You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2672 lines
84KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. /** MV P mode - the 5th element is only used for mode 1 */
  127. static const uint8_t mv_pmode_table[2][5] = {
  128. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  129. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  130. };
  131. /** One more frame type */
  132. #define BI_TYPE 7
  133. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  134. fps_dr[2] = { 1000, 1001 };
  135. static const uint8_t pquant_table[3][32] = {
  136. { /* Implicit quantizer */
  137. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  138. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  139. },
  140. { /* Explicit quantizer, pquantizer uniform */
  141. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  142. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  143. },
  144. { /* Explicit quantizer, pquantizer non-uniform */
  145. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  146. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  147. }
  148. };
  149. /** @name VC-1 VLC tables and defines
  150. * @todo TODO move this into the context
  151. */
  152. //@{
  153. #define VC1_BFRACTION_VLC_BITS 7
  154. static VLC vc1_bfraction_vlc;
  155. #define VC1_IMODE_VLC_BITS 4
  156. static VLC vc1_imode_vlc;
  157. #define VC1_NORM2_VLC_BITS 3
  158. static VLC vc1_norm2_vlc;
  159. #define VC1_NORM6_VLC_BITS 9
  160. static VLC vc1_norm6_vlc;
  161. /* Could be optimized, one table only needs 8 bits */
  162. #define VC1_TTMB_VLC_BITS 9 //12
  163. static VLC vc1_ttmb_vlc[3];
  164. #define VC1_MV_DIFF_VLC_BITS 9 //15
  165. static VLC vc1_mv_diff_vlc[4];
  166. #define VC1_CBPCY_P_VLC_BITS 9 //14
  167. static VLC vc1_cbpcy_p_vlc[4];
  168. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  169. static VLC vc1_4mv_block_pattern_vlc[4];
  170. #define VC1_TTBLK_VLC_BITS 5
  171. static VLC vc1_ttblk_vlc[3];
  172. #define VC1_SUBBLKPAT_VLC_BITS 6
  173. static VLC vc1_subblkpat_vlc[3];
  174. static VLC vc1_ac_coeff_table[8];
  175. //@}
  176. enum CodingSet {
  177. CS_HIGH_MOT_INTRA = 0,
  178. CS_HIGH_MOT_INTER,
  179. CS_LOW_MOT_INTRA,
  180. CS_LOW_MOT_INTER,
  181. CS_MID_RATE_INTRA,
  182. CS_MID_RATE_INTER,
  183. CS_HIGH_RATE_INTRA,
  184. CS_HIGH_RATE_INTER
  185. };
  186. /** The VC1 Context
  187. * @fixme Change size wherever another size is more efficient
  188. * Many members are only used for Advanced Profile
  189. */
  190. typedef struct VC1Context{
  191. MpegEncContext s;
  192. int bits;
  193. /** Simple/Main Profile sequence header */
  194. //@{
  195. int res_sm; ///< reserved, 2b
  196. int res_x8; ///< reserved
  197. int multires; ///< frame-level RESPIC syntax element present
  198. int res_fasttx; ///< reserved, always 1
  199. int res_transtab; ///< reserved, always 0
  200. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  201. ///< at frame level
  202. int res_rtm_flag; ///< reserved, set to 1
  203. int reserved; ///< reserved
  204. //@}
  205. /** Advanced Profile */
  206. //@{
  207. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  208. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  209. int postprocflag; ///< Per-frame processing suggestion flag present
  210. int broadcast; ///< TFF/RFF present
  211. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  212. int tfcntrflag; ///< TFCNTR present
  213. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  214. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  215. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  216. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  217. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  218. int hrd_param_flag; ///< Presence of Hypothetical Reference
  219. ///< Decoder parameters
  220. //@}
  221. /** Sequence header data for all Profiles
  222. * TODO: choose between ints, uint8_ts and monobit flags
  223. */
  224. //@{
  225. int profile; ///< 2bits, Profile
  226. int frmrtq_postproc; ///< 3bits,
  227. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  228. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  229. int extended_mv; ///< Ext MV in P/B (not in Simple)
  230. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  231. int vstransform; ///< variable-size [48]x[48] transform type + info
  232. int overlap; ///< overlapped transforms in use
  233. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  234. int finterpflag; ///< INTERPFRM present
  235. //@}
  236. /** Frame decoding info for all profiles */
  237. //@{
  238. uint8_t mv_mode; ///< MV coding monde
  239. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  240. int k_x; ///< Number of bits for MVs (depends on MV range)
  241. int k_y; ///< Number of bits for MVs (depends on MV range)
  242. int range_x, range_y; ///< MV range
  243. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  244. /** pquant parameters */
  245. //@{
  246. uint8_t dquantfrm;
  247. uint8_t dqprofile;
  248. uint8_t dqsbedge;
  249. uint8_t dqbilevel;
  250. //@}
  251. /** AC coding set indexes
  252. * @see 8.1.1.10, p(1)10
  253. */
  254. //@{
  255. int c_ac_table_index; ///< Chroma index from ACFRM element
  256. int y_ac_table_index; ///< Luma index from AC2FRM element
  257. //@}
  258. int ttfrm; ///< Transform type info present at frame level
  259. uint8_t ttmbf; ///< Transform type flag
  260. int ttmb; ///< Transform type
  261. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  262. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  263. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  264. int pqindex; ///< raw pqindex used in coding set selection
  265. int a_avail, c_avail;
  266. /** Luma compensation parameters */
  267. //@{
  268. uint8_t lumscale;
  269. uint8_t lumshift;
  270. //@}
  271. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  272. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  273. uint8_t respic; ///< Frame-level flag for resized images
  274. int buffer_fullness; ///< HRD info
  275. /** Ranges:
  276. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  277. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  278. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  279. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  280. */
  281. uint8_t mvrange;
  282. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  283. VLC *cbpcy_vlc; ///< CBPCY VLC table
  284. int tt_index; ///< Index for Transform Type tables
  285. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  286. // BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
  287. int mv_type_is_raw; ///< mv type mb plane is not coded
  288. int skip_is_raw; ///< skip mb plane is not coded
  289. /** Frame decoding info for S/M profiles only */
  290. //@{
  291. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  292. uint8_t interpfrm;
  293. //@}
  294. /** Frame decoding info for Advanced profile */
  295. //@{
  296. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  297. uint8_t numpanscanwin;
  298. uint8_t tfcntr;
  299. uint8_t rptfrm, tff, rff;
  300. uint16_t topleftx;
  301. uint16_t toplefty;
  302. uint16_t bottomrightx;
  303. uint16_t bottomrighty;
  304. uint8_t uvsamp;
  305. uint8_t postproc;
  306. int hrd_num_leaky_buckets;
  307. uint8_t bit_rate_exponent;
  308. uint8_t buffer_size_exponent;
  309. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  310. // BitPlane over_flags_plane; ///< Overflags bitplane
  311. uint8_t condover;
  312. uint16_t *hrd_rate, *hrd_buffer;
  313. uint8_t *hrd_fullness;
  314. uint8_t range_mapy_flag;
  315. uint8_t range_mapuv_flag;
  316. uint8_t range_mapy;
  317. uint8_t range_mapuv;
  318. //@}
  319. } VC1Context;
  320. /**
  321. * Get unary code of limited length
  322. * @fixme FIXME Slow and ugly
  323. * @param gb GetBitContext
  324. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  325. * @param[in] len Maximum length
  326. * @return Unary length/index
  327. */
  328. static int get_prefix(GetBitContext *gb, int stop, int len)
  329. {
  330. #if 1
  331. int i;
  332. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  333. return i;
  334. /* int i = 0, tmp = !stop;
  335. while (i != len && tmp != stop)
  336. {
  337. tmp = get_bits(gb, 1);
  338. i++;
  339. }
  340. if (i == len && tmp != stop) return len+1;
  341. return i;*/
  342. #else
  343. unsigned int buf;
  344. int log;
  345. OPEN_READER(re, gb);
  346. UPDATE_CACHE(re, gb);
  347. buf=GET_CACHE(re, gb); //Still not sure
  348. if (stop) buf = ~buf;
  349. log= av_log2(-buf); //FIXME: -?
  350. if (log < limit){
  351. LAST_SKIP_BITS(re, gb, log+1);
  352. CLOSE_READER(re, gb);
  353. return log;
  354. }
  355. LAST_SKIP_BITS(re, gb, limit);
  356. CLOSE_READER(re, gb);
  357. return limit;
  358. #endif
  359. }
  360. static inline int decode210(GetBitContext *gb){
  361. int n;
  362. n = get_bits1(gb);
  363. if (n == 1)
  364. return 0;
  365. else
  366. return 2 - get_bits1(gb);
  367. }
  368. /**
  369. * Init VC-1 specific tables and VC1Context members
  370. * @param v The VC1Context to initialize
  371. * @return Status
  372. */
  373. static int vc1_init_common(VC1Context *v)
  374. {
  375. static int done = 0;
  376. int i = 0;
  377. v->hrd_rate = v->hrd_buffer = NULL;
  378. /* VLC tables */
  379. if(!done)
  380. {
  381. done = 1;
  382. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  383. vc1_bfraction_bits, 1, 1,
  384. vc1_bfraction_codes, 1, 1, 1);
  385. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  386. vc1_norm2_bits, 1, 1,
  387. vc1_norm2_codes, 1, 1, 1);
  388. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  389. vc1_norm6_bits, 1, 1,
  390. vc1_norm6_codes, 2, 2, 1);
  391. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  392. vc1_imode_bits, 1, 1,
  393. vc1_imode_codes, 1, 1, 1);
  394. for (i=0; i<3; i++)
  395. {
  396. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  397. vc1_ttmb_bits[i], 1, 1,
  398. vc1_ttmb_codes[i], 2, 2, 1);
  399. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  400. vc1_ttblk_bits[i], 1, 1,
  401. vc1_ttblk_codes[i], 1, 1, 1);
  402. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  403. vc1_subblkpat_bits[i], 1, 1,
  404. vc1_subblkpat_codes[i], 1, 1, 1);
  405. }
  406. for(i=0; i<4; i++)
  407. {
  408. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  409. vc1_4mv_block_pattern_bits[i], 1, 1,
  410. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  411. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  412. vc1_cbpcy_p_bits[i], 1, 1,
  413. vc1_cbpcy_p_codes[i], 2, 2, 1);
  414. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  415. vc1_mv_diff_bits[i], 1, 1,
  416. vc1_mv_diff_codes[i], 2, 2, 1);
  417. }
  418. for(i=0; i<8; i++)
  419. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  420. &vc1_ac_tables[i][0][1], 8, 4,
  421. &vc1_ac_tables[i][0][0], 8, 4, 1);
  422. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  423. &ff_msmp4_mb_i_table[0][1], 4, 2,
  424. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  425. }
  426. /* Other defaults */
  427. v->pq = -1;
  428. v->mvrange = 0; /* 7.1.1.18, p80 */
  429. return 0;
  430. }
  431. /***********************************************************************/
  432. /**
  433. * @defgroup bitplane VC9 Bitplane decoding
  434. * @see 8.7, p56
  435. * @{
  436. */
  437. /** @addtogroup bitplane
  438. * Imode types
  439. * @{
  440. */
  441. enum Imode {
  442. IMODE_RAW,
  443. IMODE_NORM2,
  444. IMODE_DIFF2,
  445. IMODE_NORM6,
  446. IMODE_DIFF6,
  447. IMODE_ROWSKIP,
  448. IMODE_COLSKIP
  449. };
  450. /** @} */ //imode defines
  451. /** Decode rows by checking if they are skipped
  452. * @param plane Buffer to store decoded bits
  453. * @param[in] width Width of this buffer
  454. * @param[in] height Height of this buffer
  455. * @param[in] stride of this buffer
  456. */
  457. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  458. int x, y;
  459. for (y=0; y<height; y++){
  460. if (!get_bits(gb, 1)) //rowskip
  461. memset(plane, 0, width);
  462. else
  463. for (x=0; x<width; x++)
  464. plane[x] = get_bits(gb, 1);
  465. plane += stride;
  466. }
  467. }
  468. /** Decode columns by checking if they are skipped
  469. * @param plane Buffer to store decoded bits
  470. * @param[in] width Width of this buffer
  471. * @param[in] height Height of this buffer
  472. * @param[in] stride of this buffer
  473. * @fixme FIXME: Optimize
  474. */
  475. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  476. int x, y;
  477. for (x=0; x<width; x++){
  478. if (!get_bits(gb, 1)) //colskip
  479. for (y=0; y<height; y++)
  480. plane[y*stride] = 0;
  481. else
  482. for (y=0; y<height; y++)
  483. plane[y*stride] = get_bits(gb, 1);
  484. plane ++;
  485. }
  486. }
  487. /** Decode a bitplane's bits
  488. * @param bp Bitplane where to store the decode bits
  489. * @param v VC-1 context for bit reading and logging
  490. * @return Status
  491. * @fixme FIXME: Optimize
  492. * @todo TODO: Decide if a struct is needed
  493. */
  494. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  495. {
  496. GetBitContext *gb = &v->s.gb;
  497. int imode, x, y, code, offset;
  498. uint8_t invert, *planep = data;
  499. int width, height, stride;
  500. width = v->s.mb_width;
  501. height = v->s.mb_height;
  502. stride = v->s.mb_stride;
  503. invert = get_bits(gb, 1);
  504. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  505. *raw_flag = 0;
  506. switch (imode)
  507. {
  508. case IMODE_RAW:
  509. //Data is actually read in the MB layer (same for all tests == "raw")
  510. *raw_flag = 1; //invert ignored
  511. return invert;
  512. case IMODE_DIFF2:
  513. case IMODE_NORM2:
  514. if ((height * width) & 1)
  515. {
  516. *planep++ = get_bits(gb, 1);
  517. offset = 1;
  518. }
  519. else offset = 0;
  520. // decode bitplane as one long line
  521. for (y = offset; y < height * width; y += 2) {
  522. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  523. *planep++ = code & 1;
  524. offset++;
  525. if(offset == width) {
  526. offset = 0;
  527. planep += stride - width;
  528. }
  529. *planep++ = code >> 1;
  530. offset++;
  531. if(offset == width) {
  532. offset = 0;
  533. planep += stride - width;
  534. }
  535. }
  536. break;
  537. case IMODE_DIFF6:
  538. case IMODE_NORM6:
  539. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  540. for(y = 0; y < height; y+= 3) {
  541. for(x = width & 1; x < width; x += 2) {
  542. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  543. if(code < 0){
  544. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  545. return -1;
  546. }
  547. planep[x + 0] = (code >> 0) & 1;
  548. planep[x + 1] = (code >> 1) & 1;
  549. planep[x + 0 + stride] = (code >> 2) & 1;
  550. planep[x + 1 + stride] = (code >> 3) & 1;
  551. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  552. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  553. }
  554. planep += stride * 3;
  555. }
  556. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  557. } else { // 3x2
  558. for(y = height & 1; y < height; y += 2) {
  559. for(x = width % 3; x < width; x += 3) {
  560. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  561. if(code < 0){
  562. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  563. return -1;
  564. }
  565. planep[x + 0] = (code >> 0) & 1;
  566. planep[x + 1] = (code >> 1) & 1;
  567. planep[x + 2] = (code >> 2) & 1;
  568. planep[x + 0 + stride] = (code >> 3) & 1;
  569. planep[x + 1 + stride] = (code >> 4) & 1;
  570. planep[x + 2 + stride] = (code >> 5) & 1;
  571. }
  572. planep += stride * 2;
  573. }
  574. x = width % 3;
  575. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  576. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  577. }
  578. break;
  579. case IMODE_ROWSKIP:
  580. decode_rowskip(data, width, height, stride, &v->s.gb);
  581. break;
  582. case IMODE_COLSKIP:
  583. decode_colskip(data, width, height, stride, &v->s.gb);
  584. break;
  585. default: break;
  586. }
  587. /* Applying diff operator */
  588. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  589. {
  590. planep = data;
  591. planep[0] ^= invert;
  592. for (x=1; x<width; x++)
  593. planep[x] ^= planep[x-1];
  594. for (y=1; y<height; y++)
  595. {
  596. planep += stride;
  597. planep[0] ^= planep[-stride];
  598. for (x=1; x<width; x++)
  599. {
  600. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  601. else planep[x] ^= planep[x-1];
  602. }
  603. }
  604. }
  605. else if (invert)
  606. {
  607. planep = data;
  608. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  609. }
  610. return (imode<<1) + invert;
  611. }
  612. /** @} */ //Bitplane group
  613. /***********************************************************************/
  614. /** VOP Dquant decoding
  615. * @param v VC-1 Context
  616. */
  617. static int vop_dquant_decoding(VC1Context *v)
  618. {
  619. GetBitContext *gb = &v->s.gb;
  620. int pqdiff;
  621. //variable size
  622. if (v->dquant == 2)
  623. {
  624. pqdiff = get_bits(gb, 3);
  625. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  626. else v->altpq = v->pq + pqdiff + 1;
  627. }
  628. else
  629. {
  630. v->dquantfrm = get_bits(gb, 1);
  631. if ( v->dquantfrm )
  632. {
  633. v->dqprofile = get_bits(gb, 2);
  634. switch (v->dqprofile)
  635. {
  636. case DQPROFILE_SINGLE_EDGE:
  637. case DQPROFILE_DOUBLE_EDGES:
  638. v->dqsbedge = get_bits(gb, 2);
  639. break;
  640. case DQPROFILE_ALL_MBS:
  641. v->dqbilevel = get_bits(gb, 1);
  642. default: break; //Forbidden ?
  643. }
  644. if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  645. {
  646. pqdiff = get_bits(gb, 3);
  647. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  648. else v->altpq = v->pq + pqdiff + 1;
  649. }
  650. }
  651. }
  652. return 0;
  653. }
  654. /** Do inverse transform
  655. */
  656. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  657. {
  658. int i;
  659. register int t1,t2,t3,t4,t5,t6,t7,t8;
  660. DCTELEM *src, *dst;
  661. src = block;
  662. dst = block;
  663. if(M==4){
  664. for(i = 0; i < N; i++){
  665. t1 = 17 * (src[0] + src[2]);
  666. t2 = 17 * (src[0] - src[2]);
  667. t3 = 22 * src[1];
  668. t4 = 22 * src[3];
  669. t5 = 10 * src[1];
  670. t6 = 10 * src[3];
  671. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  672. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  673. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  674. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  675. src += 8;
  676. dst += 8;
  677. }
  678. }else{
  679. for(i = 0; i < N; i++){
  680. t1 = 12 * (src[0] + src[4]);
  681. t2 = 12 * (src[0] - src[4]);
  682. t3 = 16 * src[2] + 6 * src[6];
  683. t4 = 6 * src[2] - 16 * src[6];
  684. t5 = t1 + t3;
  685. t6 = t2 + t4;
  686. t7 = t2 - t4;
  687. t8 = t1 - t3;
  688. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  689. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  690. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  691. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  692. dst[0] = (t5 + t1 + 4) >> 3;
  693. dst[1] = (t6 + t2 + 4) >> 3;
  694. dst[2] = (t7 + t3 + 4) >> 3;
  695. dst[3] = (t8 + t4 + 4) >> 3;
  696. dst[4] = (t8 - t4 + 4) >> 3;
  697. dst[5] = (t7 - t3 + 4) >> 3;
  698. dst[6] = (t6 - t2 + 4) >> 3;
  699. dst[7] = (t5 - t1 + 4) >> 3;
  700. src += 8;
  701. dst += 8;
  702. }
  703. }
  704. src = block;
  705. dst = block;
  706. if(N==4){
  707. for(i = 0; i < M; i++){
  708. t1 = 17 * (src[ 0] + src[16]);
  709. t2 = 17 * (src[ 0] - src[16]);
  710. t3 = 22 * src[ 8];
  711. t4 = 22 * src[24];
  712. t5 = 10 * src[ 8];
  713. t6 = 10 * src[24];
  714. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  715. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  716. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  717. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  718. src ++;
  719. dst ++;
  720. }
  721. }else{
  722. for(i = 0; i < M; i++){
  723. t1 = 12 * (src[ 0] + src[32]);
  724. t2 = 12 * (src[ 0] - src[32]);
  725. t3 = 16 * src[16] + 6 * src[48];
  726. t4 = 6 * src[16] - 16 * src[48];
  727. t5 = t1 + t3;
  728. t6 = t2 + t4;
  729. t7 = t2 - t4;
  730. t8 = t1 - t3;
  731. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  732. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  733. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  734. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  735. dst[ 0] = (t5 + t1 + 64) >> 7;
  736. dst[ 8] = (t6 + t2 + 64) >> 7;
  737. dst[16] = (t7 + t3 + 64) >> 7;
  738. dst[24] = (t8 + t4 + 64) >> 7;
  739. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  740. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  741. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  742. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  743. src++;
  744. dst++;
  745. }
  746. }
  747. }
  748. /** Apply overlap transform
  749. * @todo optimize
  750. * @todo move to DSPContext
  751. */
  752. static void vc1_overlap_block(MpegEncContext *s, DCTELEM block[64], int n, int do_hor, int do_vert)
  753. {
  754. int i;
  755. if(do_hor) { //TODO
  756. }
  757. if(do_vert) { //TODO
  758. }
  759. for(i = 0; i < 64; i++)
  760. block[i] += 128;
  761. }
  762. static void vc1_v_overlap(uint8_t* src, int stride)
  763. {
  764. int i;
  765. int a, b, c, d;
  766. for(i = 0; i < 8; i++) {
  767. a = src[-2*stride];
  768. b = src[-stride];
  769. c = src[0];
  770. d = src[stride];
  771. src[-2*stride] = (7*a + d) >> 3;
  772. src[-stride] = (-a + 7*b + c + d) >> 3;
  773. src[0] = (a + b + 7*c - d) >> 3;
  774. src[stride] = (a + 7*d) >> 3;
  775. src++;
  776. }
  777. }
  778. static void vc1_h_overlap(uint8_t* src, int stride)
  779. {
  780. int i;
  781. int a, b, c, d;
  782. for(i = 0; i < 8; i++) {
  783. a = src[-2];
  784. b = src[-1];
  785. c = src[0];
  786. d = src[1];
  787. src[-2] = (7*a + d) >> 3;
  788. src[-1] = (-a + 7*b + c + d) >> 3;
  789. src[0] = (a + b + 7*c - d) >> 3;
  790. src[1] = (a + 7*d) >> 3;
  791. src += stride;
  792. }
  793. }
  794. /** Put block onto picture
  795. * @todo move to DSPContext
  796. */
  797. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  798. {
  799. uint8_t *Y;
  800. int ys, us, vs;
  801. DSPContext *dsp = &v->s.dsp;
  802. ys = v->s.current_picture.linesize[0];
  803. us = v->s.current_picture.linesize[1];
  804. vs = v->s.current_picture.linesize[2];
  805. Y = v->s.dest[0];
  806. dsp->put_pixels_clamped(block[0], Y, ys);
  807. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  808. Y += ys * 8;
  809. dsp->put_pixels_clamped(block[2], Y, ys);
  810. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  811. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  812. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  813. }
  814. /* clip motion vector as specified in 8.3.6.5 */
  815. #define CLIP_RANGE(mv, src, lim, bs) \
  816. if(mv < -bs) mv = -bs - src * bs; \
  817. if(mv > lim) mv = lim - src * bs;
  818. /** Do motion compensation over 1 macroblock
  819. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  820. */
  821. static void vc1_mc_1mv(VC1Context *v)
  822. {
  823. MpegEncContext *s = &v->s;
  824. DSPContext *dsp = &v->s.dsp;
  825. uint8_t *srcY, *srcU, *srcV;
  826. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  827. if(!v->s.last_picture.data[0])return;
  828. mx = s->mv[0][0][0];
  829. my = s->mv[0][0][1];
  830. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  831. uvmy = (my + ((my & 3) == 3)) >> 1;
  832. srcY = s->last_picture.data[0];
  833. srcU = s->last_picture.data[1];
  834. srcV = s->last_picture.data[2];
  835. if(v->fastuvmc) { // XXX: 8.3.5.4.5 specifies something different
  836. uvmx = (uvmx + 1) & ~1;
  837. uvmy = (uvmy + 1) & ~1;
  838. }
  839. src_x = s->mb_x * 16 + (mx >> 2);
  840. src_y = s->mb_y * 16 + (my >> 2);
  841. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  842. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  843. CLIP_RANGE( src_x, s->mb_x, s->mb_width * 16, 16);
  844. CLIP_RANGE( src_y, s->mb_y, s->mb_height * 16, 16);
  845. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  846. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  847. srcY += src_y * s->linesize + src_x;
  848. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  849. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  850. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  851. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  852. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  853. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  854. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  855. srcY = s->edge_emu_buffer;
  856. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  857. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  858. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  859. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  860. srcU = uvbuf;
  861. srcV = uvbuf + 16;
  862. }
  863. if(!s->quarter_sample) { // hpel mc
  864. mx >>= 1;
  865. my >>= 1;
  866. dxy = ((my & 1) << 1) | (mx & 1);
  867. uvdxy = 0;
  868. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  869. } else {
  870. dxy = ((my & 3) << 2) | (mx & 3);
  871. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  872. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  873. }
  874. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  875. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  876. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[1], srcU, s->uvlinesize);
  877. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[2], srcV, s->uvlinesize);
  878. }
  879. /**
  880. * Decode Simple/Main Profiles sequence header
  881. * @see Figure 7-8, p16-17
  882. * @param avctx Codec context
  883. * @param gb GetBit context initialized from Codec context extra_data
  884. * @return Status
  885. */
  886. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  887. {
  888. VC1Context *v = avctx->priv_data;
  889. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  890. v->profile = get_bits(gb, 2);
  891. if (v->profile == 2)
  892. {
  893. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  894. return -1;
  895. }
  896. if (v->profile == PROFILE_ADVANCED)
  897. {
  898. v->level = get_bits(gb, 3);
  899. if(v->level >= 5)
  900. {
  901. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  902. }
  903. v->chromaformat = get_bits(gb, 2);
  904. if (v->chromaformat != 1)
  905. {
  906. av_log(avctx, AV_LOG_ERROR,
  907. "Only 4:2:0 chroma format supported\n");
  908. return -1;
  909. }
  910. }
  911. else
  912. {
  913. v->res_sm = get_bits(gb, 2); //reserved
  914. if (v->res_sm)
  915. {
  916. av_log(avctx, AV_LOG_ERROR,
  917. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  918. return -1;
  919. }
  920. }
  921. // (fps-2)/4 (->30)
  922. v->frmrtq_postproc = get_bits(gb, 3); //common
  923. // (bitrate-32kbps)/64kbps
  924. v->bitrtq_postproc = get_bits(gb, 5); //common
  925. v->s.loop_filter = get_bits(gb, 1); //common
  926. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  927. {
  928. av_log(avctx, AV_LOG_ERROR,
  929. "LOOPFILTER shell not be enabled in simple profile\n");
  930. }
  931. if (v->profile < PROFILE_ADVANCED)
  932. {
  933. v->res_x8 = get_bits(gb, 1); //reserved
  934. if (v->res_x8)
  935. {
  936. av_log(avctx, AV_LOG_ERROR,
  937. "1 for reserved RES_X8 is forbidden\n");
  938. //return -1;
  939. }
  940. v->multires = get_bits(gb, 1);
  941. v->res_fasttx = get_bits(gb, 1);
  942. if (!v->res_fasttx)
  943. {
  944. av_log(avctx, AV_LOG_ERROR,
  945. "0 for reserved RES_FASTTX is forbidden\n");
  946. //return -1;
  947. }
  948. }
  949. v->fastuvmc = get_bits(gb, 1); //common
  950. if (!v->profile && !v->fastuvmc)
  951. {
  952. av_log(avctx, AV_LOG_ERROR,
  953. "FASTUVMC unavailable in Simple Profile\n");
  954. return -1;
  955. }
  956. v->extended_mv = get_bits(gb, 1); //common
  957. if (!v->profile && v->extended_mv)
  958. {
  959. av_log(avctx, AV_LOG_ERROR,
  960. "Extended MVs unavailable in Simple Profile\n");
  961. return -1;
  962. }
  963. v->dquant = get_bits(gb, 2); //common
  964. v->vstransform = get_bits(gb, 1); //common
  965. if (v->profile < PROFILE_ADVANCED)
  966. {
  967. v->res_transtab = get_bits(gb, 1);
  968. if (v->res_transtab)
  969. {
  970. av_log(avctx, AV_LOG_ERROR,
  971. "1 for reserved RES_TRANSTAB is forbidden\n");
  972. return -1;
  973. }
  974. }
  975. v->overlap = get_bits(gb, 1); //common
  976. if (v->profile < PROFILE_ADVANCED)
  977. {
  978. v->s.resync_marker = get_bits(gb, 1);
  979. v->rangered = get_bits(gb, 1);
  980. if (v->rangered && v->profile == PROFILE_SIMPLE)
  981. {
  982. av_log(avctx, AV_LOG_INFO,
  983. "RANGERED should be set to 0 in simple profile\n");
  984. }
  985. }
  986. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  987. v->quantizer_mode = get_bits(gb, 2); //common
  988. if (v->profile < PROFILE_ADVANCED)
  989. {
  990. v->finterpflag = get_bits(gb, 1); //common
  991. v->res_rtm_flag = get_bits(gb, 1); //reserved
  992. if (!v->res_rtm_flag)
  993. {
  994. av_log(avctx, AV_LOG_ERROR,
  995. "0 for reserved RES_RTM_FLAG is forbidden\n");
  996. //return -1;
  997. }
  998. av_log(avctx, AV_LOG_DEBUG,
  999. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1000. "LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n"
  1001. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1002. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1003. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1004. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1005. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1006. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1007. );
  1008. return 0;
  1009. }
  1010. return -1;
  1011. }
  1012. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1013. {
  1014. int pqindex, lowquant, status;
  1015. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1016. skip_bits(gb, 2); //framecnt unused
  1017. v->rangeredfrm = 0;
  1018. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1019. v->s.pict_type = get_bits(gb, 1);
  1020. if (v->s.avctx->max_b_frames) {
  1021. if (!v->s.pict_type) {
  1022. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1023. else v->s.pict_type = B_TYPE;
  1024. } else v->s.pict_type = P_TYPE;
  1025. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1026. if(v->s.pict_type == I_TYPE)
  1027. get_bits(gb, 7); // skip buffer fullness
  1028. /* Quantizer stuff */
  1029. pqindex = get_bits(gb, 5);
  1030. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1031. v->pq = pquant_table[0][pqindex];
  1032. else
  1033. v->pq = pquant_table[v->quantizer_mode-1][pqindex];
  1034. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1035. v->pquantizer = pqindex < 9;
  1036. if (v->quantizer_mode == QUANT_UNIFORM || v->quantizer_mode == QUANT_NON_UNIFORM)
  1037. v->pquantizer = v->quantizer_mode == QUANT_UNIFORM;
  1038. v->pqindex = pqindex;
  1039. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1040. else v->halfpq = 0;
  1041. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1042. v->pquantizer = get_bits(gb, 1);
  1043. v->dquantfrm = 0;
  1044. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1045. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1046. //TODO: complete parsing for P/B/BI frames
  1047. switch(v->s.pict_type) {
  1048. case P_TYPE:
  1049. if (v->pq < 5) v->tt_index = 0;
  1050. else if(v->pq < 13) v->tt_index = 1;
  1051. else v->tt_index = 2;
  1052. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1053. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1054. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1055. v->range_x = 1 << (v->k_x - 1);
  1056. v->range_y = 1 << (v->k_y - 1);
  1057. if (v->profile == PROFILE_ADVANCED)
  1058. {
  1059. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1060. }
  1061. else
  1062. if (v->multires) v->respic = get_bits(gb, 2);
  1063. lowquant = (v->pq > 12) ? 0 : 1;
  1064. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1065. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1066. {
  1067. v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(gb, 1, 3)];
  1068. v->lumscale = get_bits(gb, 6);
  1069. v->lumshift = get_bits(gb, 6);
  1070. }
  1071. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1072. v->s.quarter_sample = 0;
  1073. else
  1074. v->s.quarter_sample = 1;
  1075. if(v->mv_mode != MV_PMODE_1MV && v->mv_mode != MV_PMODE_1MV_HPEL && v->mv_mode != MV_PMODE_1MV_HPEL_BILIN) {
  1076. av_log(v->s.avctx, AV_LOG_ERROR, "Only 1MV P-frames are supported by now\n");
  1077. return -1;
  1078. }
  1079. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1080. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1081. || v->mv_mode == MV_PMODE_MIXED_MV)
  1082. {
  1083. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1084. if (status < 0) return -1;
  1085. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1086. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1087. } else {
  1088. v->mv_type_is_raw = 0;
  1089. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1090. }
  1091. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1092. if (status < 0) return -1;
  1093. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1094. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1095. /* Hopefully this is correct for P frames */
  1096. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1097. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1098. if (v->dquant)
  1099. {
  1100. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1101. vop_dquant_decoding(v);
  1102. }
  1103. v->ttfrm = 0; //FIXME Is that so ?
  1104. if (v->vstransform)
  1105. {
  1106. v->ttmbf = get_bits(gb, 1);
  1107. if (v->ttmbf)
  1108. {
  1109. v->ttfrm = get_bits(gb, 2);
  1110. }
  1111. }
  1112. break;
  1113. case B_TYPE:
  1114. break;
  1115. }
  1116. /* AC Syntax */
  1117. v->c_ac_table_index = decode012(gb);
  1118. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1119. {
  1120. v->y_ac_table_index = decode012(gb);
  1121. }
  1122. /* DC Syntax */
  1123. v->s.dc_table_index = get_bits(gb, 1);
  1124. return 0;
  1125. }
  1126. /***********************************************************************/
  1127. /**
  1128. * @defgroup block VC-1 Block-level functions
  1129. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1130. * @todo TODO: Integrate to MpegEncContext facilities
  1131. * @{
  1132. */
  1133. /**
  1134. * @def GET_MQUANT
  1135. * @brief Get macroblock-level quantizer scale
  1136. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1137. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1138. */
  1139. #define GET_MQUANT() \
  1140. if (v->dquantfrm) \
  1141. { \
  1142. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1143. { \
  1144. if (v->dqbilevel) \
  1145. { \
  1146. mquant = (get_bits(gb, 1)) ? v->pq : v->altpq; \
  1147. } \
  1148. else \
  1149. { \
  1150. mqdiff = get_bits(gb, 3); \
  1151. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1152. else mquant = get_bits(gb, 5); \
  1153. } \
  1154. } \
  1155. else mquant = v->pq; \
  1156. }
  1157. /**
  1158. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1159. * @brief Get MV differentials
  1160. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1161. * @param _dmv_x Horizontal differential for decoded MV
  1162. * @param _dmv_y Vertical differential for decoded MV
  1163. * @todo TODO: Use MpegEncContext arrays to store them
  1164. */
  1165. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1166. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1167. VC1_MV_DIFF_VLC_BITS, 2); \
  1168. if (index > 36) \
  1169. { \
  1170. mb_has_coeffs = 1; \
  1171. index -= 37; \
  1172. } \
  1173. else mb_has_coeffs = 0; \
  1174. s->mb_intra = 0; \
  1175. if (!index) { _dmv_x = _dmv_y = 0; } \
  1176. else if (index == 35) \
  1177. { \
  1178. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1179. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1180. } \
  1181. else if (index == 36) \
  1182. { \
  1183. _dmv_x = 0; \
  1184. _dmv_y = 0; \
  1185. s->mb_intra = 1; \
  1186. } \
  1187. else \
  1188. { \
  1189. index1 = index%6; \
  1190. if (!s->quarter_sample && index1 == 5) val = 1; \
  1191. else val = 0; \
  1192. if(size_table[index1] - val > 0) \
  1193. val = get_bits(gb, size_table[index1] - val); \
  1194. else val = 0; \
  1195. sign = 0 - (val&1); \
  1196. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1197. \
  1198. index1 = index/6; \
  1199. if (!s->quarter_sample && index1 == 5) val = 1; \
  1200. else val = 0; \
  1201. if(size_table[index1] - val > 0) \
  1202. val = get_bits(gb, size_table[index1] - val); \
  1203. else val = 0; \
  1204. sign = 0 - (val&1); \
  1205. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1206. }
  1207. /** Predict and set motion vector
  1208. */
  1209. static inline void vc1_pred_mv(MpegEncContext *s, int dmv_x, int dmv_y, int mv1, int r_x, int r_y)
  1210. {
  1211. int xy, wrap, off;
  1212. int16_t *A, *B, *C;
  1213. int px, py;
  1214. int sum;
  1215. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1216. /* scale MV difference to be quad-pel */
  1217. dmv_x <<= 1 - s->quarter_sample;
  1218. dmv_y <<= 1 - s->quarter_sample;
  1219. wrap = s->b8_stride;
  1220. xy = s->block_index[0];
  1221. C = s->current_picture.motion_val[0][xy - (1 << mv1)];
  1222. A = s->current_picture.motion_val[0][xy - (wrap << mv1)];
  1223. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1224. B = s->current_picture.motion_val[0][xy + ((off - wrap) << mv1)];
  1225. if(!s->first_slice_line) { // predictor A is not out of bounds
  1226. if(s->mb_width == 1) {
  1227. px = A[0];
  1228. py = A[1];
  1229. } else {
  1230. px = mid_pred(A[0], B[0], C[0]);
  1231. py = mid_pred(A[1], B[1], C[1]);
  1232. }
  1233. } else if(s->mb_x) { // predictor C is not out of bounds
  1234. px = C[0];
  1235. py = C[1];
  1236. } else {
  1237. px = py = 0;
  1238. }
  1239. if(s->mb_intra) px = py = 0;
  1240. /* Pullback MV as specified in 8.3.5.3.4 */
  1241. {
  1242. int qx, qy, X, Y;
  1243. qx = s->mb_x << 6; //FIXME: add real block coords for 4MV mode
  1244. qy = s->mb_y << 6;
  1245. X = (s->mb_width << 6) - 4;
  1246. Y = (s->mb_height << 6) - 4;
  1247. if(mv1) {
  1248. if(qx + px < -60) px = -60 - qx;
  1249. if(qy + py < -60) py = -60 - qy;
  1250. } else {
  1251. if(qx + px < -28) px = -28 - qx;
  1252. if(qy + py < -28) py = -28 - qy;
  1253. }
  1254. if(qx + px > X) px = X - qx;
  1255. if(qy + py > Y) py = Y - qy;
  1256. }
  1257. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1258. if(!s->mb_intra && !s->first_slice_line && s->mb_x) {
  1259. if(IS_INTRA(s->current_picture.mb_type[mb_pos - s->mb_stride]))
  1260. sum = ABS(px) + ABS(py);
  1261. else
  1262. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1263. if(sum > 32) {
  1264. if(get_bits1(&s->gb)) {
  1265. px = A[0];
  1266. py = A[1];
  1267. } else {
  1268. px = C[0];
  1269. py = C[1];
  1270. }
  1271. } else {
  1272. if(IS_INTRA(s->current_picture.mb_type[mb_pos - 1]))
  1273. sum = ABS(px) + ABS(py);
  1274. else
  1275. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1276. if(sum > 32) {
  1277. if(get_bits1(&s->gb)) {
  1278. px = A[0];
  1279. py = A[1];
  1280. } else {
  1281. px = C[0];
  1282. py = C[1];
  1283. }
  1284. }
  1285. }
  1286. }
  1287. /* store MV using signed modulus of MV range defined in 4.11 */
  1288. s->mv[0][0][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1289. s->mv[0][0][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1290. }
  1291. /** Get predicted DC value for I-frames only
  1292. * prediction dir: left=0, top=1
  1293. * @param s MpegEncContext
  1294. * @param[in] n block index in the current MB
  1295. * @param dc_val_ptr Pointer to DC predictor
  1296. * @param dir_ptr Prediction direction for use in AC prediction
  1297. */
  1298. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1299. int16_t **dc_val_ptr, int *dir_ptr)
  1300. {
  1301. int a, b, c, wrap, pred, scale;
  1302. int16_t *dc_val;
  1303. static const uint16_t dcpred[32] = {
  1304. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1305. 114, 102, 93, 85, 79, 73, 68, 64,
  1306. 60, 57, 54, 51, 49, 47, 45, 43,
  1307. 41, 39, 38, 37, 35, 34, 33
  1308. };
  1309. /* find prediction - wmv3_dc_scale always used here in fact */
  1310. if (n < 4) scale = s->y_dc_scale;
  1311. else scale = s->c_dc_scale;
  1312. wrap = s->block_wrap[n];
  1313. dc_val= s->dc_val[0] + s->block_index[n];
  1314. /* B A
  1315. * C X
  1316. */
  1317. c = dc_val[ - 1];
  1318. b = dc_val[ - 1 - wrap];
  1319. a = dc_val[ - wrap];
  1320. if (pq < 9 || !overlap)
  1321. {
  1322. /* Set outer values */
  1323. if (!s->mb_y && (n!=2 && n!=3)) b=a=dcpred[scale];
  1324. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1325. }
  1326. else
  1327. {
  1328. /* Set outer values */
  1329. if (!s->mb_y && (n!=2 && n!=3)) b=a=0;
  1330. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1331. }
  1332. if (abs(a - b) <= abs(b - c)) {
  1333. pred = c;
  1334. *dir_ptr = 1;//left
  1335. } else {
  1336. pred = a;
  1337. *dir_ptr = 0;//top
  1338. }
  1339. /* update predictor */
  1340. *dc_val_ptr = &dc_val[0];
  1341. return pred;
  1342. }
  1343. /** Get predicted DC value
  1344. * prediction dir: left=0, top=1
  1345. * @param s MpegEncContext
  1346. * @param[in] n block index in the current MB
  1347. * @param dc_val_ptr Pointer to DC predictor
  1348. * @param dir_ptr Prediction direction for use in AC prediction
  1349. */
  1350. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1351. int a_avail, int c_avail,
  1352. int16_t **dc_val_ptr, int *dir_ptr)
  1353. {
  1354. int a, b, c, wrap, pred, scale;
  1355. int16_t *dc_val;
  1356. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1357. int mb_pos2, q1, q2;
  1358. /* find prediction - wmv3_dc_scale always used here in fact */
  1359. if (n < 4) scale = s->y_dc_scale;
  1360. else scale = s->c_dc_scale;
  1361. wrap = s->block_wrap[n];
  1362. dc_val= s->dc_val[0] + s->block_index[n];
  1363. /* B A
  1364. * C X
  1365. */
  1366. c = dc_val[ - 1];
  1367. b = dc_val[ - 1 - wrap];
  1368. a = dc_val[ - wrap];
  1369. if(a_avail && c_avail) {
  1370. if(abs(a - b) <= abs(b - c)) {
  1371. pred = c;
  1372. *dir_ptr = 1;//left
  1373. } else {
  1374. pred = a;
  1375. *dir_ptr = 0;//top
  1376. }
  1377. } else if(a_avail) {
  1378. pred = a;
  1379. *dir_ptr = 0;//top
  1380. } else if(c_avail) {
  1381. pred = c;
  1382. *dir_ptr = 1;//left
  1383. } else {
  1384. pred = 0;
  1385. *dir_ptr = 1;//left
  1386. }
  1387. /* scale coeffs if needed */
  1388. mb_pos2 = mb_pos - *dir_ptr - (1 - *dir_ptr) * s->mb_stride;
  1389. q1 = s->current_picture.qscale_table[mb_pos];
  1390. q2 = s->current_picture.qscale_table[mb_pos2];
  1391. if(0 && q1 && q2 && q1 != q2) {
  1392. q1 = s->y_dc_scale_table[q1];
  1393. q2 = s->y_dc_scale_table[q2];
  1394. pred = (pred * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1395. }
  1396. /* update predictor */
  1397. *dc_val_ptr = &dc_val[0];
  1398. return pred;
  1399. }
  1400. /**
  1401. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1402. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1403. * @todo TODO: Integrate to MpegEncContext facilities
  1404. * @{
  1405. */
  1406. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1407. {
  1408. int xy, wrap, pred, a, b, c;
  1409. xy = s->block_index[n];
  1410. wrap = s->b8_stride;
  1411. /* B C
  1412. * A X
  1413. */
  1414. a = s->coded_block[xy - 1 ];
  1415. b = s->coded_block[xy - 1 - wrap];
  1416. c = s->coded_block[xy - wrap];
  1417. if (b == c) {
  1418. pred = a;
  1419. } else {
  1420. pred = c;
  1421. }
  1422. /* store value */
  1423. *coded_block_ptr = &s->coded_block[xy];
  1424. return pred;
  1425. }
  1426. /**
  1427. * Decode one AC coefficient
  1428. * @param v The VC1 context
  1429. * @param last Last coefficient
  1430. * @param skip How much zero coefficients to skip
  1431. * @param value Decoded AC coefficient value
  1432. * @see 8.1.3.4
  1433. */
  1434. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1435. {
  1436. GetBitContext *gb = &v->s.gb;
  1437. int index, escape, run = 0, level = 0, lst = 0;
  1438. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1439. if (index != vc1_ac_sizes[codingset] - 1) {
  1440. run = vc1_index_decode_table[codingset][index][0];
  1441. level = vc1_index_decode_table[codingset][index][1];
  1442. lst = index >= vc1_last_decode_table[codingset];
  1443. if(get_bits(gb, 1))
  1444. level = -level;
  1445. } else {
  1446. escape = decode210(gb);
  1447. if (escape != 2) {
  1448. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1449. run = vc1_index_decode_table[codingset][index][0];
  1450. level = vc1_index_decode_table[codingset][index][1];
  1451. lst = index >= vc1_last_decode_table[codingset];
  1452. if(escape == 0) {
  1453. if(lst)
  1454. level += vc1_last_delta_level_table[codingset][run];
  1455. else
  1456. level += vc1_delta_level_table[codingset][run];
  1457. } else {
  1458. if(lst)
  1459. run += vc1_last_delta_run_table[codingset][level] + 1;
  1460. else
  1461. run += vc1_delta_run_table[codingset][level] + 1;
  1462. }
  1463. if(get_bits(gb, 1))
  1464. level = -level;
  1465. } else {
  1466. int sign;
  1467. lst = get_bits(gb, 1);
  1468. if(v->s.esc3_level_length == 0) {
  1469. if(v->pq < 8 || v->dquantfrm) { // table 59
  1470. v->s.esc3_level_length = get_bits(gb, 3);
  1471. if(!v->s.esc3_level_length)
  1472. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1473. } else { //table 60
  1474. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1475. }
  1476. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1477. }
  1478. run = get_bits(gb, v->s.esc3_run_length);
  1479. sign = get_bits(gb, 1);
  1480. level = get_bits(gb, v->s.esc3_level_length);
  1481. if(sign)
  1482. level = -level;
  1483. }
  1484. }
  1485. *last = lst;
  1486. *skip = run;
  1487. *value = level;
  1488. }
  1489. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1490. * @param v VC1Context
  1491. * @param block block to decode
  1492. * @param coded are AC coeffs present or not
  1493. * @param codingset set of VLC to decode data
  1494. */
  1495. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1496. {
  1497. GetBitContext *gb = &v->s.gb;
  1498. MpegEncContext *s = &v->s;
  1499. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1500. int run_diff, i;
  1501. int16_t *dc_val;
  1502. int16_t *ac_val, *ac_val2;
  1503. int dcdiff;
  1504. /* Get DC differential */
  1505. if (n < 4) {
  1506. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1507. } else {
  1508. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1509. }
  1510. if (dcdiff < 0){
  1511. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1512. return -1;
  1513. }
  1514. if (dcdiff)
  1515. {
  1516. if (dcdiff == 119 /* ESC index value */)
  1517. {
  1518. /* TODO: Optimize */
  1519. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1520. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1521. else dcdiff = get_bits(gb, 8);
  1522. }
  1523. else
  1524. {
  1525. if (v->pq == 1)
  1526. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1527. else if (v->pq == 2)
  1528. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1529. }
  1530. if (get_bits(gb, 1))
  1531. dcdiff = -dcdiff;
  1532. }
  1533. /* Prediction */
  1534. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1535. *dc_val = dcdiff;
  1536. /* Store the quantized DC coeff, used for prediction */
  1537. if (n < 4) {
  1538. block[0] = dcdiff * s->y_dc_scale;
  1539. } else {
  1540. block[0] = dcdiff * s->c_dc_scale;
  1541. }
  1542. /* Skip ? */
  1543. run_diff = 0;
  1544. i = 0;
  1545. if (!coded) {
  1546. goto not_coded;
  1547. }
  1548. //AC Decoding
  1549. i = 1;
  1550. {
  1551. int last = 0, skip, value;
  1552. const int8_t *zz_table;
  1553. int scale;
  1554. int k;
  1555. scale = v->pq * 2 + v->halfpq;
  1556. if(v->s.ac_pred) {
  1557. if(!dc_pred_dir)
  1558. zz_table = vc1_horizontal_zz;
  1559. else
  1560. zz_table = vc1_vertical_zz;
  1561. } else
  1562. zz_table = vc1_normal_zz;
  1563. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1564. ac_val2 = ac_val;
  1565. if(dc_pred_dir) //left
  1566. ac_val -= 16;
  1567. else //top
  1568. ac_val -= 16 * s->block_wrap[n];
  1569. while (!last) {
  1570. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1571. i += skip;
  1572. if(i > 63)
  1573. break;
  1574. block[zz_table[i++]] = value;
  1575. }
  1576. /* apply AC prediction if needed */
  1577. if(s->ac_pred) {
  1578. if(dc_pred_dir) { //left
  1579. for(k = 1; k < 8; k++)
  1580. block[k << 3] += ac_val[k];
  1581. } else { //top
  1582. for(k = 1; k < 8; k++)
  1583. block[k] += ac_val[k + 8];
  1584. }
  1585. }
  1586. /* save AC coeffs for further prediction */
  1587. for(k = 1; k < 8; k++) {
  1588. ac_val2[k] = block[k << 3];
  1589. ac_val2[k + 8] = block[k];
  1590. }
  1591. /* scale AC coeffs */
  1592. for(k = 1; k < 64; k++)
  1593. if(block[k]) {
  1594. block[k] *= scale;
  1595. if(!v->pquantizer)
  1596. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1597. }
  1598. if(s->ac_pred) i = 63;
  1599. }
  1600. not_coded:
  1601. if(!coded) {
  1602. int k, scale;
  1603. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1604. ac_val2 = ac_val;
  1605. scale = v->pq * 2 + v->halfpq;
  1606. memset(ac_val2, 0, 16 * 2);
  1607. if(dc_pred_dir) {//left
  1608. ac_val -= 16;
  1609. if(s->ac_pred)
  1610. memcpy(ac_val2, ac_val, 8 * 2);
  1611. } else {//top
  1612. ac_val -= 16 * s->block_wrap[n];
  1613. if(s->ac_pred)
  1614. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1615. }
  1616. /* apply AC prediction if needed */
  1617. if(s->ac_pred) {
  1618. if(dc_pred_dir) { //left
  1619. for(k = 1; k < 8; k++) {
  1620. block[k << 3] = ac_val[k] * scale;
  1621. if(!v->pquantizer)
  1622. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1623. }
  1624. } else { //top
  1625. for(k = 1; k < 8; k++) {
  1626. block[k] = ac_val[k + 8] * scale;
  1627. if(!v->pquantizer)
  1628. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1629. }
  1630. }
  1631. i = 63;
  1632. }
  1633. }
  1634. s->block_last_index[n] = i;
  1635. return 0;
  1636. }
  1637. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1638. * @param v VC1Context
  1639. * @param block block to decode
  1640. * @param coded are AC coeffs present or not
  1641. * @param mquant block quantizer
  1642. * @param codingset set of VLC to decode data
  1643. */
  1644. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1645. {
  1646. GetBitContext *gb = &v->s.gb;
  1647. MpegEncContext *s = &v->s;
  1648. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1649. int run_diff, i;
  1650. int16_t *dc_val;
  1651. int16_t *ac_val, *ac_val2;
  1652. int dcdiff;
  1653. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1654. int a_avail = v->a_avail, c_avail = v->c_avail;
  1655. /* XXX: Guard against dumb values of mquant */
  1656. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1657. /* Set DC scale - y and c use the same */
  1658. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1659. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1660. /* Get DC differential */
  1661. if (n < 4) {
  1662. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1663. } else {
  1664. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1665. }
  1666. if (dcdiff < 0){
  1667. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1668. return -1;
  1669. }
  1670. if (dcdiff)
  1671. {
  1672. if (dcdiff == 119 /* ESC index value */)
  1673. {
  1674. /* TODO: Optimize */
  1675. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1676. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1677. else dcdiff = get_bits(gb, 8);
  1678. }
  1679. else
  1680. {
  1681. if (mquant == 1)
  1682. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1683. else if (mquant == 2)
  1684. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1685. }
  1686. if (get_bits(gb, 1))
  1687. dcdiff = -dcdiff;
  1688. }
  1689. /* Prediction */
  1690. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1691. *dc_val = dcdiff;
  1692. /* Store the quantized DC coeff, used for prediction */
  1693. if (n < 4) {
  1694. block[0] = dcdiff * s->y_dc_scale;
  1695. } else {
  1696. block[0] = dcdiff * s->c_dc_scale;
  1697. }
  1698. /* Skip ? */
  1699. run_diff = 0;
  1700. i = 0;
  1701. if (!coded) {
  1702. goto not_coded;
  1703. }
  1704. //AC Decoding
  1705. i = 1;
  1706. {
  1707. int last = 0, skip, value;
  1708. const int8_t *zz_table;
  1709. int scale;
  1710. int k;
  1711. int use_pred = s->ac_pred;
  1712. scale = mquant * 2;
  1713. zz_table = vc1_simple_progressive_8x8_zz;
  1714. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1715. ac_val2 = ac_val;
  1716. if(!a_avail) dc_pred_dir = 1;
  1717. if(!c_avail) dc_pred_dir = 0;
  1718. if(!a_avail && !c_avail) use_pred = 0;
  1719. if(dc_pred_dir) //left
  1720. ac_val -= 16;
  1721. else //top
  1722. ac_val -= 16 * s->block_wrap[n];
  1723. while (!last) {
  1724. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1725. i += skip;
  1726. if(i > 63)
  1727. break;
  1728. block[zz_table[i++]] = value;
  1729. }
  1730. /* apply AC prediction if needed */
  1731. if(use_pred) {
  1732. /* scale predictors if needed*/
  1733. int mb_pos2, q1, q2;
  1734. mb_pos2 = mb_pos - dc_pred_dir - (1 - dc_pred_dir) * s->mb_stride;
  1735. q1 = s->current_picture.qscale_table[mb_pos];
  1736. q2 = s->current_picture.qscale_table[mb_pos2];
  1737. if(q2 && q1 != q2) {
  1738. q1 = q1 * 2 - 1;
  1739. q2 = q2 * 2 - 1;
  1740. if(dc_pred_dir) { //left
  1741. for(k = 1; k < 8; k++)
  1742. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1743. } else { //top
  1744. for(k = 1; k < 8; k++)
  1745. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1746. }
  1747. } else {
  1748. if(dc_pred_dir) { //left
  1749. for(k = 1; k < 8; k++)
  1750. block[k << 3] += ac_val[k];
  1751. } else { //top
  1752. for(k = 1; k < 8; k++)
  1753. block[k] += ac_val[k + 8];
  1754. }
  1755. }
  1756. }
  1757. /* save AC coeffs for further prediction */
  1758. for(k = 1; k < 8; k++) {
  1759. ac_val2[k] = block[k << 3];
  1760. ac_val2[k + 8] = block[k];
  1761. }
  1762. /* scale AC coeffs */
  1763. for(k = 1; k < 64; k++)
  1764. if(block[k]) {
  1765. block[k] *= scale;
  1766. if(!v->pquantizer)
  1767. block[k] += (block[k] < 0) ? -mquant : mquant;
  1768. }
  1769. if(use_pred) i = 63;
  1770. }
  1771. not_coded:
  1772. if(!coded) {
  1773. int k, scale;
  1774. int use_pred = s->ac_pred;
  1775. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1776. ac_val2 = ac_val;
  1777. if(!c_avail) {
  1778. memset(ac_val, 0, 8 * sizeof(ac_val[0]));
  1779. dc_pred_dir = 0;
  1780. }
  1781. if(!a_avail) {
  1782. memset(ac_val + 8, 0, 8 * sizeof(ac_val[0]));
  1783. dc_pred_dir = 1;
  1784. }
  1785. if(!a_avail && !c_avail) use_pred = 0;
  1786. scale = mquant * 2;
  1787. memset(ac_val2, 0, 16 * 2);
  1788. if(dc_pred_dir) {//left
  1789. ac_val -= 16;
  1790. if(use_pred)
  1791. memcpy(ac_val2, ac_val, 8 * 2);
  1792. } else {//top
  1793. ac_val -= 16 * s->block_wrap[n];
  1794. if(use_pred)
  1795. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1796. }
  1797. /* apply AC prediction if needed */
  1798. if(use_pred) {
  1799. if(dc_pred_dir) { //left
  1800. for(k = 1; k < 8; k++) {
  1801. block[k << 3] = ac_val[k] * scale;
  1802. if(!v->pquantizer)
  1803. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1804. }
  1805. } else { //top
  1806. for(k = 1; k < 8; k++) {
  1807. block[k] = ac_val[k + 8] * scale;
  1808. if(!v->pquantizer)
  1809. block[k] += (block[k] < 0) ? -mquant : mquant;
  1810. }
  1811. }
  1812. i = 63;
  1813. }
  1814. }
  1815. s->block_last_index[n] = i;
  1816. return 0;
  1817. }
  1818. /** Decode P block
  1819. */
  1820. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  1821. {
  1822. MpegEncContext *s = &v->s;
  1823. GetBitContext *gb = &s->gb;
  1824. int i, j;
  1825. int subblkpat = 0;
  1826. int scale, off, idx, last, skip, value;
  1827. int ttblk = ttmb & 7;
  1828. if(ttmb == -1) {
  1829. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1830. }
  1831. if(ttblk == TT_4X4) {
  1832. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1833. }
  1834. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  1835. subblkpat = decode012(gb);
  1836. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1837. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1838. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1839. }
  1840. scale = 2 * mquant;
  1841. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1842. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1843. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1844. ttblk = TT_8X4;
  1845. }
  1846. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1847. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1848. ttblk = TT_4X8;
  1849. }
  1850. switch(ttblk) {
  1851. case TT_8X8:
  1852. i = 0;
  1853. last = 0;
  1854. while (!last) {
  1855. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1856. i += skip;
  1857. if(i > 63)
  1858. break;
  1859. idx = vc1_simple_progressive_8x8_zz[i++];
  1860. block[idx] = value * scale;
  1861. }
  1862. vc1_inv_trans(block, 8, 8);
  1863. break;
  1864. case TT_4X4:
  1865. for(j = 0; j < 4; j++) {
  1866. last = subblkpat & (1 << (3 - j));
  1867. i = 0;
  1868. off = (j & 1) * 4 + (j & 2) * 16;
  1869. while (!last) {
  1870. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1871. i += skip;
  1872. if(i > 15)
  1873. break;
  1874. idx = vc1_simple_progressive_4x4_zz[i++];
  1875. block[idx + off] = value * scale;
  1876. }
  1877. if(!(subblkpat & (1 << (3 - j))))
  1878. vc1_inv_trans(block + off, 4, 4);
  1879. }
  1880. break;
  1881. case TT_8X4:
  1882. for(j = 0; j < 2; j++) {
  1883. last = subblkpat & (1 << (1 - j));
  1884. i = 0;
  1885. off = j * 32;
  1886. while (!last) {
  1887. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1888. i += skip;
  1889. if(i > 31)
  1890. break;
  1891. idx = vc1_simple_progressive_8x4_zz[i++];
  1892. block[idx + off] = value * scale;
  1893. }
  1894. if(!(subblkpat & (1 << (1 - j))))
  1895. vc1_inv_trans(block + off, 8, 4);
  1896. }
  1897. break;
  1898. case TT_4X8:
  1899. for(j = 0; j < 2; j++) {
  1900. last = subblkpat & (1 << (1 - j));
  1901. i = 0;
  1902. off = j * 4;
  1903. while (!last) {
  1904. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1905. i += skip;
  1906. if(i > 31)
  1907. break;
  1908. idx = vc1_simple_progressive_4x8_zz[i++];
  1909. block[idx + off] = value * scale;
  1910. }
  1911. if(!(subblkpat & (1 << (1 - j))))
  1912. vc1_inv_trans(block + off, 4, 8);
  1913. }
  1914. break;
  1915. }
  1916. return 0;
  1917. }
  1918. /** Decode one P-frame MB (in Simple/Main profile)
  1919. * @todo TODO: Extend to AP
  1920. * @fixme FIXME: DC value for inter blocks not set
  1921. */
  1922. static int vc1_decode_p_mb(VC1Context *v, DCTELEM block[6][64])
  1923. {
  1924. MpegEncContext *s = &v->s;
  1925. GetBitContext *gb = &s->gb;
  1926. int i, j;
  1927. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1928. int cbp; /* cbp decoding stuff */
  1929. int hybrid_pred; /* Prediction types */
  1930. int mqdiff, mquant; /* MB quantization */
  1931. int ttmb = v->ttmb; /* MB Transform type */
  1932. int status;
  1933. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  1934. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1935. int mb_has_coeffs = 1; /* last_flag */
  1936. int dmv_x, dmv_y; /* Differential MV components */
  1937. int index, index1; /* LUT indices */
  1938. int val, sign; /* temp values */
  1939. int first_block = 1;
  1940. int dst_idx, off;
  1941. int skipped, fourmv;
  1942. mquant = v->pq; /* Loosy initialization */
  1943. if (v->mv_type_is_raw)
  1944. fourmv = get_bits1(gb);
  1945. else
  1946. fourmv = v->mv_type_mb_plane[mb_pos];
  1947. if (v->skip_is_raw)
  1948. skipped = get_bits1(gb);
  1949. else
  1950. skipped = v->s.mbskip_table[mb_pos];
  1951. if (!fourmv) /* 1MV mode */
  1952. {
  1953. if (!skipped)
  1954. {
  1955. GET_MVDATA(dmv_x, dmv_y);
  1956. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1957. vc1_pred_mv(s, dmv_x, dmv_y, 1, v->range_x, v->range_y);
  1958. /* FIXME Set DC val for inter block ? */
  1959. if (s->mb_intra && !mb_has_coeffs)
  1960. {
  1961. GET_MQUANT();
  1962. s->ac_pred = get_bits(gb, 1);
  1963. cbp = 0;
  1964. }
  1965. else if (mb_has_coeffs)
  1966. {
  1967. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  1968. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1969. GET_MQUANT();
  1970. }
  1971. else
  1972. {
  1973. mquant = v->pq;
  1974. cbp = 0;
  1975. }
  1976. s->current_picture.qscale_table[mb_pos] = mquant;
  1977. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1978. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  1979. VC1_TTMB_VLC_BITS, 2);
  1980. s->dsp.clear_blocks(block[0]);
  1981. vc1_mc_1mv(v);
  1982. dst_idx = 0;
  1983. for (i=0; i<6; i++)
  1984. {
  1985. s->dc_val[0][s->block_index[i]] = 0;
  1986. dst_idx += i >> 2;
  1987. val = ((cbp >> (5 - i)) & 1);
  1988. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1989. if(s->mb_intra) {
  1990. /* check if prediction blocks A and C are available */
  1991. v->a_avail = v->c_avail = 0;
  1992. if((i == 2 || i == 3) || (s->mb_y && IS_INTRA(s->current_picture.mb_type[mb_pos - s->mb_stride])))
  1993. v->a_avail = 1;
  1994. if((i == 1 || i == 3) || (s->mb_x && IS_INTRA(s->current_picture.mb_type[mb_pos - 1])))
  1995. v->c_avail = 1;
  1996. vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  1997. vc1_inv_trans(block[i], 8, 8);
  1998. for(j = 0; j < 64; j++) block[i][j] += 128;
  1999. s->dsp.put_pixels_clamped(block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2000. /* TODO: proper loop filtering */
  2001. if(v->pq >= 9 && v->overlap) {
  2002. if(v->a_avail)
  2003. s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2004. if(v->c_avail)
  2005. s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2006. }
  2007. } else if(val) {
  2008. vc1_decode_p_block(v, block[i], i, mquant, ttmb, first_block);
  2009. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2010. first_block = 0;
  2011. s->dsp.add_pixels_clamped(block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2012. }
  2013. }
  2014. }
  2015. else //Skipped
  2016. {
  2017. s->mb_intra = 0;
  2018. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2019. vc1_pred_mv(s, 0, 0, 1, v->range_x, v->range_y);
  2020. vc1_mc_1mv(v);
  2021. return 0;
  2022. }
  2023. } //1MV mode
  2024. else //4MV mode
  2025. {//FIXME: looks not conforming to standard and is not even theoretically complete
  2026. if (!skipped /* unskipped MB */)
  2027. {
  2028. int blk_intra[4], blk_coded[4];
  2029. /* Get CBPCY */
  2030. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2031. for (i=0; i<4; i++)
  2032. {
  2033. val = ((cbp >> (5 - i)) & 1);
  2034. blk_intra[i] = 0;
  2035. blk_coded[i] = val;
  2036. if(val) {
  2037. GET_MVDATA(dmv_x, dmv_y);
  2038. blk_intra[i] = s->mb_intra;
  2039. }
  2040. if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
  2041. hybrid_pred = get_bits(gb, 1);
  2042. }
  2043. if((blk_intra[0] | blk_intra[1] | blk_intra[2] | blk_intra[3]) ||
  2044. (blk_coded[0] | blk_coded[1] | blk_coded[2] | blk_coded[3])) {
  2045. GET_MQUANT();
  2046. if (s->mb_intra /* One of the 4 blocks is intra */
  2047. /* non-zero pred for that block */)
  2048. s->ac_pred = get_bits(gb, 1);
  2049. if (!v->ttmbf)
  2050. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2051. VC1_TTMB_VLC_BITS, 12);
  2052. for(i = 0; i < 6; i++) {
  2053. val = ((cbp >> (5 - i)) & 1);
  2054. if(i & 4 || blk_intra[i] || val) {
  2055. if(i < 4 && blk_intra[i])
  2056. status = vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2057. else
  2058. status = vc1_decode_p_block(v, block[i], i, mquant, ttmb, 0);
  2059. }
  2060. }
  2061. }
  2062. return status;
  2063. }
  2064. else //Skipped MB
  2065. {
  2066. /* XXX: Skipped => cbp=0 and mquant doesn't matter ? */
  2067. for (i=0; i<4; i++)
  2068. {
  2069. if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
  2070. hybrid_pred = get_bits(gb, 1);
  2071. }
  2072. /* TODO: blah */
  2073. return 0;
  2074. }
  2075. }
  2076. /* Should never happen */
  2077. return -1;
  2078. }
  2079. /** Decode blocks of I-frame
  2080. */
  2081. static void vc1_decode_i_blocks(VC1Context *v)
  2082. {
  2083. int k;
  2084. MpegEncContext *s = &v->s;
  2085. int cbp, val;
  2086. uint8_t *coded_val;
  2087. int mb_pos;
  2088. /* select codingmode used for VLC tables selection */
  2089. switch(v->y_ac_table_index){
  2090. case 0:
  2091. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2092. break;
  2093. case 1:
  2094. v->codingset = CS_HIGH_MOT_INTRA;
  2095. break;
  2096. case 2:
  2097. v->codingset = CS_MID_RATE_INTRA;
  2098. break;
  2099. }
  2100. switch(v->c_ac_table_index){
  2101. case 0:
  2102. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2103. break;
  2104. case 1:
  2105. v->codingset2 = CS_HIGH_MOT_INTER;
  2106. break;
  2107. case 2:
  2108. v->codingset2 = CS_MID_RATE_INTER;
  2109. break;
  2110. }
  2111. /* Set DC scale - y and c use the same */
  2112. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2113. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2114. //do frame decode
  2115. s->mb_x = s->mb_y = 0;
  2116. s->mb_intra = 1;
  2117. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2118. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2119. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2120. ff_init_block_index(s);
  2121. ff_update_block_index(s);
  2122. s->dsp.clear_blocks(s->block[0]);
  2123. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2124. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2125. s->current_picture.qscale_table[mb_pos] = v->pq;
  2126. // do actual MB decoding and displaying
  2127. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2128. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2129. for(k = 0; k < 6; k++) {
  2130. val = ((cbp >> (5 - k)) & 1);
  2131. if (k < 4) {
  2132. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2133. val = val ^ pred;
  2134. *coded_val = val;
  2135. }
  2136. cbp |= val << (5 - k);
  2137. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2138. vc1_inv_trans(s->block[k], 8, 8);
  2139. if(v->pq >= 9 && v->overlap) {
  2140. vc1_overlap_block(s, s->block[k], k, (s->mb_y || k>1), (s->mb_x || (k != 0 && k != 2)));
  2141. }
  2142. }
  2143. vc1_put_block(v, s->block);
  2144. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2145. if(s->mb_y) {
  2146. s->dsp.h263_v_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2147. s->dsp.h263_v_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2148. s->dsp.h263_v_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2149. s->dsp.h263_v_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2150. }
  2151. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2152. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2153. if(s->mb_x) {
  2154. s->dsp.h263_h_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2155. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2156. s->dsp.h263_h_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2157. s->dsp.h263_h_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2158. }
  2159. s->dsp.h263_h_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2160. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2161. }
  2162. if(get_bits_count(&s->gb) > v->bits) {
  2163. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2164. return;
  2165. }
  2166. }
  2167. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2168. }
  2169. }
  2170. static void vc1_decode_p_blocks(VC1Context *v)
  2171. {
  2172. MpegEncContext *s = &v->s;
  2173. /* select codingmode used for VLC tables selection */
  2174. switch(v->c_ac_table_index){
  2175. case 0:
  2176. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2177. break;
  2178. case 1:
  2179. v->codingset = CS_HIGH_MOT_INTRA;
  2180. break;
  2181. case 2:
  2182. v->codingset = CS_MID_RATE_INTRA;
  2183. break;
  2184. }
  2185. switch(v->c_ac_table_index){
  2186. case 0:
  2187. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2188. break;
  2189. case 1:
  2190. v->codingset2 = CS_HIGH_MOT_INTER;
  2191. break;
  2192. case 2:
  2193. v->codingset2 = CS_MID_RATE_INTER;
  2194. break;
  2195. }
  2196. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2197. s->first_slice_line = 1;
  2198. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2199. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2200. ff_init_block_index(s);
  2201. ff_update_block_index(s);
  2202. s->dsp.clear_blocks(s->block[0]);
  2203. vc1_decode_p_mb(v, s->block);
  2204. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2205. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2206. return;
  2207. }
  2208. }
  2209. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2210. s->first_slice_line = 0;
  2211. }
  2212. }
  2213. static void vc1_decode_blocks(VC1Context *v)
  2214. {
  2215. v->s.esc3_level_length = 0;
  2216. switch(v->s.pict_type) {
  2217. case I_TYPE:
  2218. vc1_decode_i_blocks(v);
  2219. break;
  2220. case P_TYPE:
  2221. vc1_decode_p_blocks(v);
  2222. break;
  2223. }
  2224. }
  2225. /** Initialize a VC1/WMV3 decoder
  2226. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2227. * @todo TODO: Decypher remaining bits in extra_data
  2228. */
  2229. static int vc1_decode_init(AVCodecContext *avctx)
  2230. {
  2231. VC1Context *v = avctx->priv_data;
  2232. MpegEncContext *s = &v->s;
  2233. GetBitContext gb;
  2234. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2235. avctx->pix_fmt = PIX_FMT_YUV420P;
  2236. v->s.avctx = avctx;
  2237. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2238. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2239. if(ff_h263_decode_init(avctx) < 0)
  2240. return -1;
  2241. if (vc1_init_common(v) < 0) return -1;
  2242. av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n");
  2243. av_log(avctx, AV_LOG_INFO, "If you see a picture, don't believe your eyes.\n");
  2244. avctx->coded_width = avctx->width;
  2245. avctx->coded_height = avctx->height;
  2246. if (avctx->codec_id == CODEC_ID_WMV3)
  2247. {
  2248. int count = 0;
  2249. // looks like WMV3 has a sequence header stored in the extradata
  2250. // advanced sequence header may be before the first frame
  2251. // the last byte of the extradata is a version number, 1 for the
  2252. // samples we can decode
  2253. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2254. if (decode_sequence_header(avctx, &gb) < 0)
  2255. return -1;
  2256. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2257. if (count>0)
  2258. {
  2259. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2260. count, get_bits(&gb, count));
  2261. }
  2262. else if (count < 0)
  2263. {
  2264. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2265. }
  2266. }
  2267. avctx->has_b_frames= !!(avctx->max_b_frames);
  2268. s->mb_width = (avctx->coded_width+15)>>4;
  2269. s->mb_height = (avctx->coded_height+15)>>4;
  2270. /* Allocate mb bitplanes */
  2271. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2272. /* Init coded blocks info */
  2273. if (v->profile == PROFILE_ADVANCED)
  2274. {
  2275. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2276. // return -1;
  2277. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2278. // return -1;
  2279. }
  2280. return 0;
  2281. }
  2282. /** Decode a VC1/WMV3 frame
  2283. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2284. * @warning Initial try at using MpegEncContext stuff
  2285. */
  2286. static int vc1_decode_frame(AVCodecContext *avctx,
  2287. void *data, int *data_size,
  2288. uint8_t *buf, int buf_size)
  2289. {
  2290. VC1Context *v = avctx->priv_data;
  2291. MpegEncContext *s = &v->s;
  2292. AVFrame *pict = data;
  2293. /* no supplementary picture */
  2294. if (buf_size == 0) {
  2295. /* special case for last picture */
  2296. if (s->low_delay==0 && s->next_picture_ptr) {
  2297. *pict= *(AVFrame*)s->next_picture_ptr;
  2298. s->next_picture_ptr= NULL;
  2299. *data_size = sizeof(AVFrame);
  2300. }
  2301. return 0;
  2302. }
  2303. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2304. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2305. int i= ff_find_unused_picture(s, 0);
  2306. s->current_picture_ptr= &s->picture[i];
  2307. }
  2308. avctx->has_b_frames= !s->low_delay;
  2309. init_get_bits(&s->gb, buf, buf_size*8);
  2310. // do parse frame header
  2311. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2312. return -1;
  2313. if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2314. // for hurry_up==5
  2315. s->current_picture.pict_type= s->pict_type;
  2316. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2317. /* skip B-frames if we don't have reference frames */
  2318. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2319. /* skip b frames if we are in a hurry */
  2320. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2321. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2322. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2323. || avctx->skip_frame >= AVDISCARD_ALL)
  2324. return buf_size;
  2325. /* skip everything if we are in a hurry>=5 */
  2326. if(avctx->hurry_up>=5) return -1;//buf_size;
  2327. if(s->next_p_frame_damaged){
  2328. if(s->pict_type==B_TYPE)
  2329. return buf_size;
  2330. else
  2331. s->next_p_frame_damaged=0;
  2332. }
  2333. if(MPV_frame_start(s, avctx) < 0)
  2334. return -1;
  2335. ff_er_frame_start(s);
  2336. v->bits = buf_size * 8;
  2337. vc1_decode_blocks(v);
  2338. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2339. // if(get_bits_count(&s->gb) > buf_size * 8)
  2340. // return -1;
  2341. ff_er_frame_end(s);
  2342. MPV_frame_end(s);
  2343. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2344. assert(s->current_picture.pict_type == s->pict_type);
  2345. if (s->pict_type == B_TYPE || s->low_delay) {
  2346. *pict= *(AVFrame*)s->current_picture_ptr;
  2347. } else if (s->last_picture_ptr != NULL) {
  2348. *pict= *(AVFrame*)s->last_picture_ptr;
  2349. }
  2350. if(s->last_picture_ptr || s->low_delay){
  2351. *data_size = sizeof(AVFrame);
  2352. ff_print_debug_info(s, pict);
  2353. }
  2354. /* Return the Picture timestamp as the frame number */
  2355. /* we substract 1 because it is added on utils.c */
  2356. avctx->frame_number = s->picture_number - 1;
  2357. return buf_size;
  2358. }
  2359. /** Close a VC1/WMV3 decoder
  2360. * @warning Initial try at using MpegEncContext stuff
  2361. */
  2362. static int vc1_decode_end(AVCodecContext *avctx)
  2363. {
  2364. VC1Context *v = avctx->priv_data;
  2365. av_freep(&v->hrd_rate);
  2366. av_freep(&v->hrd_buffer);
  2367. MPV_common_end(&v->s);
  2368. av_freep(&v->mv_type_mb_plane);
  2369. return 0;
  2370. }
  2371. AVCodec vc1_decoder = {
  2372. "vc1",
  2373. CODEC_TYPE_VIDEO,
  2374. CODEC_ID_VC1,
  2375. sizeof(VC1Context),
  2376. vc1_decode_init,
  2377. NULL,
  2378. vc1_decode_end,
  2379. vc1_decode_frame,
  2380. CODEC_CAP_DELAY,
  2381. NULL
  2382. };
  2383. AVCodec wmv3_decoder = {
  2384. "wmv3",
  2385. CODEC_TYPE_VIDEO,
  2386. CODEC_ID_WMV3,
  2387. sizeof(VC1Context),
  2388. vc1_decode_init,
  2389. NULL,
  2390. vc1_decode_end,
  2391. vc1_decode_frame,
  2392. CODEC_CAP_DELAY,
  2393. NULL
  2394. };