i;
  454. for (i=0; i<dstW; i++)
  455. {
  456. int val=1<<18;
  457. int j;
  458. for (j=0; j<lumFilterSize; j++)
  459. val += lumSrc[j][i] * lumFilter[j];
  460. dest[i]= av_clip_uint8(val>>19);
  461. }
  462. if (!uDest)
  463. return;
  464. if (dstFormat == PIX_FMT_NV12)
  465. for (i=0; i<chrDstW; i++)
  466. {
  467. int u=1<<18;
  468. int v=1<<18;
  469. int j;
  470. for (j=0; j<chrFilterSize; j++)
  471. {
  472. u += chrSrc[j][i] * chrFilter[j];
  473. v += chrSrc[j][i + VOFW] * chrFilter[j];
  474. }
  475. uDest[2*i]= av_clip_uint8(u>>19);
  476. uDest[2*i+1]= av_clip_uint8(v>>19);
  477. }
  478. else
  479. for (i=0; i<chrDstW; i++)
  480. {
  481. int u=1<<18;
  482. int v=1<<18;
  483. int j;
  484. for (j=0; j<chrFilterSize; j++)
  485. {
  486. u += chrSrc[j][i] * chrFilter[j];
  487. v += chrSrc[j][i + VOFW] * chrFilter[j];
  488. }
  489. uDest[2*i]= av_clip_uint8(v>>19);
  490. uDest[2*i+1]= av_clip_uint8(u>>19);
  491. }
  492. }
  493. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
  494. for (i=0; i<(dstW>>1); i++){\
  495. int j;\
  496. int Y1 = 1<<18;\
  497. int Y2 = 1<<18;\
  498. int U = 1<<18;\
  499. int V = 1<<18;\
  500. type av_unused *r, *b, *g;\
  501. const int i2= 2*i;\
  502. \
  503. for (j=0; j<lumFilterSize; j++)\
  504. {\
  505. Y1 += lumSrc[j][i2] * lumFilter[j];\
  506. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  507. }\
  508. for (j=0; j<chrFilterSize; j++)\
  509. {\
  510. U += chrSrc[j][i] * chrFilter[j];\
  511. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  512. }\
  513. Y1>>=19;\
  514. Y2>>=19;\
  515. U >>=19;\
  516. V >>=19;\
  517. #define YSCALE_YUV_2_PACKEDX_C(type) \
  518. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
  519. if ((Y1|Y2|U|V)&256)\
  520. {\
  521. if (Y1>255) Y1=255; \
  522. else if (Y1<0)Y1=0; \
  523. if (Y2>255) Y2=255; \
  524. else if (Y2<0)Y2=0; \
  525. if (U>255) U=255; \
  526. else if (U<0) U=0; \
  527. if (V>255) V=255; \
  528. else if (V<0) V=0; \
  529. }
  530. #define YSCALE_YUV_2_PACKEDX_FULL_C \
  531. for (i=0; i<dstW; i++){\
  532. int j;\
  533. int Y = 0;\
  534. int U = -128<<19;\
  535. int V = -128<<19;\
  536. int R,G,B;\
  537. \
  538. for (j=0; j<lumFilterSize; j++){\
  539. Y += lumSrc[j][i ] * lumFilter[j];\
  540. }\
  541. for (j=0; j<chrFilterSize; j++){\
  542. U += chrSrc[j][i ] * chrFilter[j];\
  543. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  544. }\
  545. Y >>=10;\
  546. U >>=10;\
  547. V >>=10;\
  548. #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
  549. YSCALE_YUV_2_PACKEDX_FULL_C\
  550. Y-= c->yuv2rgb_y_offset;\
  551. Y*= c->yuv2rgb_y_coeff;\
  552. Y+= rnd;\
  553. R= Y + V*c->yuv2rgb_v2r_coeff;\
  554. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  555. B= Y + U*c->yuv2rgb_u2b_coeff;\
  556. if ((R|G|B)&(0xC0000000)){\
  557. if (R>=(256<<22)) R=(256<<22)-1; \
  558. else if (R<0)R=0; \
  559. if (G>=(256<<22)) G=(256<<22)-1; \
  560. else if (G<0)G=0; \
  561. if (B>=(256<<22)) B=(256<<22)-1; \
  562. else if (B<0)B=0; \
  563. }\
  564. #define YSCALE_YUV_2_GRAY16_C \
  565. for (i=0; i<(dstW>>1); i++){\
  566. int j;\
  567. int Y1 = 1<<18;\
  568. int Y2 = 1<<18;\
  569. int U = 1<<18;\
  570. int V = 1<<18;\
  571. \
  572. const int i2= 2*i;\
  573. \
  574. for (j=0; j<lumFilterSize; j++)\
  575. {\
  576. Y1 += lumSrc[j][i2] * lumFilter[j];\
  577. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  578. }\
  579. Y1>>=11;\
  580. Y2>>=11;\
  581. if ((Y1|Y2|U|V)&65536)\
  582. {\
  583. if (Y1>65535) Y1=65535; \
  584. else if (Y1<0)Y1=0; \
  585. if (Y2>65535) Y2=65535; \
  586. else if (Y2<0)Y2=0; \
  587. }
  588. #define YSCALE_YUV_2_RGBX_C(type) \
  589. YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that cliping is not needed and then use _NOCLIP*/\
  590. r = (type *)c->table_rV[V]; \
  591. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  592. b = (type *)c->table_bU[U]; \
  593. #define YSCALE_YUV_2_PACKED2_C \
  594. for (i=0; i<(dstW>>1); i++){ \
  595. const int i2= 2*i; \
  596. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  597. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  598. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  599. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  600. #define YSCALE_YUV_2_GRAY16_2_C \
  601. for (i=0; i<(dstW>>1); i++){ \
  602. const int i2= 2*i; \
  603. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  604. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  605. #define YSCALE_YUV_2_RGB2_C(type) \
  606. YSCALE_YUV_2_PACKED2_C\
  607. type *r, *b, *g;\
  608. r = (type *)c->table_rV[V];\
  609. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  610. b = (type *)c->table_bU[U];\
  611. #define YSCALE_YUV_2_PACKED1_C \
  612. for (i=0; i<(dstW>>1); i++){\
  613. const int i2= 2*i;\
  614. int Y1= buf0[i2 ]>>7;\
  615. int Y2= buf0[i2+1]>>7;\
  616. int U= (uvbuf1[i ])>>7;\
  617. int V= (uvbuf1[i+VOFW])>>7;\
  618. #define YSCALE_YUV_2_GRAY16_1_C \
  619. for (i=0; i<(dstW>>1); i++){\
  620. const int i2= 2*i;\
  621. int Y1= buf0[i2 ]<<1;\
  622. int Y2= buf0[i2+1]<<1;\
  623. #define YSCALE_YUV_2_RGB1_C(type) \
  624. YSCALE_YUV_2_PACKED1_C\
  625. type *r, *b, *g;\
  626. r = (type *)c->table_rV[V];\
  627. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  628. b = (type *)c->table_bU[U];\
  629. #define YSCALE_YUV_2_PACKED1B_C \
  630. for (i=0; i<(dstW>>1); i++){\
  631. const int i2= 2*i;\
  632. int Y1= buf0[i2 ]>>7;\
  633. int Y2= buf0[i2+1]>>7;\
  634. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  635. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  636. #define YSCALE_YUV_2_RGB1B_C(type) \
  637. YSCALE_YUV_2_PACKED1B_C\
  638. type *r, *b, *g;\
  639. r = (type *)c->table_rV[V];\
  640. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  641. b = (type *)c->table_bU[U];\
  642. #define YSCALE_YUV_2_MONO2_C \
  643. const uint8_t * const d128=dither_8x8_220[y&7];\
  644. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  645. for (i=0; i<dstW-7; i+=8){\
  646. int acc;\
  647. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  648. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  649. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  650. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  651. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  652. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  653. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  654. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  655. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  656. dest++;\
  657. }\
  658. #define YSCALE_YUV_2_MONOX_C \
  659. const uint8_t * const d128=dither_8x8_220[y&7];\
  660. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  661. int acc=0;\
  662. for (i=0; i<dstW-1; i+=2){\
  663. int j;\
  664. int Y1=1<<18;\
  665. int Y2=1<<18;\
  666. \
  667. for (j=0; j<lumFilterSize; j++)\
  668. {\
  669. Y1 += lumSrc[j][i] * lumFilter[j];\
  670. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  671. }\
  672. Y1>>=19;\
  673. Y2>>=19;\
  674. if ((Y1|Y2)&256)\
  675. {\
  676. if (Y1>255) Y1=255;\
  677. else if (Y1<0)Y1=0;\
  678. if (Y2>255) Y2=255;\
  679. else if (Y2<0)Y2=0;\
  680. }\
  681. acc+= acc + g[Y1+d128[(i+0)&7]];\
  682. acc+= acc + g[Y2+d128[(i+1)&7]];\
  683. if ((i&7)==6){\
  684. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  685. dest++;\
  686. }\
  687. }
  688. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  689. switch(c->dstFormat)\
  690. {\
  691. case PIX_FMT_RGB32:\
  692. case PIX_FMT_BGR32:\
  693. case PIX_FMT_RGB32_1:\
  694. case PIX_FMT_BGR32_1:\
  695. func(uint32_t)\
  696. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  697. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  698. } \
  699. break;\
  700. case PIX_FMT_RGB24:\
  701. func(uint8_t)\
  702. ((uint8_t*)dest)[0]= r[Y1];\
  703. ((uint8_t*)dest)[1]= g[Y1];\
  704. ((uint8_t*)dest)[2]= b[Y1];\
  705. ((uint8_t*)dest)[3]= r[Y2];\
  706. ((uint8_t*)dest)[4]= g[Y2];\
  707. ((uint8_t*)dest)[5]= b[Y2];\
  708. dest+=6;\
  709. }\
  710. break;\
  711. case PIX_FMT_BGR24:\
  712. func(uint8_t)\
  713. ((uint8_t*)dest)[0]= b[Y1];\
  714. ((uint8_t*)dest)[1]= g[Y1];\
  715. ((uint8_t*)dest)[2]= r[Y1];\
  716. ((uint8_t*)dest)[3]= b[Y2];\
  717. ((uint8_t*)dest)[4]= g[Y2];\
  718. ((uint8_t*)dest)[5]= r[Y2];\
  719. dest+=6;\
  720. }\
  721. break;\
  722. case PIX_FMT_RGB565:\
  723. case PIX_FMT_BGR565:\
  724. {\
  725. const int dr1= dither_2x2_8[y&1 ][0];\
  726. const int dg1= dither_2x2_4[y&1 ][0];\
  727. const int db1= dither_2x2_8[(y&1)^1][0];\
  728. const int dr2= dither_2x2_8[y&1 ][1];\
  729. const int dg2= dither_2x2_4[y&1 ][1];\
  730. const int db2= dither_2x2_8[(y&1)^1][1];\
  731. func(uint16_t)\
  732. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  733. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  734. }\
  735. }\
  736. break;\
  737. case PIX_FMT_RGB555:\
  738. case PIX_FMT_BGR555:\
  739. {\
  740. const int dr1= dither_2x2_8[y&1 ][0];\
  741. const int dg1= dither_2x2_8[y&1 ][1];\
  742. const int db1= dither_2x2_8[(y&1)^1][0];\
  743. const int dr2= dither_2x2_8[y&1 ][1];\
  744. const int dg2= dither_2x2_8[y&1 ][0];\
  745. const int db2= dither_2x2_8[(y&1)^1][1];\
  746. func(uint16_t)\
  747. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  748. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  749. }\
  750. }\
  751. break;\
  752. case PIX_FMT_RGB8:\
  753. case PIX_FMT_BGR8:\
  754. {\
  755. const uint8_t * const d64= dither_8x8_73[y&7];\
  756. const uint8_t * const d32= dither_8x8_32[y&7];\
  757. func(uint8_t)\
  758. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  759. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  760. }\
  761. }\
  762. break;\
  763. case PIX_FMT_RGB4:\
  764. case PIX_FMT_BGR4:\
  765. {\
  766. const uint8_t * const d64= dither_8x8_73 [y&7];\
  767. const uint8_t * const d128=dither_8x8_220[y&7];\
  768. func(uint8_t)\
  769. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  770. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  771. }\
  772. }\
  773. break;\
  774. case PIX_FMT_RGB4_BYTE:\
  775. case PIX_FMT_BGR4_BYTE:\
  776. {\
  777. const uint8_t * const d64= dither_8x8_73 [y&7];\
  778. const uint8_t * const d128=dither_8x8_220[y&7];\
  779. func(uint8_t)\
  780. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  781. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  782. }\
  783. }\
  784. break;\
  785. case PIX_FMT_MONOBLACK:\
  786. case PIX_FMT_MONOWHITE:\
  787. {\
  788. func_monoblack\
  789. }\
  790. break;\
  791. case PIX_FMT_YUYV422:\
  792. func2\
  793. ((uint8_t*)dest)[2*i2+0]= Y1;\
  794. ((uint8_t*)dest)[2*i2+1]= U;\
  795. ((uint8_t*)dest)[2*i2+2]= Y2;\
  796. ((uint8_t*)dest)[2*i2+3]= V;\
  797. } \
  798. break;\
  799. case PIX_FMT_UYVY422:\
  800. func2\
  801. ((uint8_t*)dest)[2*i2+0]= U;\
  802. ((uint8_t*)dest)[2*i2+1]= Y1;\
  803. ((uint8_t*)dest)[2*i2+2]= V;\
  804. ((uint8_t*)dest)[2*i2+3]= Y2;\
  805. } \
  806. break;\
  807. case PIX_FMT_GRAY16BE:\
  808. func_g16\
  809. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  810. ((uint8_t*)dest)[2*i2+1]= Y1;\
  811. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  812. ((uint8_t*)dest)[2*i2+3]= Y2;\
  813. } \
  814. break;\
  815. case PIX_FMT_GRAY16LE:\
  816. func_g16\
  817. ((uint8_t*)dest)[2*i2+0]= Y1;\
  818. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  819. ((uint8_t*)dest)[2*i2+2]= Y2;\
  820. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  821. } \
  822. break;\
  823. }\
  824. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  825. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  826. uint8_t *dest, int dstW, int y)
  827. {
  828. int i;
  829. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  830. }
  831. static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  832. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  833. uint8_t *dest, int dstW, int y)
  834. {
  835. int i;
  836. int step= fmt_depth(c->dstFormat)/8;
  837. switch(c->dstFormat){
  838. case PIX_FMT_ARGB:
  839. dest++;
  840. case PIX_FMT_RGB24:
  841. case PIX_FMT_RGBA:
  842. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  843. dest[0]= R>>22;
  844. dest[1]= G>>22;
  845. dest[2]= B>>22;
  846. dest[3]= 0;
  847. dest+= step;
  848. }
  849. break;
  850. case PIX_FMT_ABGR:
  851. dest++;
  852. case PIX_FMT_BGR24:
  853. case PIX_FMT_BGRA:
  854. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  855. dest[0]= B>>22;
  856. dest[1]= G>>22;
  857. dest[2]= R>>22;
  858. dest[3]= 0;
  859. dest+= step;
  860. }
  861. break;
  862. default:
  863. assert(0);
  864. }
  865. }
  866. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  867. //Plain C versions
  868. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  869. #define COMPILE_C
  870. #endif
  871. #ifdef ARCH_POWERPC
  872. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  873. #define COMPILE_ALTIVEC
  874. #endif //HAVE_ALTIVEC
  875. #endif //ARCH_POWERPC
  876. #if defined(ARCH_X86)
  877. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  878. #define COMPILE_MMX
  879. #endif
  880. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  881. #define COMPILE_MMX2
  882. #endif
  883. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  884. #define COMPILE_3DNOW
  885. #endif
  886. #endif //ARCH_X86 || ARCH_X86_64
  887. #undef HAVE_MMX
  888. #undef HAVE_MMX2
  889. #undef HAVE_3DNOW
  890. #ifdef COMPILE_C
  891. #undef HAVE_MMX
  892. #undef HAVE_MMX2
  893. #undef HAVE_3DNOW
  894. #undef HAVE_ALTIVEC
  895. #define RENAME(a) a ## _C
  896. #include "swscale_template.c"
  897. #endif
  898. #ifdef COMPILE_ALTIVEC
  899. #undef RENAME
  900. #define HAVE_ALTIVEC
  901. #define RENAME(a) a ## _altivec
  902. #include "swscale_template.c"
  903. #endif
  904. #if defined(ARCH_X86)
  905. //X86 versions
  906. /*
  907. #undef RENAME
  908. #undef HAVE_MMX
  909. #undef HAVE_MMX2
  910. #undef HAVE_3DNOW
  911. #define ARCH_X86
  912. #define RENAME(a) a ## _X86
  913. #include "swscale_template.c"
  914. */
  915. //MMX versions
  916. #ifdef COMPILE_MMX
  917. #undef RENAME
  918. #define HAVE_MMX
  919. #undef HAVE_MMX2
  920. #undef HAVE_3DNOW
  921. #define RENAME(a) a ## _MMX
  922. #include "swscale_template.c"
  923. #endif
  924. //MMX2 versions
  925. #ifdef COMPILE_MMX2
  926. #undef RENAME
  927. #define HAVE_MMX
  928. #define HAVE_MMX2
  929. #undef HAVE_3DNOW
  930. #define RENAME(a) a ## _MMX2
  931. #include "swscale_template.c"
  932. #endif
  933. //3DNOW versions
  934. #ifdef COMPILE_3DNOW
  935. #undef RENAME
  936. #define HAVE_MMX
  937. #undef HAVE_MMX2
  938. #define HAVE_3DNOW
  939. #define RENAME(a) a ## _3DNow
  940. #include "swscale_template.c"
  941. #endif
  942. #endif //ARCH_X86 || ARCH_X86_64
  943. // minor note: the HAVE_xyz is messed up after that line so don't use it
  944. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  945. {
  946. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  947. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  948. else return getSplineCoeff( 0.0,
  949. b+ 2.0*c + 3.0*d,
  950. c + 3.0*d,
  951. -b- 3.0*c - 6.0*d,
  952. dist-1.0);
  953. }
  954. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  955. int srcW, int dstW, int filterAlign, int one, int flags,
  956. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  957. {
  958. int i;
  959. int filterSize;
  960. int filter2Size;
  961. int minFilterSize;
  962. double *filter=NULL;
  963. double *filter2=NULL;
  964. int ret= -1;
  965. #if defined(ARCH_X86)
  966. if (flags & SWS_CPU_CAPS_MMX)
  967. asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  968. #endif
  969. // Note the +1 is for the MMXscaler which reads over the end
  970. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  971. if (FFABS(xInc - 0x10000) <10) // unscaled
  972. {
  973. int i;
  974. filterSize= 1;
  975. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  976. for (i=0; i<dstW; i++)
  977. {
  978. filter[i*filterSize]=1;
  979. (*filterPos)[i]=i;
  980. }
  981. }
  982. else if (flags&SWS_POINT) // lame looking point sampling mode
  983. {
  984. int i;
  985. int xDstInSrc;
  986. filterSize= 1;
  987. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  988. xDstInSrc= xInc/2 - 0x8000;
  989. for (i=0; i<dstW; i++)
  990. {
  991. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  992. (*filterPos)[i]= xx;
  993. filter[i]= 1.0;
  994. xDstInSrc+= xInc;
  995. }
  996. }
  997. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  998. {
  999. int i;
  1000. int xDstInSrc;
  1001. if (flags&SWS_BICUBIC) filterSize= 4;
  1002. else if (flags&SWS_X ) filterSize= 4;
  1003. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1004. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1005. xDstInSrc= xInc/2 - 0x8000;
  1006. for (i=0; i<dstW; i++)
  1007. {
  1008. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1009. int j;
  1010. (*filterPos)[i]= xx;
  1011. //Bilinear upscale / linear interpolate / Area averaging
  1012. for (j=0; j<filterSize; j++)
  1013. {
  1014. double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  1015. double coeff= 1.0 - d;
  1016. if (coeff<0) coeff=0;
  1017. filter[i*filterSize + j]= coeff;
  1018. xx++;
  1019. }
  1020. xDstInSrc+= xInc;
  1021. }
  1022. }
  1023. else
  1024. {
  1025. double xDstInSrc;
  1026. double sizeFactor, filterSizeInSrc;
  1027. const double xInc1= (double)xInc / (double)(1<<16);
  1028. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  1029. else if (flags&SWS_X) sizeFactor= 8.0;
  1030. else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  1031. else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  1032. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
  1033. else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  1034. else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  1035. else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
  1036. else {
  1037. sizeFactor= 0.0; //GCC warning killer
  1038. assert(0);
  1039. }
  1040. if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  1041. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  1042. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  1043. if (filterSize > srcW-2) filterSize=srcW-2;
  1044. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1045. xDstInSrc= xInc1 / 2.0 - 0.5;
  1046. for (i=0; i<dstW; i++)
  1047. {
  1048. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  1049. int j;
  1050. (*filterPos)[i]= xx;
  1051. for (j=0; j<filterSize; j++)
  1052. {
  1053. double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  1054. double coeff;
  1055. if (flags & SWS_BICUBIC)
  1056. {
  1057. double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
  1058. double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
  1059. if (d<1.0)
  1060. coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
  1061. else if (d<2.0)
  1062. coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
  1063. else
  1064. coeff=0.0;
  1065. }
  1066. /* else if (flags & SWS_X)
  1067. {
  1068. double p= param ? param*0.01 : 0.3;
  1069. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1070. coeff*= pow(2.0, - p*d*d);
  1071. }*/
  1072. else if (flags & SWS_X)
  1073. {
  1074. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1075. if (d<1.0)
  1076. coeff = cos(d*PI);
  1077. else
  1078. coeff=-1.0;
  1079. if (coeff<0.0) coeff= -pow(-coeff, A);
  1080. else coeff= pow( coeff, A);
  1081. coeff= coeff*0.5 + 0.5;
  1082. }
  1083. else if (flags & SWS_AREA)
  1084. {
  1085. double srcPixelSize= 1.0/xInc1;
  1086. if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
  1087. else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  1088. else coeff=0.0;
  1089. }
  1090. else if (flags & SWS_GAUSS)
  1091. {
  1092. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1093. coeff = pow(2.0, - p*d*d);
  1094. }
  1095. else if (flags & SWS_SINC)
  1096. {
  1097. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1098. }
  1099. else if (flags & SWS_LANCZOS)
  1100. {
  1101. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1102. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  1103. if (d>p) coeff=0;
  1104. }
  1105. else if (flags & SWS_BILINEAR)
  1106. {
  1107. coeff= 1.0 - d;
  1108. if (coeff<0) coeff=0;
  1109. }
  1110. else if (flags & SWS_SPLINE)
  1111. {
  1112. double p=-2.196152422706632;
  1113. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  1114. }
  1115. else {
  1116. coeff= 0.0; //GCC warning killer
  1117. assert(0);
  1118. }
  1119. filter[i*filterSize + j]= coeff;
  1120. xx++;
  1121. }
  1122. xDstInSrc+= xInc1;
  1123. }
  1124. }
  1125. /* apply src & dst Filter to filter -> filter2
  1126. av_free(filter);
  1127. */
  1128. assert(filterSize>0);
  1129. filter2Size= filterSize;
  1130. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1131. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1132. assert(filter2Size>0);
  1133. filter2= av_malloc(filter2Size*dstW*sizeof(*filter2));
  1134. for (i=0; i<dstW; i++)
  1135. {
  1136. int j;
  1137. SwsVector scaleFilter;
  1138. SwsVector *outVec;
  1139. scaleFilter.coeff= filter + i*filterSize;
  1140. scaleFilter.length= filterSize;
  1141. if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  1142. else outVec= &scaleFilter;
  1143. assert(outVec->length == filter2Size);
  1144. //FIXME dstFilter
  1145. for (j=0; j<outVec->length; j++)
  1146. {
  1147. filter2[i*filter2Size + j]= outVec->coeff[j];
  1148. }
  1149. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1150. if (outVec != &scaleFilter) sws_freeVec(outVec);
  1151. }
  1152. av_freep(&filter);
  1153. /* try to reduce the filter-size (step1 find size and shift left) */
  1154. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1155. minFilterSize= 0;
  1156. for (i=dstW-1; i>=0; i--)
  1157. {
  1158. int min= filter2Size;
  1159. int j;
  1160. double cutOff=0.0;
  1161. /* get rid off near zero elements on the left by shifting left */
  1162. for (j=0; j<filter2Size; j++)
  1163. {
  1164. int k;
  1165. cutOff += FFABS(filter2[i*filter2Size]);
  1166. if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1167. /* preserve monotonicity because the core can't handle the filter otherwise */
  1168. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1169. // Move filter coeffs left
  1170. for (k=1; k<filter2Size; k++)
  1171. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1172. filter2[i*filter2Size + k - 1]= 0.0;
  1173. (*filterPos)[i]++;
  1174. }
  1175. cutOff=0.0;
  1176. /* count near zeros on the right */
  1177. for (j=filter2Size-1; j>0; j--)
  1178. {
  1179. cutOff += FFABS(filter2[i*filter2Size + j]);
  1180. if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1181. min--;
  1182. }
  1183. if (min>minFilterSize) minFilterSize= min;
  1184. }
  1185. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1186. // we can handle the special case 4,
  1187. // so we don't want to go to the full 8
  1188. if (minFilterSize < 5)
  1189. filterAlign = 4;
  1190. // we really don't want to waste our time
  1191. // doing useless computation, so fall-back on
  1192. // the scalar C code for very small filter.
  1193. // vectorizing is worth it only if you have
  1194. // decent-sized vector.
  1195. if (minFilterSize < 3)
  1196. filterAlign = 1;
  1197. }
  1198. if (flags & SWS_CPU_CAPS_MMX) {
  1199. // special case for unscaled vertical filtering
  1200. if (minFilterSize == 1 && filterAlign == 2)
  1201. filterAlign= 1;
  1202. }
  1203. assert(minFilterSize > 0);
  1204. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1205. assert(filterSize > 0);
  1206. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1207. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1208. goto error;
  1209. *outFilterSize= filterSize;
  1210. if (flags&SWS_PRINT_INFO)
  1211. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1212. /* try to reduce the filter-size (step2 reduce it) */
  1213. for (i=0; i<dstW; i++)
  1214. {
  1215. int j;
  1216. for (j=0; j<filterSize; j++)
  1217. {
  1218. if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
  1219. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1220. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1221. filter[i*filterSize + j]= 0.0;
  1222. }
  1223. }
  1224. //FIXME try to align filterpos if possible
  1225. //fix borders
  1226. for (i=0; i<dstW; i++)
  1227. {
  1228. int j;
  1229. if ((*filterPos)[i] < 0)
  1230. {
  1231. // Move filter coeffs left to compensate for filterPos
  1232. for (j=1; j<filterSize; j++)
  1233. {
  1234. int left= FFMAX(j + (*filterPos)[i], 0);
  1235. filter[i*filterSize + left] += filter[i*filterSize + j];
  1236. filter[i*filterSize + j]=0;
  1237. }
  1238. (*filterPos)[i]= 0;
  1239. }
  1240. if ((*filterPos)[i] + filterSize > srcW)
  1241. {
  1242. int shift= (*filterPos)[i] + filterSize - srcW;
  1243. // Move filter coeffs right to compensate for filterPos
  1244. for (j=filterSize-2; j>=0; j--)
  1245. {
  1246. int right= FFMIN(j + shift, filterSize-1);
  1247. filter[i*filterSize +right] += filter[i*filterSize +j];
  1248. filter[i*filterSize +j]=0;
  1249. }
  1250. (*filterPos)[i]= srcW - filterSize;
  1251. }
  1252. }
  1253. // Note the +1 is for the MMXscaler which reads over the end
  1254. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1255. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1256. /* Normalize & Store in outFilter */
  1257. for (i=0; i<dstW; i++)
  1258. {
  1259. int j;
  1260. double error=0;
  1261. double sum=0;
  1262. double scale= one;
  1263. for (j=0; j<filterSize; j++)
  1264. {
  1265. sum+= filter[i*filterSize + j];
  1266. }
  1267. scale/= sum;
  1268. for (j=0; j<*outFilterSize; j++)
  1269. {
  1270. double v= filter[i*filterSize + j]*scale + error;
  1271. int intV= floor(v + 0.5);
  1272. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1273. error = v - intV;
  1274. }
  1275. }
  1276. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1277. for (i=0; i<*outFilterSize; i++)
  1278. {
  1279. int j= dstW*(*outFilterSize);
  1280. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1281. }
  1282. ret=0;
  1283. error:
  1284. av_free(filter);
  1285. av_free(filter2);
  1286. return ret;
  1287. }
  1288. #ifdef COMPILE_MMX2
  1289. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1290. {
  1291. uint8_t *fragmentA;
  1292. long imm8OfPShufW1A;
  1293. long imm8OfPShufW2A;
  1294. long fragmentLengthA;
  1295. uint8_t *fragmentB;
  1296. long imm8OfPShufW1B;
  1297. long imm8OfPShufW2B;
  1298. long fragmentLengthB;
  1299. int fragmentPos;
  1300. int xpos, i;
  1301. // create an optimized horizontal scaling routine
  1302. //code fragment
  1303. asm volatile(
  1304. "jmp 9f \n\t"
  1305. // Begin
  1306. "0: \n\t"
  1307. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1308. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1309. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1310. "punpcklbw %%mm7, %%mm1 \n\t"
  1311. "punpcklbw %%mm7, %%mm0 \n\t"
  1312. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1313. "1: \n\t"
  1314. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1315. "2: \n\t"
  1316. "psubw %%mm1, %%mm0 \n\t"
  1317. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1318. "pmullw %%mm3, %%mm0 \n\t"
  1319. "psllw $7, %%mm1 \n\t"
  1320. "paddw %%mm1, %%mm0 \n\t"
  1321. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1322. "add $8, %%"REG_a" \n\t"
  1323. // End
  1324. "9: \n\t"
  1325. // "int $3 \n\t"
  1326. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1327. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1328. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1329. "dec %1 \n\t"
  1330. "dec %2 \n\t"
  1331. "sub %0, %1 \n\t"
  1332. "sub %0, %2 \n\t"
  1333. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1334. "sub %0, %3 \n\t"
  1335. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1336. "=r" (fragmentLengthA)
  1337. );
  1338. asm volatile(
  1339. "jmp 9f \n\t"
  1340. // Begin
  1341. "0: \n\t"
  1342. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1343. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1344. "punpcklbw %%mm7, %%mm0 \n\t"
  1345. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1346. "1: \n\t"
  1347. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1348. "2: \n\t"
  1349. "psubw %%mm1, %%mm0 \n\t"
  1350. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1351. "pmullw %%mm3, %%mm0 \n\t"
  1352. "psllw $7, %%mm1 \n\t"
  1353. "paddw %%mm1, %%mm0 \n\t"
  1354. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1355. "add $8, %%"REG_a" \n\t"
  1356. // End
  1357. "9: \n\t"
  1358. // "int $3 \n\t"
  1359. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1360. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1361. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1362. "dec %1 \n\t"
  1363. "dec %2 \n\t"
  1364. "sub %0, %1 \n\t"
  1365. "sub %0, %2 \n\t"
  1366. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1367. "sub %0, %3 \n\t"
  1368. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1369. "=r" (fragmentLengthB)
  1370. );
  1371. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1372. fragmentPos=0;
  1373. for (i=0; i<dstW/numSplits; i++)
  1374. {
  1375. int xx=xpos>>16;
  1376. if ((i&3) == 0)
  1377. {
  1378. int a=0;
  1379. int b=((xpos+xInc)>>16) - xx;
  1380. int c=((xpos+xInc*2)>>16) - xx;
  1381. int d=((xpos+xInc*3)>>16) - xx;
  1382. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1383. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1384. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1385. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1386. filterPos[i/2]= xx;
  1387. if (d+1<4)
  1388. {
  1389. int maxShift= 3-(d+1);
  1390. int shift=0;
  1391. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1392. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1393. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1394. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1395. a | (b<<2) | (c<<4) | (d<<6);
  1396. if (i+3>=dstW) shift=maxShift; //avoid overread
  1397. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1398. if (shift && i>=shift)
  1399. {
  1400. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1401. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1402. filterPos[i/2]-=shift;
  1403. }
  1404. fragmentPos+= fragmentLengthB;
  1405. }
  1406. else
  1407. {
  1408. int maxShift= 3-d;
  1409. int shift=0;
  1410. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1411. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1412. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1413. a | (b<<2) | (c<<4) | (d<<6);
  1414. if (i+4>=dstW) shift=maxShift; //avoid overread
  1415. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1416. if (shift && i>=shift)
  1417. {
  1418. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1419. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1420. filterPos[i/2]-=shift;
  1421. }
  1422. fragmentPos+= fragmentLengthA;
  1423. }
  1424. funnyCode[fragmentPos]= RET;
  1425. }
  1426. xpos+=xInc;
  1427. }
  1428. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1429. }
  1430. #endif /* COMPILE_MMX2 */
  1431. static void globalInit(void){
  1432. // generating tables:
  1433. int i;
  1434. for (i=0; i<768; i++){
  1435. int c= av_clip_uint8(i-256);
  1436. clip_table[i]=c;
  1437. }
  1438. }
  1439. static SwsFunc getSwsFunc(int flags){
  1440. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1441. #if defined(ARCH_X86)
  1442. // ordered per speed fastest first
  1443. if (flags & SWS_CPU_CAPS_MMX2)
  1444. return swScale_MMX2;
  1445. else if (flags & SWS_CPU_CAPS_3DNOW)
  1446. return swScale_3DNow;
  1447. else if (flags & SWS_CPU_CAPS_MMX)
  1448. return swScale_MMX;
  1449. else
  1450. return swScale_C;
  1451. #else
  1452. #ifdef ARCH_POWERPC
  1453. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1454. return swScale_altivec;
  1455. else
  1456. return swScale_C;
  1457. #endif
  1458. return swScale_C;
  1459. #endif /* defined(ARCH_X86) */
  1460. #else //RUNTIME_CPUDETECT
  1461. #ifdef HAVE_MMX2
  1462. return swScale_MMX2;
  1463. #elif defined (HAVE_3DNOW)
  1464. return swScale_3DNow;
  1465. #elif defined (HAVE_MMX)
  1466. return swScale_MMX;
  1467. #elif defined (HAVE_ALTIVEC)
  1468. return swScale_altivec;
  1469. #else
  1470. return swScale_C;
  1471. #endif
  1472. #endif //!RUNTIME_CPUDETECT
  1473. }
  1474. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1475. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1476. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1477. /* Copy Y plane */
  1478. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1479. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1480. else
  1481. {
  1482. int i;
  1483. uint8_t *srcPtr= src[0];
  1484. uint8_t *dstPtr= dst;
  1485. for (i=0; i<srcSliceH; i++)
  1486. {
  1487. memcpy(dstPtr, srcPtr, c->srcW);
  1488. srcPtr+= srcStride[0];
  1489. dstPtr+= dstStride[0];
  1490. }
  1491. }
  1492. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1493. if (c->dstFormat == PIX_FMT_NV12)
  1494. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1495. else
  1496. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1497. return srcSliceH;
  1498. }
  1499. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1500. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1501. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1502. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1503. return srcSliceH;
  1504. }
  1505. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1506. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1507. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1508. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1509. return srcSliceH;
  1510. }
  1511. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1512. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1513. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1514. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1515. return srcSliceH;
  1516. }
  1517. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1518. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1519. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1520. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1521. return srcSliceH;
  1522. }
  1523. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1524. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1525. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1526. const int srcFormat= c->srcFormat;
  1527. const int dstFormat= c->dstFormat;
  1528. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1529. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1530. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1531. const int dstId= fmt_depth(dstFormat) >> 2;
  1532. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1533. /* BGR -> BGR */
  1534. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1535. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1536. switch(srcId | (dstId<<4)){
  1537. case 0x34: conv= rgb16to15; break;
  1538. case 0x36: conv= rgb24to15; break;
  1539. case 0x38: conv= rgb32to15; break;
  1540. case 0x43: conv= rgb15to16; break;
  1541. case 0x46: conv= rgb24to16; break;
  1542. case 0x48: conv= rgb32to16; break;
  1543. case 0x63: conv= rgb15to24; break;
  1544. case 0x64: conv= rgb16to24; break;
  1545. case 0x68: conv= rgb32to24; break;
  1546. case 0x83: conv= rgb15to32; break;
  1547. case 0x84: conv= rgb16to32; break;
  1548. case 0x86: conv= rgb24to32; break;
  1549. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1550. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1551. }
  1552. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1553. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1554. switch(srcId | (dstId<<4)){
  1555. case 0x33: conv= rgb15tobgr15; break;
  1556. case 0x34: conv= rgb16tobgr15; break;
  1557. case 0x36: conv= rgb24tobgr15; break;
  1558. case 0x38: conv= rgb32tobgr15; break;
  1559. case 0x43: conv= rgb15tobgr16; break;
  1560. case 0x44: conv= rgb16tobgr16; break;
  1561. case 0x46: conv= rgb24tobgr16; break;
  1562. case 0x48: conv= rgb32tobgr16; break;
  1563. case 0x63: conv= rgb15tobgr24; break;
  1564. case 0x64: conv= rgb16tobgr24; break;
  1565. case 0x66: conv= rgb24tobgr24; break;
  1566. case 0x68: conv= rgb32tobgr24; break;
  1567. case 0x83: conv= rgb15tobgr32; break;
  1568. case 0x84: conv= rgb16tobgr32; break;
  1569. case 0x86: conv= rgb24tobgr32; break;
  1570. case 0x88: conv= rgb32tobgr32; break;
  1571. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1572. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1573. }
  1574. }else{
  1575. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1576. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1577. }
  1578. if(conv)
  1579. {
  1580. uint8_t *srcPtr= src[0];
  1581. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1582. srcPtr += ALT32_CORR;
  1583. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1584. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1585. else
  1586. {
  1587. int i;
  1588. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1589. for (i=0; i<srcSliceH; i++)
  1590. {
  1591. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1592. srcPtr+= srcStride[0];
  1593. dstPtr+= dstStride[0];
  1594. }
  1595. }
  1596. }
  1597. return srcSliceH;
  1598. }
  1599. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1600. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1601. rgb24toyv12(
  1602. src[0],
  1603. dst[0]+ srcSliceY *dstStride[0],
  1604. dst[1]+(srcSliceY>>1)*dstStride[1],
  1605. dst[2]+(srcSliceY>>1)*dstStride[2],
  1606. c->srcW, srcSliceH,
  1607. dstStride[0], dstStride[1], srcStride[0]);
  1608. return srcSliceH;
  1609. }
  1610. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1611. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1612. int i;
  1613. /* copy Y */
  1614. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1615. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1616. else{
  1617. uint8_t *srcPtr= src[0];
  1618. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1619. for (i=0; i<srcSliceH; i++)
  1620. {
  1621. memcpy(dstPtr, srcPtr, c->srcW);
  1622. srcPtr+= srcStride[0];
  1623. dstPtr+= dstStride[0];
  1624. }
  1625. }
  1626. if (c->dstFormat==PIX_FMT_YUV420P){
  1627. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1628. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1629. }else{
  1630. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1631. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1632. }
  1633. return srcSliceH;
  1634. }
  1635. /* unscaled copy like stuff (assumes nearly identical formats) */
  1636. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1637. int srcSliceH, uint8_t* dst[], int dstStride[])
  1638. {
  1639. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1640. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1641. else
  1642. {
  1643. int i;
  1644. uint8_t *srcPtr= src[0];
  1645. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1646. int length=0;
  1647. /* universal length finder */
  1648. while(length+c->srcW <= FFABS(dstStride[0])
  1649. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1650. assert(length!=0);
  1651. for (i=0; i<srcSliceH; i++)
  1652. {
  1653. memcpy(dstPtr, srcPtr, length);
  1654. srcPtr+= srcStride[0];
  1655. dstPtr+= dstStride[0];
  1656. }
  1657. }
  1658. return srcSliceH;
  1659. }
  1660. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1661. int srcSliceH, uint8_t* dst[], int dstStride[])
  1662. {
  1663. int plane;
  1664. for (plane=0; plane<3; plane++)
  1665. {
  1666. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1667. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1668. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1669. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1670. {
  1671. if (!isGray(c->dstFormat))
  1672. memset(dst[plane], 128, dstStride[plane]*height);
  1673. }
  1674. else
  1675. {
  1676. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1677. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1678. else
  1679. {
  1680. int i;
  1681. uint8_t *srcPtr= src[plane];
  1682. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1683. for (i=0; i<height; i++)
  1684. {
  1685. memcpy(dstPtr, srcPtr, length);
  1686. srcPtr+= srcStride[plane];
  1687. dstPtr+= dstStride[plane];
  1688. }
  1689. }
  1690. }
  1691. }
  1692. return srcSliceH;
  1693. }
  1694. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1695. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1696. int length= c->srcW;
  1697. int y= srcSliceY;
  1698. int height= srcSliceH;
  1699. int i, j;
  1700. uint8_t *srcPtr= src[0];
  1701. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1702. if (!isGray(c->dstFormat)){
  1703. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1704. memset(dst[1], 128, dstStride[1]*height);
  1705. memset(dst[2], 128, dstStride[2]*height);
  1706. }
  1707. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1708. for (i=0; i<height; i++)
  1709. {
  1710. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1711. srcPtr+= srcStride[0];
  1712. dstPtr+= dstStride[0];
  1713. }
  1714. return srcSliceH;
  1715. }
  1716. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1717. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1718. int length= c->srcW;
  1719. int y= srcSliceY;
  1720. int height= srcSliceH;
  1721. int i, j;
  1722. uint8_t *srcPtr= src[0];
  1723. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1724. for (i=0; i<height; i++)
  1725. {
  1726. for (j=0; j<length; j++)
  1727. {
  1728. dstPtr[j<<1] = srcPtr[j];
  1729. dstPtr[(j<<1)+1] = srcPtr[j];
  1730. }
  1731. srcPtr+= srcStride[0];
  1732. dstPtr+= dstStride[0];
  1733. }
  1734. return srcSliceH;
  1735. }
  1736. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1737. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1738. int length= c->srcW;
  1739. int y= srcSliceY;
  1740. int height= srcSliceH;
  1741. int i, j;
  1742. uint16_t *srcPtr= (uint16_t*)src[0];
  1743. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1744. for (i=0; i<height; i++)
  1745. {
  1746. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1747. srcPtr+= srcStride[0]/2;
  1748. dstPtr+= dstStride[0]/2;
  1749. }
  1750. return srcSliceH;
  1751. }
  1752. static void getSubSampleFactors(int *h, int *v, int format){
  1753. switch(format){
  1754. case PIX_FMT_UYVY422:
  1755. case PIX_FMT_YUYV422:
  1756. *h=1;
  1757. *v=0;
  1758. break;
  1759. case PIX_FMT_YUV420P:
  1760. case PIX_FMT_YUVA420P:
  1761. case PIX_FMT_GRAY16BE:
  1762. case PIX_FMT_GRAY16LE:
  1763. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1764. case PIX_FMT_NV12:
  1765. case PIX_FMT_NV21:
  1766. *h=1;
  1767. *v=1;
  1768. break;
  1769. case PIX_FMT_YUV440P:
  1770. *h=0;
  1771. *v=1;
  1772. break;
  1773. case PIX_FMT_YUV410P:
  1774. *h=2;
  1775. *v=2;
  1776. break;
  1777. case PIX_FMT_YUV444P:
  1778. *h=0;
  1779. *v=0;
  1780. break;
  1781. case PIX_FMT_YUV422P:
  1782. *h=1;
  1783. *v=0;
  1784. break;
  1785. case PIX_FMT_YUV411P:
  1786. *h=2;
  1787. *v=0;
  1788. break;
  1789. default:
  1790. *h=0;
  1791. *v=0;
  1792. break;
  1793. }
  1794. }
  1795. static uint16_t roundToInt16(int64_t f){
  1796. int r= (f + (1<<15))>>16;
  1797. if (r<-0x7FFF) return 0x8000;
  1798. else if (r> 0x7FFF) return 0x7FFF;
  1799. else return r;
  1800. }
  1801. /**
  1802. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1803. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1804. * @return -1 if not supported
  1805. */
  1806. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1807. int64_t crv = inv_table[0];
  1808. int64_t cbu = inv_table[1];
  1809. int64_t cgu = -inv_table[2];
  1810. int64_t cgv = -inv_table[3];
  1811. int64_t cy = 1<<16;
  1812. int64_t oy = 0;
  1813. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1814. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1815. c->brightness= brightness;
  1816. c->contrast = contrast;
  1817. c->saturation= saturation;
  1818. c->srcRange = srcRange;
  1819. c->dstRange = dstRange;
  1820. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  1821. c->uOffset= 0x0400040004000400LL;
  1822. c->vOffset= 0x0400040004000400LL;
  1823. if (!srcRange){
  1824. cy= (cy*255) / 219;
  1825. oy= 16<<16;
  1826. }else{
  1827. crv= (crv*224) / 255;
  1828. cbu= (cbu*224) / 255;
  1829. cgu= (cgu*224) / 255;
  1830. cgv= (cgv*224) / 255;
  1831. }
  1832. cy = (cy *contrast )>>16;
  1833. crv= (crv*contrast * saturation)>>32;
  1834. cbu= (cbu*contrast * saturation)>>32;
  1835. cgu= (cgu*contrast * saturation)>>32;
  1836. cgv= (cgv*contrast * saturation)>>32;
  1837. oy -= 256*brightness;
  1838. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1839. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1840. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1841. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1842. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1843. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1844. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  1845. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  1846. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  1847. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  1848. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  1849. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  1850. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1851. //FIXME factorize
  1852. #ifdef COMPILE_ALTIVEC
  1853. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1854. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1855. #endif
  1856. return 0;
  1857. }
  1858. /**
  1859. * @return -1 if not supported
  1860. */
  1861. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1862. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1863. *inv_table = c->srcColorspaceTable;
  1864. *table = c->dstColorspaceTable;
  1865. *srcRange = c->srcRange;
  1866. *dstRange = c->dstRange;
  1867. *brightness= c->brightness;
  1868. *contrast = c->contrast;
  1869. *saturation= c->saturation;
  1870. return 0;
  1871. }
  1872. static int handle_jpeg(int *format)
  1873. {
  1874. switch (*format) {
  1875. case PIX_FMT_YUVJ420P:
  1876. *format = PIX_FMT_YUV420P;
  1877. return 1;
  1878. case PIX_FMT_YUVJ422P:
  1879. *format = PIX_FMT_YUV422P;
  1880. return 1;
  1881. case PIX_FMT_YUVJ444P:
  1882. *format = PIX_FMT_YUV444P;
  1883. return 1;
  1884. case PIX_FMT_YUVJ440P:
  1885. *format = PIX_FMT_YUV440P;
  1886. return 1;
  1887. default:
  1888. return 0;
  1889. }
  1890. }
  1891. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1892. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1893. SwsContext *c;
  1894. int i;
  1895. int usesVFilter, usesHFilter;
  1896. int unscaled, needsDither;
  1897. int srcRange, dstRange;
  1898. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1899. #if defined(ARCH_X86)
  1900. if (flags & SWS_CPU_CAPS_MMX)
  1901. asm volatile("emms\n\t"::: "memory");
  1902. #endif
  1903. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1904. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  1905. #ifdef HAVE_MMX2
  1906. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1907. #elif defined (HAVE_3DNOW)
  1908. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1909. #elif defined (HAVE_MMX)
  1910. flags |= SWS_CPU_CAPS_MMX;
  1911. #elif defined (HAVE_ALTIVEC)
  1912. flags |= SWS_CPU_CAPS_ALTIVEC;
  1913. #elif defined (ARCH_BFIN)
  1914. flags |= SWS_CPU_CAPS_BFIN;
  1915. #endif
  1916. #endif /* RUNTIME_CPUDETECT */
  1917. if (clip_table[512] != 255) globalInit();
  1918. if (!rgb15to16) sws_rgb2rgb_init(flags);
  1919. unscaled = (srcW == dstW && srcH == dstH);
  1920. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1921. && (fmt_depth(dstFormat))<24
  1922. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1923. srcRange = handle_jpeg(&srcFormat);
  1924. dstRange = handle_jpeg(&dstFormat);
  1925. if (!isSupportedIn(srcFormat))
  1926. {
  1927. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  1928. return NULL;
  1929. }
  1930. if (!isSupportedOut(dstFormat))
  1931. {
  1932. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  1933. return NULL;
  1934. }
  1935. i= flags & ( SWS_POINT
  1936. |SWS_AREA
  1937. |SWS_BILINEAR
  1938. |SWS_FAST_BILINEAR
  1939. |SWS_BICUBIC
  1940. |SWS_X
  1941. |SWS_GAUSS
  1942. |SWS_LANCZOS
  1943. |SWS_SINC
  1944. |SWS_SPLINE
  1945. |SWS_BICUBLIN);
  1946. if(!i || (i & (i-1)))
  1947. {
  1948. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
  1949. return NULL;
  1950. }
  1951. /* sanity check */
  1952. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1953. {
  1954. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1955. srcW, srcH, dstW, dstH);
  1956. return NULL;
  1957. }
  1958. if(srcW > VOFW || dstW > VOFW){
  1959. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  1960. return NULL;
  1961. }
  1962. if (!dstFilter) dstFilter= &dummyFilter;
  1963. if (!srcFilter) srcFilter= &dummyFilter;
  1964. c= av_mallocz(sizeof(SwsContext));
  1965. c->av_class = &sws_context_class;
  1966. c->srcW= srcW;
  1967. c->srcH= srcH;
  1968. c->dstW= dstW;
  1969. c->dstH= dstH;
  1970. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1971. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1972. c->flags= flags;
  1973. c->dstFormat= dstFormat;
  1974. c->srcFormat= srcFormat;
  1975. c->vRounder= 4* 0x0001000100010001ULL;
  1976. usesHFilter= usesVFilter= 0;
  1977. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  1978. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  1979. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  1980. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  1981. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  1982. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  1983. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  1984. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  1985. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1986. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1987. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1988. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1989. // drop some chroma lines if the user wants it
  1990. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1991. c->chrSrcVSubSample+= c->vChrDrop;
  1992. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1993. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  1994. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  1995. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  1996. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  1997. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  1998. c->chrSrcHSubSample=1;
  1999. if (param){
  2000. c->param[0] = param[0];
  2001. c->param[1] = param[1];
  2002. }else{
  2003. c->param[0] =
  2004. c->param[1] = SWS_PARAM_DEFAULT;
  2005. }
  2006. c->chrIntHSubSample= c->chrDstHSubSample;
  2007. c->chrIntVSubSample= c->chrSrcVSubSample;
  2008. // Note the -((-x)>>y) is so that we always round toward +inf.
  2009. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2010. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2011. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2012. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2013. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2014. /* unscaled special Cases */
  2015. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2016. {
  2017. /* yv12_to_nv12 */
  2018. if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2019. {
  2020. c->swScale= PlanarToNV12Wrapper;
  2021. }
  2022. #ifdef CONFIG_GPL
  2023. /* yuv2bgr */
  2024. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2025. && !(flags & SWS_ACCURATE_RND))
  2026. {
  2027. c->swScale= yuv2rgb_get_func_ptr(c);
  2028. }
  2029. #endif
  2030. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
  2031. {
  2032. c->swScale= yvu9toyv12Wrapper;
  2033. }
  2034. /* bgr24toYV12 */
  2035. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
  2036. c->swScale= bgr24toyv12Wrapper;
  2037. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  2038. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2039. && (isBGR(dstFormat) || isRGB(dstFormat))
  2040. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2041. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2042. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2043. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2044. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2045. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2046. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2047. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2048. && dstFormat != PIX_FMT_RGB32_1
  2049. && dstFormat != PIX_FMT_BGR32_1
  2050. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2051. c->swScale= rgb2rgbWrapper;
  2052. if (srcFormat == PIX_FMT_YUV422P)
  2053. {
  2054. if (dstFormat == PIX_FMT_YUYV422)
  2055. c->swScale= YUV422PToYuy2Wrapper;
  2056. else if (dstFormat == PIX_FMT_UYVY422)
  2057. c->swScale= YUV422PToUyvyWrapper;
  2058. }
  2059. /* LQ converters if -sws 0 or -sws 4*/
  2060. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2061. /* yv12_to_yuy2 */
  2062. if (srcFormat == PIX_FMT_YUV420P)
  2063. {
  2064. if (dstFormat == PIX_FMT_YUYV422)
  2065. c->swScale= PlanarToYuy2Wrapper;
  2066. else if (dstFormat == PIX_FMT_UYVY422)
  2067. c->swScale= PlanarToUyvyWrapper;
  2068. }
  2069. }
  2070. #ifdef COMPILE_ALTIVEC
  2071. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2072. srcFormat == PIX_FMT_YUV420P) {
  2073. // unscaled YV12 -> packed YUV, we want speed
  2074. if (dstFormat == PIX_FMT_YUYV422)
  2075. c->swScale= yv12toyuy2_unscaled_altivec;
  2076. else if (dstFormat == PIX_FMT_UYVY422)
  2077. c->swScale= yv12touyvy_unscaled_altivec;
  2078. }
  2079. #endif
  2080. /* simple copy */
  2081. if ( srcFormat == dstFormat
  2082. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2083. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2084. {
  2085. if (isPacked(c->srcFormat))
  2086. c->swScale= packedCopy;
  2087. else /* Planar YUV or gray */
  2088. c->swScale= planarCopy;
  2089. }
  2090. /* gray16{le,be} conversions */
  2091. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2092. {
  2093. c->swScale= gray16togray;
  2094. }
  2095. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2096. {
  2097. c->swScale= graytogray16;
  2098. }
  2099. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2100. {
  2101. c->swScale= gray16swap;
  2102. }
  2103. #ifdef ARCH_BFIN
  2104. if (flags & SWS_CPU_CAPS_BFIN)
  2105. ff_bfin_get_unscaled_swscale (c);
  2106. #endif
  2107. if (c->swScale){
  2108. if (flags&SWS_PRINT_INFO)
  2109. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2110. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2111. return c;
  2112. }
  2113. }
  2114. if (flags & SWS_CPU_CAPS_MMX2)
  2115. {
  2116. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2117. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2118. {
  2119. if (flags&SWS_PRINT_INFO)
  2120. av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
  2121. }
  2122. if (usesHFilter) c->canMMX2BeUsed=0;
  2123. }
  2124. else
  2125. c->canMMX2BeUsed=0;
  2126. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2127. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2128. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2129. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2130. // n-2 is the last chrominance sample available
  2131. // this is not perfect, but no one should notice the difference, the more correct variant
  2132. // would be like the vertical one, but that would require some special code for the
  2133. // first and last pixel
  2134. if (flags&SWS_FAST_BILINEAR)
  2135. {
  2136. if (c->canMMX2BeUsed)
  2137. {
  2138. c->lumXInc+= 20;
  2139. c->chrXInc+= 20;
  2140. }
  2141. //we don't use the x86asm scaler if mmx is available
  2142. else if (flags & SWS_CPU_CAPS_MMX)
  2143. {
  2144. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2145. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2146. }
  2147. }
  2148. /* precalculate horizontal scaler filter coefficients */
  2149. {
  2150. const int filterAlign=
  2151. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2152. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2153. 1;
  2154. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2155. srcW , dstW, filterAlign, 1<<14,
  2156. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2157. srcFilter->lumH, dstFilter->lumH, c->param);
  2158. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2159. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2160. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2161. srcFilter->chrH, dstFilter->chrH, c->param);
  2162. #define MAX_FUNNY_CODE_SIZE 10000
  2163. #if defined(COMPILE_MMX2)
  2164. // can't downscale !!!
  2165. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2166. {
  2167. #ifdef MAP_ANONYMOUS
  2168. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2169. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2170. #else
  2171. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2172. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2173. #endif
  2174. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2175. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2176. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2177. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2178. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2179. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2180. }
  2181. #endif /* defined(COMPILE_MMX2) */
  2182. } // Init Horizontal stuff
  2183. /* precalculate vertical scaler filter coefficients */
  2184. {
  2185. const int filterAlign=
  2186. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2187. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2188. 1;
  2189. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2190. srcH , dstH, filterAlign, (1<<12),
  2191. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2192. srcFilter->lumV, dstFilter->lumV, c->param);
  2193. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2194. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2195. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2196. srcFilter->chrV, dstFilter->chrV, c->param);
  2197. #ifdef HAVE_ALTIVEC
  2198. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2199. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2200. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2201. int j;
  2202. short *p = (short *)&c->vYCoeffsBank[i];
  2203. for (j=0;j<8;j++)
  2204. p[j] = c->vLumFilter[i];
  2205. }
  2206. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2207. int j;
  2208. short *p = (short *)&c->vCCoeffsBank[i];
  2209. for (j=0;j<8;j++)
  2210. p[j] = c->vChrFilter[i];
  2211. }
  2212. #endif
  2213. }
  2214. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2215. c->vLumBufSize= c->vLumFilterSize;
  2216. c->vChrBufSize= c->vChrFilterSize;
  2217. for (i=0; i<dstH; i++)
  2218. {
  2219. int chrI= i*c->chrDstH / dstH;
  2220. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2221. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2222. nextSlice>>= c->chrSrcVSubSample;
  2223. nextSlice<<= c->chrSrcVSubSample;
  2224. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2225. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2226. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2227. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2228. }
  2229. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2230. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2231. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2232. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2233. /* align at 16 bytes for AltiVec */
  2234. for (i=0; i<c->vLumBufSize; i++)
  2235. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2236. for (i=0; i<c->vChrBufSize; i++)
  2237. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2238. //try to avoid drawing green stuff between the right end and the stride end
  2239. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2240. assert(2*VOFW == VOF);
  2241. assert(c->chrDstH <= dstH);
  2242. if (flags&SWS_PRINT_INFO)
  2243. {
  2244. #ifdef DITHER1XBPP
  2245. const char *dither= " dithered";
  2246. #else
  2247. const char *dither= "";
  2248. #endif
  2249. if (flags&SWS_FAST_BILINEAR)
  2250. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2251. else if (flags&SWS_BILINEAR)
  2252. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2253. else if (flags&SWS_BICUBIC)
  2254. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2255. else if (flags&SWS_X)
  2256. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2257. else if (flags&SWS_POINT)
  2258. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2259. else if (flags&SWS_AREA)
  2260. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2261. else if (flags&SWS_BICUBLIN)
  2262. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2263. else if (flags&SWS_GAUSS)
  2264. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2265. else if (flags&SWS_SINC)
  2266. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2267. else if (flags&SWS_LANCZOS)
  2268. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2269. else if (flags&SWS_SPLINE)
  2270. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2271. else
  2272. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2273. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2274. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2275. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2276. else
  2277. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2278. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2279. if (flags & SWS_CPU_CAPS_MMX2)
  2280. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2281. else if (flags & SWS_CPU_CAPS_3DNOW)
  2282. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2283. else if (flags & SWS_CPU_CAPS_MMX)
  2284. av_log(c, AV_LOG_INFO, "using MMX\n");
  2285. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2286. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2287. else
  2288. av_log(c, AV_LOG_INFO, "using C\n");
  2289. }
  2290. if (flags & SWS_PRINT_INFO)
  2291. {
  2292. if (flags & SWS_CPU_CAPS_MMX)
  2293. {
  2294. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2295. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2296. else
  2297. {
  2298. if (c->hLumFilterSize==4)
  2299. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2300. else if (c->hLumFilterSize==8)
  2301. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2302. else
  2303. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2304. if (c->hChrFilterSize==4)
  2305. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2306. else if (c->hChrFilterSize==8)
  2307. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2308. else
  2309. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2310. }
  2311. }
  2312. else
  2313. {
  2314. #if defined(ARCH_X86)
  2315. av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
  2316. #else
  2317. if (flags & SWS_FAST_BILINEAR)
  2318. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2319. else
  2320. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2321. #endif
  2322. }
  2323. if (isPlanarYUV(dstFormat))
  2324. {
  2325. if (c->vLumFilterSize==1)
  2326. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2327. else
  2328. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2329. }
  2330. else
  2331. {
  2332. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2333. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2334. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2335. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2336. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2337. else
  2338. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2339. }
  2340. if (dstFormat==PIX_FMT_BGR24)
  2341. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
  2342. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2343. else if (dstFormat==PIX_FMT_RGB32)
  2344. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2345. else if (dstFormat==PIX_FMT_BGR565)
  2346. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2347. else if (dstFormat==PIX_FMT_BGR555)
  2348. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2349. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2350. }
  2351. if (flags & SWS_PRINT_INFO)
  2352. {
  2353. av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2354. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2355. av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2356. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2357. }
  2358. c->swScale= getSwsFunc(flags);
  2359. return c;
  2360. }
  2361. /**
  2362. * swscale wrapper, so we don't need to export the SwsContext.
  2363. * assumes planar YUV to be in YUV order instead of YVU
  2364. */
  2365. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2366. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2367. int i;
  2368. uint8_t* src2[4]= {src[0], src[1], src[2]};
  2369. uint32_t pal[256];
  2370. int use_pal= c->srcFormat == PIX_FMT_PAL8
  2371. || c->srcFormat == PIX_FMT_BGR4_BYTE
  2372. || c->srcFormat == PIX_FMT_RGB4_BYTE
  2373. || c->srcFormat == PIX_FMT_BGR8
  2374. || c->srcFormat == PIX_FMT_RGB8;
  2375. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2376. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2377. return 0;
  2378. }
  2379. if (c->sliceDir == 0) {
  2380. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2381. }
  2382. if (use_pal){
  2383. for (i=0; i<256; i++){
  2384. int p, r, g, b,y,u,v;
  2385. if(c->srcFormat == PIX_FMT_PAL8){
  2386. p=((uint32_t*)(src[1]))[i];
  2387. r= (p>>16)&0xFF;
  2388. g= (p>> 8)&0xFF;
  2389. b= p &0xFF;
  2390. }else if(c->srcFormat == PIX_FMT_RGB8){
  2391. r= (i>>5 )*36;
  2392. g= ((i>>2)&7)*36;
  2393. b= (i&3 )*85;
  2394. }else if(c->srcFormat == PIX_FMT_BGR8){
  2395. b= (i>>6 )*85;
  2396. g= ((i>>3)&7)*36;
  2397. r= (i&7 )*36;
  2398. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2399. r= (i>>3 )*255;
  2400. g= ((i>>1)&3)*85;
  2401. b= (i&1 )*255;
  2402. }else if(c->srcFormat == PIX_FMT_BGR4_BYTE){
  2403. b= (i>>3 )*255;
  2404. g= ((i>>1)&3)*85;
  2405. r= (i&1 )*255;
  2406. }
  2407. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2408. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2409. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2410. pal[i]= y + (u<<8) + (v<<16);
  2411. }
  2412. src2[1]= (uint8_t*)pal;
  2413. }
  2414. // copy strides, so they can safely be modified
  2415. if (c->sliceDir == 1) {
  2416. // slices go from top to bottom
  2417. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
  2418. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
  2419. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2420. } else {
  2421. // slices go from bottom to top => we flip the image internally
  2422. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2423. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2424. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2425. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2426. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2427. src2[0] += (srcSliceH-1)*srcStride[0];
  2428. if (!use_pal)
  2429. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2430. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2431. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2432. }
  2433. }
  2434. /**
  2435. * swscale wrapper, so we don't need to export the SwsContext
  2436. */
  2437. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2438. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2439. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2440. }
  2441. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2442. float lumaSharpen, float chromaSharpen,
  2443. float chromaHShift, float chromaVShift,
  2444. int verbose)
  2445. {
  2446. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2447. if (lumaGBlur!=0.0){
  2448. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2449. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2450. }else{
  2451. filter->lumH= sws_getIdentityVec();
  2452. filter->lumV= sws_getIdentityVec();
  2453. }
  2454. if (chromaGBlur!=0.0){
  2455. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2456. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2457. }else{
  2458. filter->chrH= sws_getIdentityVec();
  2459. filter->chrV= sws_getIdentityVec();
  2460. }
  2461. if (chromaSharpen!=0.0){
  2462. SwsVector *id= sws_getIdentityVec();
  2463. sws_scaleVec(filter->chrH, -chromaSharpen);
  2464. sws_scaleVec(filter->chrV, -chromaSharpen);
  2465. sws_addVec(filter->chrH, id);
  2466. sws_addVec(filter->chrV, id);
  2467. sws_freeVec(id);
  2468. }
  2469. if (lumaSharpen!=0.0){
  2470. SwsVector *id= sws_getIdentityVec();
  2471. sws_scaleVec(filter->lumH, -lumaSharpen);
  2472. sws_scaleVec(filter->lumV, -lumaSharpen);
  2473. sws_addVec(filter->lumH, id);
  2474. sws_addVec(filter->lumV, id);
  2475. sws_freeVec(id);
  2476. }
  2477. if (chromaHShift != 0.0)
  2478. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2479. if (chromaVShift != 0.0)
  2480. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2481. sws_normalizeVec(filter->chrH, 1.0);
  2482. sws_normalizeVec(filter->chrV, 1.0);
  2483. sws_normalizeVec(filter->lumH, 1.0);
  2484. sws_normalizeVec(filter->lumV, 1.0);
  2485. if (verbose) sws_printVec(filter->chrH);
  2486. if (verbose) sws_printVec(filter->lumH);
  2487. return filter;
  2488. }
  2489. /**
  2490. * returns a normalized gaussian curve used to filter stuff
  2491. * quality=3 is high quality, lowwer is lowwer quality
  2492. */
  2493. SwsVector *sws_getGaussianVec(double variance, double quality){
  2494. const int length= (int)(variance*quality + 0.5) | 1;
  2495. int i;
  2496. double *coeff= av_malloc(length*sizeof(double));
  2497. double middle= (length-1)*0.5;
  2498. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2499. vec->coeff= coeff;
  2500. vec->length= length;
  2501. for (i=0; i<length; i++)
  2502. {
  2503. double dist= i-middle;
  2504. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2505. }
  2506. sws_normalizeVec(vec, 1.0);
  2507. return vec;
  2508. }
  2509. SwsVector *sws_getConstVec(double c, int length){
  2510. int i;
  2511. double *coeff= av_malloc(length*sizeof(double));
  2512. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2513. vec->coeff= coeff;
  2514. vec->length= length;
  2515. for (i=0; i<length; i++)
  2516. coeff[i]= c;
  2517. return vec;
  2518. }
  2519. SwsVector *sws_getIdentityVec(void){
  2520. return sws_getConstVec(1.0, 1);
  2521. }
  2522. double sws_dcVec(SwsVector *a){
  2523. int i;
  2524. double sum=0;
  2525. for (i=0; i<a->length; i++)
  2526. sum+= a->coeff[i];
  2527. return sum;
  2528. }
  2529. void sws_scaleVec(SwsVector *a, double scalar){
  2530. int i;
  2531. for (i=0; i<a->length; i++)
  2532. a->coeff[i]*= scalar;
  2533. }
  2534. void sws_normalizeVec(SwsVector *a, double height){
  2535. sws_scaleVec(a, height/sws_dcVec(a));
  2536. }
  2537. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2538. int length= a->length + b->length - 1;
  2539. double *coeff= av_malloc(length*sizeof(double));
  2540. int i, j;
  2541. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2542. vec->coeff= coeff;
  2543. vec->length= length;
  2544. for (i=0; i<length; i++) coeff[i]= 0.0;
  2545. for (i=0; i<a->length; i++)
  2546. {
  2547. for (j=0; j<b->length; j++)
  2548. {
  2549. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2550. }
  2551. }
  2552. return vec;
  2553. }
  2554. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2555. int length= FFMAX(a->length, b->length);
  2556. double *coeff= av_malloc(length*sizeof(double));
  2557. int i;
  2558. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2559. vec->coeff= coeff;
  2560. vec->length= length;
  2561. for (i=0; i<length; i++) coeff[i]= 0.0;
  2562. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2563. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2564. return vec;
  2565. }
  2566. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2567. int length= FFMAX(a->length, b->length);
  2568. double *coeff= av_malloc(length*sizeof(double));
  2569. int i;
  2570. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2571. vec->coeff= coeff;
  2572. vec->length= length;
  2573. for (i=0; i<length; i++) coeff[i]= 0.0;
  2574. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2575. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2576. return vec;
  2577. }
  2578. /* shift left / or right if "shift" is negative */
  2579. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2580. int length= a->length + FFABS(shift)*2;
  2581. double *coeff= av_malloc(length*sizeof(double));
  2582. int i;
  2583. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2584. vec->coeff= coeff;
  2585. vec->length= length;
  2586. for (i=0; i<length; i++) coeff[i]= 0.0;
  2587. for (i=0; i<a->length; i++)
  2588. {
  2589. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2590. }
  2591. return vec;
  2592. }
  2593. void sws_shiftVec(SwsVector *a, int shift){
  2594. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2595. av_free(a->coeff);
  2596. a->coeff= shifted->coeff;
  2597. a->length= shifted->length;
  2598. av_free(shifted);
  2599. }
  2600. void sws_addVec(SwsVector *a, SwsVector *b){
  2601. SwsVector *sum= sws_sumVec(a, b);
  2602. av_free(a->coeff);
  2603. a->coeff= sum->coeff;
  2604. a->length= sum->length;
  2605. av_free(sum);
  2606. }
  2607. void sws_subVec(SwsVector *a, SwsVector *b){
  2608. SwsVector *diff= sws_diffVec(a, b);
  2609. av_free(a->coeff);
  2610. a->coeff= diff->coeff;
  2611. a->length= diff->length;
  2612. av_free(diff);
  2613. }
  2614. void sws_convVec(SwsVector *a, SwsVector *b){
  2615. SwsVector *conv= sws_getConvVec(a, b);
  2616. av_free(a->coeff);
  2617. a->coeff= conv->coeff;
  2618. a->length= conv->length;
  2619. av_free(conv);
  2620. }
  2621. SwsVector *sws_cloneVec(SwsVector *a){
  2622. double *coeff= av_malloc(a->length*sizeof(double));
  2623. int i;
  2624. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2625. vec->coeff= coeff;
  2626. vec->length= a->length;
  2627. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2628. return vec;
  2629. }
  2630. void sws_printVec(SwsVector *a){
  2631. int i;
  2632. double max=0;
  2633. double min=0;
  2634. double range;
  2635. for (i=0; i<a->length; i++)
  2636. if (a->coeff[i]>max) max= a->coeff[i];
  2637. for (i=0; i<a->length; i++)
  2638. if (a->coeff[i]<min) min= a->coeff[i];
  2639. range= max - min;
  2640. for (i=0; i<a->length; i++)
  2641. {
  2642. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2643. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2644. for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2645. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2646. }
  2647. }
  2648. void sws_freeVec(SwsVector *a){
  2649. if (!a) return;
  2650. av_freep(&a->coeff);
  2651. a->length=0;
  2652. av_free(a);
  2653. }
  2654. void sws_freeFilter(SwsFilter *filter){
  2655. if (!filter) return;
  2656. if (filter->lumH) sws_freeVec(filter->lumH);
  2657. if (filter->lumV) sws_freeVec(filter->lumV);
  2658. if (filter->chrH) sws_freeVec(filter->chrH);
  2659. if (filter->chrV) sws_freeVec(filter->chrV);
  2660. av_free(filter);
  2661. }
  2662. void sws_freeContext(SwsContext *c){
  2663. int i;
  2664. if (!c) return;
  2665. if (c->lumPixBuf)
  2666. {
  2667. for (i=0; i<c->vLumBufSize; i++)
  2668. av_freep(&c->lumPixBuf[i]);
  2669. av_freep(&c->lumPixBuf);
  2670. }
  2671. if (c->chrPixBuf)
  2672. {
  2673. for (i=0; i<c->vChrBufSize; i++)
  2674. av_freep(&c->chrPixBuf[i]);
  2675. av_freep(&c->chrPixBuf);
  2676. }
  2677. av_freep(&c->vLumFilter);
  2678. av_freep(&c->vChrFilter);
  2679. av_freep(&c->hLumFilter);
  2680. av_freep(&c->hChrFilter);
  2681. #ifdef HAVE_ALTIVEC
  2682. av_freep(&c->vYCoeffsBank);
  2683. av_freep(&c->vCCoeffsBank);
  2684. #endif
  2685. av_freep(&c->vLumFilterPos);
  2686. av_freep(&c->vChrFilterPos);
  2687. av_freep(&c->hLumFilterPos);
  2688. av_freep(&c->hChrFilterPos);
  2689. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2690. #ifdef MAP_ANONYMOUS
  2691. if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2692. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2693. #else
  2694. av_free(c->funnyYCode);
  2695. av_free(c->funnyUVCode);
  2696. #endif
  2697. c->funnyYCode=NULL;
  2698. c->funnyUVCode=NULL;
  2699. #endif /* defined(ARCH_X86) */
  2700. av_freep(&c->lumMmx2Filter);
  2701. av_freep(&c->chrMmx2Filter);
  2702. av_freep(&c->lumMmx2FilterPos);
  2703. av_freep(&c->chrMmx2FilterPos);
  2704. av_freep(&c->yuvTable);
  2705. av_free(c);
  2706. }
  2707. /**
  2708. * Checks if context is valid or reallocs a new one instead.
  2709. * If context is NULL, just calls sws_getContext() to get a new one.
  2710. * Otherwise, checks if the parameters are the same already saved in context.
  2711. * If that is the case, returns the current context.
  2712. * Otherwise, frees context and gets a new one.
  2713. *
  2714. * Be warned that srcFilter, dstFilter are not checked, they are
  2715. * asumed to remain valid.
  2716. */
  2717. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2718. int srcW, int srcH, int srcFormat,
  2719. int dstW, int dstH, int dstFormat, int flags,
  2720. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2721. {
  2722. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2723. if (!param)
  2724. param = default_param;
  2725. if (context) {
  2726. if (context->srcW != srcW || context->srcH != srcH ||
  2727. context->srcFormat != srcFormat ||
  2728. context->dstW != dstW || context->dstH != dstH ||
  2729. context->dstFormat != dstFormat || context->flags != flags ||
  2730. context->param[0] != param[0] || context->param[1] != param[1])
  2731. {
  2732. sws_freeContext(context);
  2733. context = NULL;
  2734. }
  2735. }
  2736. if (!context) {
  2737. return sws_getContext(srcW, srcH, srcFormat,
  2738. dstW, dstH, dstFormat, flags,
  2739. srcFilter, dstFilter, param);
  2740. }
  2741. return context;
  2742. }