You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
40KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10-bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
  44. { "ibias", "intra quant bias",
  45. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  46. { .i64 = 0 }, INT_MIN, INT_MAX, VE },
  47. { NULL }
  48. };
  49. static const AVClass dnxhd_class = {
  50. .class_name = "dnxhd",
  51. .item_name = av_default_item_name,
  52. .option = options,
  53. .version = LIBAVUTIL_VERSION_INT,
  54. };
  55. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  56. const uint8_t *pixels,
  57. ptrdiff_t line_size)
  58. {
  59. int i;
  60. for (i = 0; i < 4; i++) {
  61. block[0] = pixels[0];
  62. block[1] = pixels[1];
  63. block[2] = pixels[2];
  64. block[3] = pixels[3];
  65. block[4] = pixels[4];
  66. block[5] = pixels[5];
  67. block[6] = pixels[6];
  68. block[7] = pixels[7];
  69. pixels += line_size;
  70. block += 8;
  71. }
  72. memcpy(block, block - 8, sizeof(*block) * 8);
  73. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  74. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  75. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  76. }
  77. static av_always_inline
  78. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  79. const uint8_t *pixels,
  80. ptrdiff_t line_size)
  81. {
  82. memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  83. memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  84. memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  85. memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  86. memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  87. memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  88. memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  89. memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  90. }
  91. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  92. int n, int qscale, int *overflow)
  93. {
  94. const uint8_t *scantable= ctx->intra_scantable.scantable;
  95. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  96. int last_non_zero = 0;
  97. int i;
  98. ctx->fdsp.fdct(block);
  99. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  100. block[0] = (block[0] + 2) >> 2;
  101. for (i = 1; i < 64; ++i) {
  102. int j = scantable[i];
  103. int sign = FF_SIGNBIT(block[j]);
  104. int level = (block[j] ^ sign) - sign;
  105. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  106. block[j] = (level ^ sign) - sign;
  107. if (level)
  108. last_non_zero = i;
  109. }
  110. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  111. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  112. ff_block_permute(block, ctx->idsp.idct_permutation,
  113. scantable, last_non_zero);
  114. return last_non_zero;
  115. }
  116. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  117. {
  118. int i, j, level, run;
  119. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  120. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  121. max_level, 4 * sizeof(*ctx->vlc_codes), fail);
  122. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  123. max_level, 4 * sizeof(*ctx->vlc_bits), fail);
  124. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  125. 63 * 2, fail);
  126. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  127. 63, fail);
  128. ctx->vlc_codes += max_level * 2;
  129. ctx->vlc_bits += max_level * 2;
  130. for (level = -max_level; level < max_level; level++) {
  131. for (run = 0; run < 2; run++) {
  132. int index = (level << 1) | run;
  133. int sign, offset = 0, alevel = level;
  134. MASK_ABS(sign, alevel);
  135. if (alevel > 64) {
  136. offset = (alevel - 1) >> 6;
  137. alevel -= offset << 6;
  138. }
  139. for (j = 0; j < 257; j++) {
  140. if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
  141. (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
  142. (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
  143. av_assert1(!ctx->vlc_codes[index]);
  144. if (alevel) {
  145. ctx->vlc_codes[index] =
  146. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  147. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  148. } else {
  149. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  150. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  151. }
  152. break;
  153. }
  154. }
  155. av_assert0(!alevel || j < 257);
  156. if (offset) {
  157. ctx->vlc_codes[index] =
  158. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  159. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  160. }
  161. }
  162. }
  163. for (i = 0; i < 62; i++) {
  164. int run = ctx->cid_table->run[i];
  165. av_assert0(run < 63);
  166. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  167. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  168. }
  169. return 0;
  170. fail:
  171. return AVERROR(ENOMEM);
  172. }
  173. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  174. {
  175. // init first elem to 1 to avoid div by 0 in convert_matrix
  176. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  177. int qscale, i;
  178. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  179. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  180. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  181. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  182. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  183. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  184. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  185. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  186. fail);
  187. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  188. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  189. fail);
  190. if (ctx->cid_table->bit_depth == 8) {
  191. for (i = 1; i < 64; i++) {
  192. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  193. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  194. }
  195. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  196. weight_matrix, ctx->intra_quant_bias, 1,
  197. ctx->m.avctx->qmax, 1);
  198. for (i = 1; i < 64; i++) {
  199. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  200. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  201. }
  202. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  203. weight_matrix, ctx->intra_quant_bias, 1,
  204. ctx->m.avctx->qmax, 1);
  205. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  206. for (i = 0; i < 64; i++) {
  207. ctx->qmatrix_l[qscale][i] <<= 2;
  208. ctx->qmatrix_c[qscale][i] <<= 2;
  209. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  210. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  211. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  212. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  213. }
  214. }
  215. } else {
  216. // 10-bit
  217. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  218. for (i = 1; i < 64; i++) {
  219. int j = ff_zigzag_direct[i];
  220. /* The quantization formula from the VC-3 standard is:
  221. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  222. * (qscale * weight_table[i]))
  223. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  224. * The s factor compensates scaling of DCT coefficients done by
  225. * the DCT routines, and therefore is not present in standard.
  226. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  227. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  228. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  229. * (qscale * weight_table[i])
  230. * For 10-bit samples, p / s == 2 */
  231. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  232. (qscale * luma_weight_table[i]);
  233. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  234. (qscale * chroma_weight_table[i]);
  235. }
  236. }
  237. }
  238. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  239. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  240. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  241. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  242. return 0;
  243. fail:
  244. return AVERROR(ENOMEM);
  245. }
  246. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  247. {
  248. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1), 8160 * sizeof(RCEntry), fail);
  249. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  250. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  251. ctx->m.mb_num, sizeof(RCCMPEntry), fail);
  252. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  253. 640 - 4 - ctx->min_padding) * 8;
  254. ctx->qscale = 1;
  255. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  256. return 0;
  257. fail:
  258. return AVERROR(ENOMEM);
  259. }
  260. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  261. {
  262. DNXHDEncContext *ctx = avctx->priv_data;
  263. int i, index, bit_depth, ret;
  264. switch (avctx->pix_fmt) {
  265. case AV_PIX_FMT_YUV422P:
  266. bit_depth = 8;
  267. break;
  268. case AV_PIX_FMT_YUV422P10:
  269. bit_depth = 10;
  270. break;
  271. default:
  272. av_log(avctx, AV_LOG_ERROR,
  273. "pixel format is incompatible with DNxHD\n");
  274. return AVERROR(EINVAL);
  275. }
  276. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  277. if (!ctx->cid) {
  278. av_log(avctx, AV_LOG_ERROR,
  279. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  280. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  281. return AVERROR(EINVAL);
  282. }
  283. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  284. index = ff_dnxhd_get_cid_table(ctx->cid);
  285. av_assert0(index >= 0);
  286. ctx->cid_table = &ff_dnxhd_cid_table[index];
  287. ctx->m.avctx = avctx;
  288. ctx->m.mb_intra = 1;
  289. ctx->m.h263_aic = 1;
  290. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  291. ff_blockdsp_init(&ctx->bdsp, avctx);
  292. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  293. ff_mpv_idct_init(&ctx->m);
  294. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  295. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  296. ff_dct_encode_init(&ctx->m);
  297. if (!ctx->m.dct_quantize)
  298. ctx->m.dct_quantize = ff_dct_quantize_c;
  299. if (ctx->cid_table->bit_depth == 10) {
  300. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  301. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  302. ctx->block_width_l2 = 4;
  303. } else {
  304. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  305. ctx->block_width_l2 = 3;
  306. }
  307. if (ARCH_X86)
  308. ff_dnxhdenc_init_x86(ctx);
  309. ctx->m.mb_height = (avctx->height + 15) / 16;
  310. ctx->m.mb_width = (avctx->width + 15) / 16;
  311. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  312. ctx->interlaced = 1;
  313. ctx->m.mb_height /= 2;
  314. }
  315. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  316. #if FF_API_QUANT_BIAS
  317. FF_DISABLE_DEPRECATION_WARNINGS
  318. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  319. ctx->intra_quant_bias = avctx->intra_quant_bias;
  320. FF_ENABLE_DEPRECATION_WARNINGS
  321. #endif
  322. // XXX tune lbias/cbias
  323. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  324. return ret;
  325. /* Avid Nitris hardware decoder requires a minimum amount of padding
  326. * in the coding unit payload */
  327. if (ctx->nitris_compat)
  328. ctx->min_padding = 1600;
  329. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  330. return ret;
  331. if ((ret = dnxhd_init_rc(ctx)) < 0)
  332. return ret;
  333. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  334. ctx->m.mb_height * sizeof(uint32_t), fail);
  335. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  336. ctx->m.mb_height * sizeof(uint32_t), fail);
  337. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  338. ctx->m.mb_num * sizeof(uint16_t), fail);
  339. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  340. ctx->m.mb_num * sizeof(uint8_t), fail);
  341. #if FF_API_CODED_FRAME
  342. FF_DISABLE_DEPRECATION_WARNINGS
  343. avctx->coded_frame->key_frame = 1;
  344. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  345. FF_ENABLE_DEPRECATION_WARNINGS
  346. #endif
  347. if (avctx->thread_count > MAX_THREADS) {
  348. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  349. return AVERROR(EINVAL);
  350. }
  351. if (avctx->qmax <= 1) {
  352. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  353. return AVERROR(EINVAL);
  354. }
  355. ctx->thread[0] = ctx;
  356. for (i = 1; i < avctx->thread_count; i++) {
  357. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  358. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  359. }
  360. return 0;
  361. fail: // for FF_ALLOCZ_OR_GOTO
  362. return AVERROR(ENOMEM);
  363. }
  364. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  365. {
  366. DNXHDEncContext *ctx = avctx->priv_data;
  367. static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  368. memset(buf, 0, 640);
  369. memcpy(buf, header_prefix, 5);
  370. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  371. buf[6] = 0x80; // crc flag off
  372. buf[7] = 0xa0; // reserved
  373. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  374. AV_WB16(buf + 0x1a, avctx->width); // SPL
  375. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  376. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  377. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  378. AV_WB32(buf + 0x28, ctx->cid); // CID
  379. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  380. buf[0x5f] = 0x01; // UDL
  381. buf[0x167] = 0x02; // reserved
  382. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  383. buf[0x16d] = ctx->m.mb_height; // Ns
  384. buf[0x16f] = 0x10; // reserved
  385. ctx->msip = buf + 0x170;
  386. return 0;
  387. }
  388. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  389. {
  390. int nbits;
  391. if (diff < 0) {
  392. nbits = av_log2_16bit(-2 * diff);
  393. diff--;
  394. } else {
  395. nbits = av_log2_16bit(2 * diff);
  396. }
  397. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  398. (ctx->cid_table->dc_codes[nbits] << nbits) +
  399. av_mod_uintp2(diff, nbits));
  400. }
  401. static av_always_inline
  402. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  403. int last_index, int n)
  404. {
  405. int last_non_zero = 0;
  406. int slevel, i, j;
  407. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  408. ctx->m.last_dc[n] = block[0];
  409. for (i = 1; i <= last_index; i++) {
  410. j = ctx->m.intra_scantable.permutated[i];
  411. slevel = block[j];
  412. if (slevel) {
  413. int run_level = i - last_non_zero - 1;
  414. int rlevel = (slevel << 1) | !!run_level;
  415. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  416. if (run_level)
  417. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  418. ctx->run_codes[run_level]);
  419. last_non_zero = i;
  420. }
  421. }
  422. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  423. }
  424. static av_always_inline
  425. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  426. int qscale, int last_index)
  427. {
  428. const uint8_t *weight_matrix;
  429. int level;
  430. int i;
  431. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  432. : ctx->cid_table->luma_weight;
  433. for (i = 1; i <= last_index; i++) {
  434. int j = ctx->m.intra_scantable.permutated[i];
  435. level = block[j];
  436. if (level) {
  437. if (level < 0) {
  438. level = (1 - 2 * level) * qscale * weight_matrix[i];
  439. if (ctx->cid_table->bit_depth == 10) {
  440. if (weight_matrix[i] != 8)
  441. level += 8;
  442. level >>= 4;
  443. } else {
  444. if (weight_matrix[i] != 32)
  445. level += 32;
  446. level >>= 6;
  447. }
  448. level = -level;
  449. } else {
  450. level = (2 * level + 1) * qscale * weight_matrix[i];
  451. if (ctx->cid_table->bit_depth == 10) {
  452. if (weight_matrix[i] != 8)
  453. level += 8;
  454. level >>= 4;
  455. } else {
  456. if (weight_matrix[i] != 32)
  457. level += 32;
  458. level >>= 6;
  459. }
  460. }
  461. block[j] = level;
  462. }
  463. }
  464. }
  465. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  466. {
  467. int score = 0;
  468. int i;
  469. for (i = 0; i < 64; i++)
  470. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  471. return score;
  472. }
  473. static av_always_inline
  474. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  475. {
  476. int last_non_zero = 0;
  477. int bits = 0;
  478. int i, j, level;
  479. for (i = 1; i <= last_index; i++) {
  480. j = ctx->m.intra_scantable.permutated[i];
  481. level = block[j];
  482. if (level) {
  483. int run_level = i - last_non_zero - 1;
  484. bits += ctx->vlc_bits[(level << 1) |
  485. !!run_level] + ctx->run_bits[run_level];
  486. last_non_zero = i;
  487. }
  488. }
  489. return bits;
  490. }
  491. static av_always_inline
  492. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  493. {
  494. const int bs = ctx->block_width_l2;
  495. const int bw = 1 << bs;
  496. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  497. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  498. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  499. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  500. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  501. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  502. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  503. pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  504. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  505. pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  506. pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  507. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  508. if (ctx->interlaced) {
  509. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  510. ptr_y + ctx->dct_y_offset,
  511. ctx->m.linesize);
  512. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  513. ptr_y + ctx->dct_y_offset + bw,
  514. ctx->m.linesize);
  515. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  516. ptr_u + ctx->dct_uv_offset,
  517. ctx->m.uvlinesize);
  518. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  519. ptr_v + ctx->dct_uv_offset,
  520. ctx->m.uvlinesize);
  521. } else {
  522. ctx->bdsp.clear_block(ctx->blocks[4]);
  523. ctx->bdsp.clear_block(ctx->blocks[5]);
  524. ctx->bdsp.clear_block(ctx->blocks[6]);
  525. ctx->bdsp.clear_block(ctx->blocks[7]);
  526. }
  527. } else {
  528. pdsp->get_pixels(ctx->blocks[4],
  529. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  530. pdsp->get_pixels(ctx->blocks[5],
  531. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  532. pdsp->get_pixels(ctx->blocks[6],
  533. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  534. pdsp->get_pixels(ctx->blocks[7],
  535. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  536. }
  537. }
  538. static av_always_inline
  539. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  540. {
  541. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  542. return component[i];
  543. }
  544. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  545. int jobnr, int threadnr)
  546. {
  547. DNXHDEncContext *ctx = avctx->priv_data;
  548. int mb_y = jobnr, mb_x;
  549. int qscale = ctx->qscale;
  550. LOCAL_ALIGNED_16(int16_t, block, [64]);
  551. ctx = ctx->thread[threadnr];
  552. ctx->m.last_dc[0] =
  553. ctx->m.last_dc[1] =
  554. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  555. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  556. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  557. int ssd = 0;
  558. int ac_bits = 0;
  559. int dc_bits = 0;
  560. int i;
  561. dnxhd_get_blocks(ctx, mb_x, mb_y);
  562. for (i = 0; i < 8; i++) {
  563. int16_t *src_block = ctx->blocks[i];
  564. int overflow, nbits, diff, last_index;
  565. int n = dnxhd_switch_matrix(ctx, i);
  566. memcpy(block, src_block, 64 * sizeof(*block));
  567. last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  568. qscale, &overflow);
  569. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  570. diff = block[0] - ctx->m.last_dc[n];
  571. if (diff < 0)
  572. nbits = av_log2_16bit(-2 * diff);
  573. else
  574. nbits = av_log2_16bit(2 * diff);
  575. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  576. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  577. ctx->m.last_dc[n] = block[0];
  578. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  579. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  580. ctx->m.idsp.idct(block);
  581. ssd += dnxhd_ssd_block(block, src_block);
  582. }
  583. }
  584. ctx->mb_rc[qscale][mb].ssd = ssd;
  585. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  586. 8 * ctx->vlc_bits[0];
  587. }
  588. return 0;
  589. }
  590. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  591. int jobnr, int threadnr)
  592. {
  593. DNXHDEncContext *ctx = avctx->priv_data;
  594. int mb_y = jobnr, mb_x;
  595. ctx = ctx->thread[threadnr];
  596. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  597. ctx->slice_size[jobnr]);
  598. ctx->m.last_dc[0] =
  599. ctx->m.last_dc[1] =
  600. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  601. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  602. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  603. int qscale = ctx->mb_qscale[mb];
  604. int i;
  605. put_bits(&ctx->m.pb, 12, qscale << 1);
  606. dnxhd_get_blocks(ctx, mb_x, mb_y);
  607. for (i = 0; i < 8; i++) {
  608. int16_t *block = ctx->blocks[i];
  609. int overflow, n = dnxhd_switch_matrix(ctx, i);
  610. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  611. qscale, &overflow);
  612. // START_TIMER;
  613. dnxhd_encode_block(ctx, block, last_index, n);
  614. // STOP_TIMER("encode_block");
  615. }
  616. }
  617. if (put_bits_count(&ctx->m.pb) & 31)
  618. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  619. flush_put_bits(&ctx->m.pb);
  620. return 0;
  621. }
  622. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  623. {
  624. int mb_y, mb_x;
  625. int offset = 0;
  626. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  627. int thread_size;
  628. ctx->slice_offs[mb_y] = offset;
  629. ctx->slice_size[mb_y] = 0;
  630. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  631. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  632. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  633. }
  634. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  635. ctx->slice_size[mb_y] >>= 3;
  636. thread_size = ctx->slice_size[mb_y];
  637. offset += thread_size;
  638. }
  639. }
  640. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  641. int jobnr, int threadnr)
  642. {
  643. DNXHDEncContext *ctx = avctx->priv_data;
  644. int mb_y = jobnr, mb_x, x, y;
  645. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  646. ((avctx->height >> ctx->interlaced) & 0xF);
  647. ctx = ctx->thread[threadnr];
  648. if (ctx->cid_table->bit_depth == 8) {
  649. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  650. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  651. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  652. int sum;
  653. int varc;
  654. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  655. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  656. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  657. } else {
  658. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  659. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  660. sum = varc = 0;
  661. for (y = 0; y < bh; y++) {
  662. for (x = 0; x < bw; x++) {
  663. uint8_t val = pix[x + y * ctx->m.linesize];
  664. sum += val;
  665. varc += val * val;
  666. }
  667. }
  668. }
  669. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  670. ctx->mb_cmp[mb].value = varc;
  671. ctx->mb_cmp[mb].mb = mb;
  672. }
  673. } else { // 10-bit
  674. const int linesize = ctx->m.linesize >> 1;
  675. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  676. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  677. ((mb_y << 4) * linesize) + (mb_x << 4);
  678. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  679. int sum = 0;
  680. int sqsum = 0;
  681. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  682. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  683. int mean, sqmean;
  684. int i, j;
  685. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  686. for (i = 0; i < bh; ++i) {
  687. for (j = 0; j < bw; ++j) {
  688. // Turn 16-bit pixels into 10-bit ones.
  689. const int sample = (unsigned) pix[j] >> 6;
  690. sum += sample;
  691. sqsum += sample * sample;
  692. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  693. }
  694. pix += linesize;
  695. }
  696. mean = sum >> 8; // 16*16 == 2^8
  697. sqmean = sqsum >> 8;
  698. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  699. ctx->mb_cmp[mb].mb = mb;
  700. }
  701. }
  702. return 0;
  703. }
  704. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  705. {
  706. int lambda, up_step, down_step;
  707. int last_lower = INT_MAX, last_higher = 0;
  708. int x, y, q;
  709. for (q = 1; q < avctx->qmax; q++) {
  710. ctx->qscale = q;
  711. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  712. NULL, NULL, ctx->m.mb_height);
  713. }
  714. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  715. lambda = ctx->lambda;
  716. for (;;) {
  717. int bits = 0;
  718. int end = 0;
  719. if (lambda == last_higher) {
  720. lambda++;
  721. end = 1; // need to set final qscales/bits
  722. }
  723. for (y = 0; y < ctx->m.mb_height; y++) {
  724. for (x = 0; x < ctx->m.mb_width; x++) {
  725. unsigned min = UINT_MAX;
  726. int qscale = 1;
  727. int mb = y * ctx->m.mb_width + x;
  728. for (q = 1; q < avctx->qmax; q++) {
  729. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  730. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  731. if (score < min) {
  732. min = score;
  733. qscale = q;
  734. }
  735. }
  736. bits += ctx->mb_rc[qscale][mb].bits;
  737. ctx->mb_qscale[mb] = qscale;
  738. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  739. }
  740. bits = (bits + 31) & ~31; // padding
  741. if (bits > ctx->frame_bits)
  742. break;
  743. }
  744. // ff_dlog(ctx->m.avctx,
  745. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  746. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  747. if (end) {
  748. if (bits > ctx->frame_bits)
  749. return AVERROR(EINVAL);
  750. break;
  751. }
  752. if (bits < ctx->frame_bits) {
  753. last_lower = FFMIN(lambda, last_lower);
  754. if (last_higher != 0)
  755. lambda = (lambda+last_higher)>>1;
  756. else
  757. lambda -= down_step;
  758. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  759. up_step = 1<<LAMBDA_FRAC_BITS;
  760. lambda = FFMAX(1, lambda);
  761. if (lambda == last_lower)
  762. break;
  763. } else {
  764. last_higher = FFMAX(lambda, last_higher);
  765. if (last_lower != INT_MAX)
  766. lambda = (lambda+last_lower)>>1;
  767. else if ((int64_t)lambda + up_step > INT_MAX)
  768. return AVERROR(EINVAL);
  769. else
  770. lambda += up_step;
  771. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  772. down_step = 1<<LAMBDA_FRAC_BITS;
  773. }
  774. }
  775. //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  776. ctx->lambda = lambda;
  777. return 0;
  778. }
  779. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  780. {
  781. int bits = 0;
  782. int up_step = 1;
  783. int down_step = 1;
  784. int last_higher = 0;
  785. int last_lower = INT_MAX;
  786. int qscale;
  787. int x, y;
  788. qscale = ctx->qscale;
  789. for (;;) {
  790. bits = 0;
  791. ctx->qscale = qscale;
  792. // XXX avoid recalculating bits
  793. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  794. NULL, NULL, ctx->m.mb_height);
  795. for (y = 0; y < ctx->m.mb_height; y++) {
  796. for (x = 0; x < ctx->m.mb_width; x++)
  797. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  798. bits = (bits+31)&~31; // padding
  799. if (bits > ctx->frame_bits)
  800. break;
  801. }
  802. // ff_dlog(ctx->m.avctx,
  803. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  804. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  805. // last_higher, last_lower);
  806. if (bits < ctx->frame_bits) {
  807. if (qscale == 1)
  808. return 1;
  809. if (last_higher == qscale - 1) {
  810. qscale = last_higher;
  811. break;
  812. }
  813. last_lower = FFMIN(qscale, last_lower);
  814. if (last_higher != 0)
  815. qscale = (qscale + last_higher) >> 1;
  816. else
  817. qscale -= down_step++;
  818. if (qscale < 1)
  819. qscale = 1;
  820. up_step = 1;
  821. } else {
  822. if (last_lower == qscale + 1)
  823. break;
  824. last_higher = FFMAX(qscale, last_higher);
  825. if (last_lower != INT_MAX)
  826. qscale = (qscale + last_lower) >> 1;
  827. else
  828. qscale += up_step++;
  829. down_step = 1;
  830. if (qscale >= ctx->m.avctx->qmax)
  831. return AVERROR(EINVAL);
  832. }
  833. }
  834. //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  835. ctx->qscale = qscale;
  836. return 0;
  837. }
  838. #define BUCKET_BITS 8
  839. #define RADIX_PASSES 4
  840. #define NBUCKETS (1 << BUCKET_BITS)
  841. static inline int get_bucket(int value, int shift)
  842. {
  843. value >>= shift;
  844. value &= NBUCKETS - 1;
  845. return NBUCKETS - 1 - value;
  846. }
  847. static void radix_count(const RCCMPEntry *data, int size,
  848. int buckets[RADIX_PASSES][NBUCKETS])
  849. {
  850. int i, j;
  851. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  852. for (i = 0; i < size; i++) {
  853. int v = data[i].value;
  854. for (j = 0; j < RADIX_PASSES; j++) {
  855. buckets[j][get_bucket(v, 0)]++;
  856. v >>= BUCKET_BITS;
  857. }
  858. av_assert1(!v);
  859. }
  860. for (j = 0; j < RADIX_PASSES; j++) {
  861. int offset = size;
  862. for (i = NBUCKETS - 1; i >= 0; i--)
  863. buckets[j][i] = offset -= buckets[j][i];
  864. av_assert1(!buckets[j][0]);
  865. }
  866. }
  867. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  868. int size, int buckets[NBUCKETS], int pass)
  869. {
  870. int shift = pass * BUCKET_BITS;
  871. int i;
  872. for (i = 0; i < size; i++) {
  873. int v = get_bucket(data[i].value, shift);
  874. int pos = buckets[v]++;
  875. dst[pos] = data[i];
  876. }
  877. }
  878. static void radix_sort(RCCMPEntry *data, int size)
  879. {
  880. int buckets[RADIX_PASSES][NBUCKETS];
  881. RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
  882. radix_count(data, size, buckets);
  883. radix_sort_pass(tmp, data, size, buckets[0], 0);
  884. radix_sort_pass(data, tmp, size, buckets[1], 1);
  885. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  886. radix_sort_pass(tmp, data, size, buckets[2], 2);
  887. radix_sort_pass(data, tmp, size, buckets[3], 3);
  888. }
  889. av_free(tmp);
  890. }
  891. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  892. {
  893. int max_bits = 0;
  894. int ret, x, y;
  895. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  896. return ret;
  897. for (y = 0; y < ctx->m.mb_height; y++) {
  898. for (x = 0; x < ctx->m.mb_width; x++) {
  899. int mb = y * ctx->m.mb_width + x;
  900. int delta_bits;
  901. ctx->mb_qscale[mb] = ctx->qscale;
  902. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  903. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  904. if (!RC_VARIANCE) {
  905. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  906. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  907. ctx->mb_cmp[mb].mb = mb;
  908. ctx->mb_cmp[mb].value =
  909. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  910. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  911. delta_bits
  912. : INT_MIN; // avoid increasing qscale
  913. }
  914. }
  915. max_bits += 31; // worst padding
  916. }
  917. if (!ret) {
  918. if (RC_VARIANCE)
  919. avctx->execute2(avctx, dnxhd_mb_var_thread,
  920. NULL, NULL, ctx->m.mb_height);
  921. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  922. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  923. int mb = ctx->mb_cmp[x].mb;
  924. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  925. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  926. ctx->mb_qscale[mb] = ctx->qscale + 1;
  927. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  928. }
  929. }
  930. return 0;
  931. }
  932. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  933. {
  934. int i;
  935. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  936. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  937. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  938. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  939. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  940. }
  941. #if FF_API_CODED_FRAME
  942. FF_DISABLE_DEPRECATION_WARNINGS
  943. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  944. FF_ENABLE_DEPRECATION_WARNINGS
  945. #endif
  946. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  947. }
  948. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  949. const AVFrame *frame, int *got_packet)
  950. {
  951. DNXHDEncContext *ctx = avctx->priv_data;
  952. int first_field = 1;
  953. int offset, i, ret;
  954. uint8_t *buf;
  955. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size, 0)) < 0)
  956. return ret;
  957. buf = pkt->data;
  958. dnxhd_load_picture(ctx, frame);
  959. encode_coding_unit:
  960. for (i = 0; i < 3; i++) {
  961. ctx->src[i] = frame->data[i];
  962. if (ctx->interlaced && ctx->cur_field)
  963. ctx->src[i] += frame->linesize[i];
  964. }
  965. dnxhd_write_header(avctx, buf);
  966. if (avctx->mb_decision == FF_MB_DECISION_RD)
  967. ret = dnxhd_encode_rdo(avctx, ctx);
  968. else
  969. ret = dnxhd_encode_fast(avctx, ctx);
  970. if (ret < 0) {
  971. av_log(avctx, AV_LOG_ERROR,
  972. "picture could not fit ratecontrol constraints, increase qmax\n");
  973. return ret;
  974. }
  975. dnxhd_setup_threads_slices(ctx);
  976. offset = 0;
  977. for (i = 0; i < ctx->m.mb_height; i++) {
  978. AV_WB32(ctx->msip + i * 4, offset);
  979. offset += ctx->slice_size[i];
  980. av_assert1(!(ctx->slice_size[i] & 3));
  981. }
  982. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  983. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  984. memset(buf + 640 + offset, 0,
  985. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  986. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  987. if (ctx->interlaced && first_field) {
  988. first_field = 0;
  989. ctx->cur_field ^= 1;
  990. buf += ctx->cid_table->coding_unit_size;
  991. goto encode_coding_unit;
  992. }
  993. #if FF_API_CODED_FRAME
  994. FF_DISABLE_DEPRECATION_WARNINGS
  995. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  996. FF_ENABLE_DEPRECATION_WARNINGS
  997. #endif
  998. ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
  999. pkt->flags |= AV_PKT_FLAG_KEY;
  1000. *got_packet = 1;
  1001. return 0;
  1002. }
  1003. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1004. {
  1005. DNXHDEncContext *ctx = avctx->priv_data;
  1006. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  1007. int i;
  1008. av_free(ctx->vlc_codes - max_level * 2);
  1009. av_free(ctx->vlc_bits - max_level * 2);
  1010. av_freep(&ctx->run_codes);
  1011. av_freep(&ctx->run_bits);
  1012. av_freep(&ctx->mb_bits);
  1013. av_freep(&ctx->mb_qscale);
  1014. av_freep(&ctx->mb_rc);
  1015. av_freep(&ctx->mb_cmp);
  1016. av_freep(&ctx->slice_size);
  1017. av_freep(&ctx->slice_offs);
  1018. av_freep(&ctx->qmatrix_c);
  1019. av_freep(&ctx->qmatrix_l);
  1020. av_freep(&ctx->qmatrix_c16);
  1021. av_freep(&ctx->qmatrix_l16);
  1022. for (i = 1; i < avctx->thread_count; i++)
  1023. av_freep(&ctx->thread[i]);
  1024. return 0;
  1025. }
  1026. static const AVCodecDefault dnxhd_defaults[] = {
  1027. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1028. { NULL },
  1029. };
  1030. AVCodec ff_dnxhd_encoder = {
  1031. .name = "dnxhd",
  1032. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1033. .type = AVMEDIA_TYPE_VIDEO,
  1034. .id = AV_CODEC_ID_DNXHD,
  1035. .priv_data_size = sizeof(DNXHDEncContext),
  1036. .init = dnxhd_encode_init,
  1037. .encode2 = dnxhd_encode_picture,
  1038. .close = dnxhd_encode_end,
  1039. .capabilities = AV_CODEC_CAP_SLICE_THREADS,
  1040. .pix_fmts = (const enum AVPixelFormat[]) {
  1041. AV_PIX_FMT_YUV422P,
  1042. AV_PIX_FMT_YUV422P10,
  1043. AV_PIX_FMT_NONE
  1044. },
  1045. .priv_class = &dnxhd_class,
  1046. .defaults = dnxhd_defaults,
  1047. };