You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

228 lines
5.8KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file libavcodec/mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. av_cold void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. #include "mdct_tablegen.h"
  47. /**
  48. * init MDCT or IMDCT computation.
  49. */
  50. av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
  51. {
  52. int n, n4, i;
  53. double alpha, theta;
  54. int tstep;
  55. memset(s, 0, sizeof(*s));
  56. n = 1 << nbits;
  57. s->mdct_bits = nbits;
  58. s->mdct_size = n;
  59. n4 = n >> 2;
  60. s->permutation = FF_MDCT_PERM_NONE;
  61. if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
  62. goto fail;
  63. s->tcos = av_malloc(n/2 * sizeof(FFTSample));
  64. if (!s->tcos)
  65. goto fail;
  66. switch (s->permutation) {
  67. case FF_MDCT_PERM_NONE:
  68. s->tsin = s->tcos + n4;
  69. tstep = 1;
  70. break;
  71. case FF_MDCT_PERM_INTERLEAVE:
  72. s->tsin = s->tcos + 1;
  73. tstep = 2;
  74. break;
  75. default:
  76. goto fail;
  77. }
  78. theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
  79. scale = sqrt(fabs(scale));
  80. for(i=0;i<n4;i++) {
  81. alpha = 2 * M_PI * (i + theta) / n;
  82. s->tcos[i*tstep] = -cos(alpha) * scale;
  83. s->tsin[i*tstep] = -sin(alpha) * scale;
  84. }
  85. return 0;
  86. fail:
  87. ff_mdct_end(s);
  88. return -1;
  89. }
  90. /* complex multiplication: p = a * b */
  91. #define CMUL(pre, pim, are, aim, bre, bim) \
  92. {\
  93. FFTSample _are = (are);\
  94. FFTSample _aim = (aim);\
  95. FFTSample _bre = (bre);\
  96. FFTSample _bim = (bim);\
  97. (pre) = _are * _bre - _aim * _bim;\
  98. (pim) = _are * _bim + _aim * _bre;\
  99. }
  100. /**
  101. * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  102. * thus excluding the parts that can be derived by symmetry
  103. * @param output N/2 samples
  104. * @param input N/2 samples
  105. */
  106. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  107. {
  108. int k, n8, n4, n2, n, j;
  109. const uint16_t *revtab = s->revtab;
  110. const FFTSample *tcos = s->tcos;
  111. const FFTSample *tsin = s->tsin;
  112. const FFTSample *in1, *in2;
  113. FFTComplex *z = (FFTComplex *)output;
  114. n = 1 << s->mdct_bits;
  115. n2 = n >> 1;
  116. n4 = n >> 2;
  117. n8 = n >> 3;
  118. /* pre rotation */
  119. in1 = input;
  120. in2 = input + n2 - 1;
  121. for(k = 0; k < n4; k++) {
  122. j=revtab[k];
  123. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  124. in1 += 2;
  125. in2 -= 2;
  126. }
  127. ff_fft_calc(s, z);
  128. /* post rotation + reordering */
  129. for(k = 0; k < n8; k++) {
  130. FFTSample r0, i0, r1, i1;
  131. CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
  132. CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
  133. z[n8-k-1].re = r0;
  134. z[n8-k-1].im = i0;
  135. z[n8+k ].re = r1;
  136. z[n8+k ].im = i1;
  137. }
  138. }
  139. /**
  140. * Compute inverse MDCT of size N = 2^nbits
  141. * @param output N samples
  142. * @param input N/2 samples
  143. */
  144. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  145. {
  146. int k;
  147. int n = 1 << s->mdct_bits;
  148. int n2 = n >> 1;
  149. int n4 = n >> 2;
  150. ff_imdct_half_c(s, output+n4, input);
  151. for(k = 0; k < n4; k++) {
  152. output[k] = -output[n2-k-1];
  153. output[n-k-1] = output[n2+k];
  154. }
  155. }
  156. /**
  157. * Compute MDCT of size N = 2^nbits
  158. * @param input N samples
  159. * @param out N/2 samples
  160. */
  161. void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
  162. {
  163. int i, j, n, n8, n4, n2, n3;
  164. FFTSample re, im;
  165. const uint16_t *revtab = s->revtab;
  166. const FFTSample *tcos = s->tcos;
  167. const FFTSample *tsin = s->tsin;
  168. FFTComplex *x = (FFTComplex *)out;
  169. n = 1 << s->mdct_bits;
  170. n2 = n >> 1;
  171. n4 = n >> 2;
  172. n8 = n >> 3;
  173. n3 = 3 * n4;
  174. /* pre rotation */
  175. for(i=0;i<n8;i++) {
  176. re = -input[2*i+3*n4] - input[n3-1-2*i];
  177. im = -input[n4+2*i] + input[n4-1-2*i];
  178. j = revtab[i];
  179. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  180. re = input[2*i] - input[n2-1-2*i];
  181. im = -(input[n2+2*i] + input[n-1-2*i]);
  182. j = revtab[n8 + i];
  183. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  184. }
  185. ff_fft_calc(s, x);
  186. /* post rotation */
  187. for(i=0;i<n8;i++) {
  188. FFTSample r0, i0, r1, i1;
  189. CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
  190. CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
  191. x[n8-i-1].re = r0;
  192. x[n8-i-1].im = i0;
  193. x[n8+i ].re = r1;
  194. x[n8+i ].im = i1;
  195. }
  196. }
  197. av_cold void ff_mdct_end(FFTContext *s)
  198. {
  199. av_freep(&s->tcos);
  200. ff_fft_end(s);
  201. }