You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1500 lines
56KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264pred.h"
  33. #include "rectangle.h"
  34. #define interlaced_dct interlaced_dct_is_a_bad_name
  35. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  36. #define LUMA_DC_BLOCK_INDEX 25
  37. #define CHROMA_DC_BLOCK_INDEX 26
  38. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  39. #define COEFF_TOKEN_VLC_BITS 8
  40. #define TOTAL_ZEROS_VLC_BITS 9
  41. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  42. #define RUN_VLC_BITS 3
  43. #define RUN7_VLC_BITS 6
  44. #define MAX_SPS_COUNT 32
  45. #define MAX_PPS_COUNT 256
  46. #define MAX_MMCO_COUNT 66
  47. #define MAX_DELAYED_PIC_COUNT 16
  48. /* Compiling in interlaced support reduces the speed
  49. * of progressive decoding by about 2%. */
  50. #define ALLOW_INTERLACE
  51. #define ALLOW_NOCHROMA
  52. /**
  53. * The maximum number of slices supported by the decoder.
  54. * must be a power of 2
  55. */
  56. #define MAX_SLICES 16
  57. #ifdef ALLOW_INTERLACE
  58. #define MB_MBAFF h->mb_mbaff
  59. #define MB_FIELD h->mb_field_decoding_flag
  60. #define FRAME_MBAFF h->mb_aff_frame
  61. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  62. #else
  63. #define MB_MBAFF 0
  64. #define MB_FIELD 0
  65. #define FRAME_MBAFF 0
  66. #define FIELD_PICTURE 0
  67. #undef IS_INTERLACED
  68. #define IS_INTERLACED(mb_type) 0
  69. #endif
  70. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  71. #ifdef ALLOW_NOCHROMA
  72. #define CHROMA h->sps.chroma_format_idc
  73. #else
  74. #define CHROMA 1
  75. #endif
  76. #ifndef CABAC
  77. #define CABAC h->pps.cabac
  78. #endif
  79. #define EXTENDED_SAR 255
  80. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  81. #define MB_TYPE_8x8DCT 0x01000000
  82. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  83. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  84. /**
  85. * Value of Picture.reference when Picture is not a reference picture, but
  86. * is held for delayed output.
  87. */
  88. #define DELAYED_PIC_REF 4
  89. /* NAL unit types */
  90. enum {
  91. NAL_SLICE=1,
  92. NAL_DPA,
  93. NAL_DPB,
  94. NAL_DPC,
  95. NAL_IDR_SLICE,
  96. NAL_SEI,
  97. NAL_SPS,
  98. NAL_PPS,
  99. NAL_AUD,
  100. NAL_END_SEQUENCE,
  101. NAL_END_STREAM,
  102. NAL_FILLER_DATA,
  103. NAL_SPS_EXT,
  104. NAL_AUXILIARY_SLICE=19
  105. };
  106. /**
  107. * SEI message types
  108. */
  109. typedef enum {
  110. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  111. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  112. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  113. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  114. } SEI_Type;
  115. /**
  116. * pic_struct in picture timing SEI message
  117. */
  118. typedef enum {
  119. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  120. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  121. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  122. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  123. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  124. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  125. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  126. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  127. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  128. } SEI_PicStructType;
  129. /**
  130. * Sequence parameter set
  131. */
  132. typedef struct SPS{
  133. int profile_idc;
  134. int level_idc;
  135. int chroma_format_idc;
  136. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  137. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  138. int poc_type; ///< pic_order_cnt_type
  139. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  140. int delta_pic_order_always_zero_flag;
  141. int offset_for_non_ref_pic;
  142. int offset_for_top_to_bottom_field;
  143. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  144. int ref_frame_count; ///< num_ref_frames
  145. int gaps_in_frame_num_allowed_flag;
  146. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  147. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  148. int frame_mbs_only_flag;
  149. int mb_aff; ///<mb_adaptive_frame_field_flag
  150. int direct_8x8_inference_flag;
  151. int crop; ///< frame_cropping_flag
  152. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  153. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  154. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  155. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  156. int vui_parameters_present_flag;
  157. AVRational sar;
  158. int video_signal_type_present_flag;
  159. int full_range;
  160. int colour_description_present_flag;
  161. enum AVColorPrimaries color_primaries;
  162. enum AVColorTransferCharacteristic color_trc;
  163. enum AVColorSpace colorspace;
  164. int timing_info_present_flag;
  165. uint32_t num_units_in_tick;
  166. uint32_t time_scale;
  167. int fixed_frame_rate_flag;
  168. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  169. int bitstream_restriction_flag;
  170. int num_reorder_frames;
  171. int scaling_matrix_present;
  172. uint8_t scaling_matrix4[6][16];
  173. uint8_t scaling_matrix8[2][64];
  174. int nal_hrd_parameters_present_flag;
  175. int vcl_hrd_parameters_present_flag;
  176. int pic_struct_present_flag;
  177. int time_offset_length;
  178. int cpb_cnt; ///< See H.264 E.1.2
  179. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  180. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  181. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  182. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  183. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  184. int residual_color_transform_flag; ///< residual_colour_transform_flag
  185. }SPS;
  186. /**
  187. * Picture parameter set
  188. */
  189. typedef struct PPS{
  190. unsigned int sps_id;
  191. int cabac; ///< entropy_coding_mode_flag
  192. int pic_order_present; ///< pic_order_present_flag
  193. int slice_group_count; ///< num_slice_groups_minus1 + 1
  194. int mb_slice_group_map_type;
  195. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  196. int weighted_pred; ///< weighted_pred_flag
  197. int weighted_bipred_idc;
  198. int init_qp; ///< pic_init_qp_minus26 + 26
  199. int init_qs; ///< pic_init_qs_minus26 + 26
  200. int chroma_qp_index_offset[2];
  201. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  202. int constrained_intra_pred; ///< constrained_intra_pred_flag
  203. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  204. int transform_8x8_mode; ///< transform_8x8_mode_flag
  205. uint8_t scaling_matrix4[6][16];
  206. uint8_t scaling_matrix8[2][64];
  207. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  208. int chroma_qp_diff;
  209. }PPS;
  210. /**
  211. * Memory management control operation opcode.
  212. */
  213. typedef enum MMCOOpcode{
  214. MMCO_END=0,
  215. MMCO_SHORT2UNUSED,
  216. MMCO_LONG2UNUSED,
  217. MMCO_SHORT2LONG,
  218. MMCO_SET_MAX_LONG,
  219. MMCO_RESET,
  220. MMCO_LONG,
  221. } MMCOOpcode;
  222. /**
  223. * Memory management control operation.
  224. */
  225. typedef struct MMCO{
  226. MMCOOpcode opcode;
  227. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  228. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  229. } MMCO;
  230. /**
  231. * H264Context
  232. */
  233. typedef struct H264Context{
  234. MpegEncContext s;
  235. int nal_ref_idc;
  236. int nal_unit_type;
  237. uint8_t *rbsp_buffer[2];
  238. unsigned int rbsp_buffer_size[2];
  239. /**
  240. * Used to parse AVC variant of h264
  241. */
  242. int is_avc; ///< this flag is != 0 if codec is avc1
  243. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  244. int chroma_qp[2]; //QPc
  245. int qp_thresh; ///< QP threshold to skip loopfilter
  246. int prev_mb_skipped;
  247. int next_mb_skipped;
  248. //prediction stuff
  249. int chroma_pred_mode;
  250. int intra16x16_pred_mode;
  251. int topleft_mb_xy;
  252. int top_mb_xy;
  253. int topright_mb_xy;
  254. int left_mb_xy[2];
  255. int topleft_type;
  256. int top_type;
  257. int topright_type;
  258. int left_type[2];
  259. const uint8_t * left_block;
  260. int topleft_partition;
  261. int8_t intra4x4_pred_mode_cache[5*8];
  262. int8_t (*intra4x4_pred_mode)[8];
  263. H264PredContext hpc;
  264. unsigned int topleft_samples_available;
  265. unsigned int top_samples_available;
  266. unsigned int topright_samples_available;
  267. unsigned int left_samples_available;
  268. uint8_t (*top_borders[2])[16+2*8];
  269. uint8_t left_border[2*(17+2*9)];
  270. /**
  271. * non zero coeff count cache.
  272. * is 64 if not available.
  273. */
  274. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
  275. /*
  276. .UU.YYYY
  277. .UU.YYYY
  278. .vv.YYYY
  279. .VV.YYYY
  280. */
  281. uint8_t (*non_zero_count)[32];
  282. /**
  283. * Motion vector cache.
  284. */
  285. DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
  286. DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
  287. #define LIST_NOT_USED -1 //FIXME rename?
  288. #define PART_NOT_AVAILABLE -2
  289. /**
  290. * is 1 if the specific list MV&references are set to 0,0,-2.
  291. */
  292. int mv_cache_clean[2];
  293. /**
  294. * number of neighbors (top and/or left) that used 8x8 dct
  295. */
  296. int neighbor_transform_size;
  297. /**
  298. * block_offset[ 0..23] for frame macroblocks
  299. * block_offset[24..47] for field macroblocks
  300. */
  301. int block_offset[2*(16+8)];
  302. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  303. uint32_t *mb2b8_xy;
  304. int b_stride; //FIXME use s->b4_stride
  305. int b8_stride;
  306. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  307. int mb_uvlinesize;
  308. int emu_edge_width;
  309. int emu_edge_height;
  310. int halfpel_flag;
  311. int thirdpel_flag;
  312. int unknown_svq3_flag;
  313. int next_slice_index;
  314. SPS *sps_buffers[MAX_SPS_COUNT];
  315. SPS sps; ///< current sps
  316. PPS *pps_buffers[MAX_PPS_COUNT];
  317. /**
  318. * current pps
  319. */
  320. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  321. uint32_t dequant4_buffer[6][52][16];
  322. uint32_t dequant8_buffer[2][52][64];
  323. uint32_t (*dequant4_coeff[6])[16];
  324. uint32_t (*dequant8_coeff[2])[64];
  325. int dequant_coeff_pps; ///< reinit tables when pps changes
  326. int slice_num;
  327. uint16_t *slice_table_base;
  328. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  329. int slice_type;
  330. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  331. int slice_type_fixed;
  332. //interlacing specific flags
  333. int mb_aff_frame;
  334. int mb_field_decoding_flag;
  335. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  336. DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
  337. //POC stuff
  338. int poc_lsb;
  339. int poc_msb;
  340. int delta_poc_bottom;
  341. int delta_poc[2];
  342. int frame_num;
  343. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  344. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  345. int frame_num_offset; ///< for POC type 2
  346. int prev_frame_num_offset; ///< for POC type 2
  347. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  348. /**
  349. * frame_num for frames or 2*frame_num+1 for field pics.
  350. */
  351. int curr_pic_num;
  352. /**
  353. * max_frame_num or 2*max_frame_num for field pics.
  354. */
  355. int max_pic_num;
  356. //Weighted pred stuff
  357. int use_weight;
  358. int use_weight_chroma;
  359. int luma_log2_weight_denom;
  360. int chroma_log2_weight_denom;
  361. int luma_weight[2][48];
  362. int luma_offset[2][48];
  363. int chroma_weight[2][48][2];
  364. int chroma_offset[2][48][2];
  365. int implicit_weight[48][48];
  366. //deblock
  367. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  368. int slice_alpha_c0_offset;
  369. int slice_beta_offset;
  370. int redundant_pic_count;
  371. int direct_spatial_mv_pred;
  372. int col_parity;
  373. int col_fieldoff;
  374. int dist_scale_factor[16];
  375. int dist_scale_factor_field[2][32];
  376. int map_col_to_list0[2][16+32];
  377. int map_col_to_list0_field[2][2][16+32];
  378. /**
  379. * num_ref_idx_l0/1_active_minus1 + 1
  380. */
  381. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  382. unsigned int list_count;
  383. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  384. Picture *short_ref[32];
  385. Picture *long_ref[32];
  386. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  387. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  388. Reordered version of default_ref_list
  389. according to picture reordering in slice header */
  390. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  391. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  392. int outputed_poc;
  393. /**
  394. * memory management control operations buffer.
  395. */
  396. MMCO mmco[MAX_MMCO_COUNT];
  397. int mmco_index;
  398. int long_ref_count; ///< number of actual long term references
  399. int short_ref_count; ///< number of actual short term references
  400. //data partitioning
  401. GetBitContext intra_gb;
  402. GetBitContext inter_gb;
  403. GetBitContext *intra_gb_ptr;
  404. GetBitContext *inter_gb_ptr;
  405. DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
  406. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  407. /**
  408. * Cabac
  409. */
  410. CABACContext cabac;
  411. uint8_t cabac_state[460];
  412. int cabac_init_idc;
  413. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  414. uint16_t *cbp_table;
  415. int cbp;
  416. int top_cbp;
  417. int left_cbp;
  418. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  419. uint8_t *chroma_pred_mode_table;
  420. int last_qscale_diff;
  421. int16_t (*mvd_table[2])[2];
  422. DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
  423. uint8_t *direct_table;
  424. uint8_t direct_cache[5*8];
  425. uint8_t zigzag_scan[16];
  426. uint8_t zigzag_scan8x8[64];
  427. uint8_t zigzag_scan8x8_cavlc[64];
  428. uint8_t field_scan[16];
  429. uint8_t field_scan8x8[64];
  430. uint8_t field_scan8x8_cavlc[64];
  431. const uint8_t *zigzag_scan_q0;
  432. const uint8_t *zigzag_scan8x8_q0;
  433. const uint8_t *zigzag_scan8x8_cavlc_q0;
  434. const uint8_t *field_scan_q0;
  435. const uint8_t *field_scan8x8_q0;
  436. const uint8_t *field_scan8x8_cavlc_q0;
  437. int x264_build;
  438. /**
  439. * @defgroup multithreading Members for slice based multithreading
  440. * @{
  441. */
  442. struct H264Context *thread_context[MAX_THREADS];
  443. /**
  444. * current slice number, used to initalize slice_num of each thread/context
  445. */
  446. int current_slice;
  447. /**
  448. * Max number of threads / contexts.
  449. * This is equal to AVCodecContext.thread_count unless
  450. * multithreaded decoding is impossible, in which case it is
  451. * reduced to 1.
  452. */
  453. int max_contexts;
  454. /**
  455. * 1 if the single thread fallback warning has already been
  456. * displayed, 0 otherwise.
  457. */
  458. int single_decode_warning;
  459. int last_slice_type;
  460. /** @} */
  461. int mb_xy;
  462. uint32_t svq3_watermark_key;
  463. /**
  464. * pic_struct in picture timing SEI message
  465. */
  466. SEI_PicStructType sei_pic_struct;
  467. /**
  468. * Complement sei_pic_struct
  469. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  470. * However, soft telecined frames may have these values.
  471. * This is used in an attempt to flag soft telecine progressive.
  472. */
  473. int prev_interlaced_frame;
  474. /**
  475. * Bit set of clock types for fields/frames in picture timing SEI message.
  476. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  477. * interlaced).
  478. */
  479. int sei_ct_type;
  480. /**
  481. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  482. */
  483. int sei_dpb_output_delay;
  484. /**
  485. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  486. */
  487. int sei_cpb_removal_delay;
  488. /**
  489. * recovery_frame_cnt from SEI message
  490. *
  491. * Set to -1 if no recovery point SEI message found or to number of frames
  492. * before playback synchronizes. Frames having recovery point are key
  493. * frames.
  494. */
  495. int sei_recovery_frame_cnt;
  496. int is_complex;
  497. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  498. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  499. // Timestamp stuff
  500. int sei_buffering_period_present; ///< Buffering period SEI flag
  501. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  502. }H264Context;
  503. extern const uint8_t ff_h264_chroma_qp[52];
  504. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  505. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  506. /**
  507. * Decode SEI
  508. */
  509. int ff_h264_decode_sei(H264Context *h);
  510. /**
  511. * Decode SPS
  512. */
  513. int ff_h264_decode_seq_parameter_set(H264Context *h);
  514. /**
  515. * Decode PPS
  516. */
  517. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  518. /**
  519. * Decodes a network abstraction layer unit.
  520. * @param consumed is the number of bytes used as input
  521. * @param length is the length of the array
  522. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  523. * @returns decoded bytes, might be src+1 if no escapes
  524. */
  525. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  526. /**
  527. * identifies the exact end of the bitstream
  528. * @return the length of the trailing, or 0 if damaged
  529. */
  530. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  531. /**
  532. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  533. */
  534. av_cold void ff_h264_free_context(H264Context *h);
  535. /**
  536. * reconstructs bitstream slice_type.
  537. */
  538. int ff_h264_get_slice_type(const H264Context *h);
  539. /**
  540. * allocates tables.
  541. * needs width/height
  542. */
  543. int ff_h264_alloc_tables(H264Context *h);
  544. /**
  545. * fills the default_ref_list.
  546. */
  547. int ff_h264_fill_default_ref_list(H264Context *h);
  548. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  549. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  550. void ff_h264_remove_all_refs(H264Context *h);
  551. /**
  552. * Executes the reference picture marking (memory management control operations).
  553. */
  554. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  555. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  556. /**
  557. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  558. */
  559. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  560. /**
  561. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  562. */
  563. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  564. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  565. void ff_h264_hl_decode_mb(H264Context *h);
  566. int ff_h264_frame_start(H264Context *h);
  567. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  568. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  569. av_cold void ff_h264_decode_init_vlc(void);
  570. /**
  571. * decodes a macroblock
  572. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  573. */
  574. int ff_h264_decode_mb_cavlc(H264Context *h);
  575. /**
  576. * decodes a CABAC coded macroblock
  577. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  578. */
  579. int ff_h264_decode_mb_cabac(H264Context *h);
  580. void ff_h264_init_cabac_states(H264Context *h);
  581. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  582. void ff_h264_direct_ref_list_init(H264Context * const h);
  583. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  584. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  585. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  586. /**
  587. * Reset SEI values at the beginning of the frame.
  588. *
  589. * @param h H.264 context.
  590. */
  591. void ff_h264_reset_sei(H264Context *h);
  592. /*
  593. o-o o-o
  594. / / /
  595. o-o o-o
  596. ,---'
  597. o-o o-o
  598. / / /
  599. o-o o-o
  600. */
  601. //This table must be here because scan8[constant] must be known at compiletime
  602. static const uint8_t scan8[16 + 2*4]={
  603. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  604. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  605. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  606. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  607. 1+1*8, 2+1*8,
  608. 1+2*8, 2+2*8,
  609. 1+4*8, 2+4*8,
  610. 1+5*8, 2+5*8,
  611. };
  612. static av_always_inline uint32_t pack16to32(int a, int b){
  613. #if HAVE_BIGENDIAN
  614. return (b&0xFFFF) + (a<<16);
  615. #else
  616. return (a&0xFFFF) + (b<<16);
  617. #endif
  618. }
  619. /**
  620. * gets the chroma qp.
  621. */
  622. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  623. return h->pps.chroma_qp_table[t][qscale];
  624. }
  625. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  626. static void fill_decode_neighbors(H264Context *h, int mb_type){
  627. MpegEncContext * const s = &h->s;
  628. const int mb_xy= h->mb_xy;
  629. int topleft_xy, top_xy, topright_xy, left_xy[2];
  630. static const uint8_t left_block_options[4][16]={
  631. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  632. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  633. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  634. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  635. };
  636. h->topleft_partition= -1;
  637. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  638. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  639. * stuff, I can't imagine that these complex rules are worth it. */
  640. topleft_xy = top_xy - 1;
  641. topright_xy= top_xy + 1;
  642. left_xy[1] = left_xy[0] = mb_xy-1;
  643. h->left_block = left_block_options[0];
  644. if(FRAME_MBAFF){
  645. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  646. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  647. if(s->mb_y&1){
  648. if (left_mb_field_flag != curr_mb_field_flag) {
  649. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  650. if (curr_mb_field_flag) {
  651. left_xy[1] += s->mb_stride;
  652. h->left_block = left_block_options[3];
  653. } else {
  654. topleft_xy += s->mb_stride;
  655. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  656. h->topleft_partition = 0;
  657. h->left_block = left_block_options[1];
  658. }
  659. }
  660. }else{
  661. if(curr_mb_field_flag){
  662. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  663. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  664. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  665. }
  666. if (left_mb_field_flag != curr_mb_field_flag) {
  667. left_xy[1] = left_xy[0] = mb_xy - 1;
  668. if (curr_mb_field_flag) {
  669. left_xy[1] += s->mb_stride;
  670. h->left_block = left_block_options[3];
  671. } else {
  672. h->left_block = left_block_options[2];
  673. }
  674. }
  675. }
  676. }
  677. h->topleft_mb_xy = topleft_xy;
  678. h->top_mb_xy = top_xy;
  679. h->topright_mb_xy= topright_xy;
  680. h->left_mb_xy[0] = left_xy[0];
  681. h->left_mb_xy[1] = left_xy[1];
  682. //FIXME do we need all in the context?
  683. h->topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  684. h->top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  685. h->topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  686. h->left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  687. h->left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  688. }
  689. static void fill_decode_caches(H264Context *h, int mb_type){
  690. MpegEncContext * const s = &h->s;
  691. int topleft_xy, top_xy, topright_xy, left_xy[2];
  692. int topleft_type, top_type, topright_type, left_type[2];
  693. const uint8_t * left_block= h->left_block;
  694. int i;
  695. topleft_xy = h->topleft_mb_xy ;
  696. top_xy = h->top_mb_xy ;
  697. topright_xy = h->topright_mb_xy;
  698. left_xy[0] = h->left_mb_xy[0] ;
  699. left_xy[1] = h->left_mb_xy[1] ;
  700. topleft_type = h->topleft_type ;
  701. top_type = h->top_type ;
  702. topright_type= h->topright_type ;
  703. left_type[0] = h->left_type[0] ;
  704. left_type[1] = h->left_type[1] ;
  705. if(!IS_SKIP(mb_type)){
  706. if(IS_INTRA(mb_type)){
  707. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  708. h->topleft_samples_available=
  709. h->top_samples_available=
  710. h->left_samples_available= 0xFFFF;
  711. h->topright_samples_available= 0xEEEA;
  712. if(!(top_type & type_mask)){
  713. h->topleft_samples_available= 0xB3FF;
  714. h->top_samples_available= 0x33FF;
  715. h->topright_samples_available= 0x26EA;
  716. }
  717. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  718. if(IS_INTERLACED(mb_type)){
  719. if(!(left_type[0] & type_mask)){
  720. h->topleft_samples_available&= 0xDFFF;
  721. h->left_samples_available&= 0x5FFF;
  722. }
  723. if(!(left_type[1] & type_mask)){
  724. h->topleft_samples_available&= 0xFF5F;
  725. h->left_samples_available&= 0xFF5F;
  726. }
  727. }else{
  728. int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
  729. ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
  730. assert(left_xy[0] == left_xy[1]);
  731. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  732. h->topleft_samples_available&= 0xDF5F;
  733. h->left_samples_available&= 0x5F5F;
  734. }
  735. }
  736. }else{
  737. if(!(left_type[0] & type_mask)){
  738. h->topleft_samples_available&= 0xDF5F;
  739. h->left_samples_available&= 0x5F5F;
  740. }
  741. }
  742. if(!(topleft_type & type_mask))
  743. h->topleft_samples_available&= 0x7FFF;
  744. if(!(topright_type & type_mask))
  745. h->topright_samples_available&= 0xFBFF;
  746. if(IS_INTRA4x4(mb_type)){
  747. if(IS_INTRA4x4(top_type)){
  748. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  749. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  750. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  751. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  752. }else{
  753. int pred;
  754. if(!(top_type & type_mask))
  755. pred= -1;
  756. else{
  757. pred= 2;
  758. }
  759. h->intra4x4_pred_mode_cache[4+8*0]=
  760. h->intra4x4_pred_mode_cache[5+8*0]=
  761. h->intra4x4_pred_mode_cache[6+8*0]=
  762. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  763. }
  764. for(i=0; i<2; i++){
  765. if(IS_INTRA4x4(left_type[i])){
  766. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  767. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  768. }else{
  769. int pred;
  770. if(!(left_type[i] & type_mask))
  771. pred= -1;
  772. else{
  773. pred= 2;
  774. }
  775. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  776. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  777. }
  778. }
  779. }
  780. }
  781. /*
  782. 0 . T T. T T T T
  783. 1 L . .L . . . .
  784. 2 L . .L . . . .
  785. 3 . T TL . . . .
  786. 4 L . .L . . . .
  787. 5 L . .. . . . .
  788. */
  789. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  790. if(top_type){
  791. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  792. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  793. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  794. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  795. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  796. }else {
  797. h->non_zero_count_cache[1+8*0]=
  798. h->non_zero_count_cache[2+8*0]=
  799. h->non_zero_count_cache[1+8*3]=
  800. h->non_zero_count_cache[2+8*3]=
  801. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  802. }
  803. for (i=0; i<2; i++) {
  804. if(left_type[i]){
  805. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  806. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  807. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  808. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  809. }else{
  810. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  811. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  812. h->non_zero_count_cache[0+8*1 + 8*i]=
  813. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  814. }
  815. }
  816. if( CABAC ) {
  817. // top_cbp
  818. if(top_type) {
  819. h->top_cbp = h->cbp_table[top_xy];
  820. } else if(IS_INTRA(mb_type)) {
  821. h->top_cbp = 0x1CF;
  822. } else {
  823. h->top_cbp = 0x00F;
  824. }
  825. // left_cbp
  826. if (left_type[0]) {
  827. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  828. } else if(IS_INTRA(mb_type)) {
  829. h->left_cbp = 0x1CF;
  830. } else {
  831. h->left_cbp = 0x00F;
  832. }
  833. if (left_type[0]) {
  834. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  835. }
  836. if (left_type[1]) {
  837. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  838. }
  839. }
  840. }
  841. #if 1
  842. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  843. int list;
  844. for(list=0; list<h->list_count; list++){
  845. if(!USES_LIST(mb_type, list)){
  846. /*if(!h->mv_cache_clean[list]){
  847. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  848. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  849. h->mv_cache_clean[list]= 1;
  850. }*/
  851. continue;
  852. }
  853. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  854. h->mv_cache_clean[list]= 0;
  855. if(USES_LIST(top_type, list)){
  856. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  857. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  858. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  859. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  860. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  861. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  862. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  863. }else{
  864. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  865. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  866. }
  867. for(i=0; i<2; i++){
  868. int cache_idx = scan8[0] - 1 + i*2*8;
  869. if(USES_LIST(left_type[i], list)){
  870. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  871. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  872. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  873. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  874. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  875. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  876. }else{
  877. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  878. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  879. h->ref_cache[list][cache_idx ]=
  880. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  881. }
  882. }
  883. if(USES_LIST(topleft_type, list)){
  884. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  885. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (h->topleft_partition & h->b8_stride);
  886. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  887. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  888. }else{
  889. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  890. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  891. }
  892. if(USES_LIST(topright_type, list)){
  893. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  894. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  895. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  896. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  897. }else{
  898. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  899. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  900. }
  901. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  902. continue;
  903. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  904. h->ref_cache[list][scan8[5 ]+1] =
  905. h->ref_cache[list][scan8[7 ]+1] =
  906. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  907. h->ref_cache[list][scan8[4 ]] =
  908. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  909. AV_ZERO32(h->mv_cache [list][scan8[5 ]+1]);
  910. AV_ZERO32(h->mv_cache [list][scan8[7 ]+1]);
  911. AV_ZERO32(h->mv_cache [list][scan8[13]+1]); //FIXME remove past 3 (init somewhere else)
  912. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  913. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  914. if( CABAC ) {
  915. /* XXX beurk, Load mvd */
  916. if(USES_LIST(top_type, list)){
  917. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  918. AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  919. }else{
  920. AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  921. }
  922. if(USES_LIST(left_type[0], list)){
  923. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  924. AV_COPY32(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy + h->b_stride*left_block[0]]);
  925. AV_COPY32(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy + h->b_stride*left_block[1]]);
  926. }else{
  927. AV_ZERO32(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  928. AV_ZERO32(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  929. }
  930. if(USES_LIST(left_type[1], list)){
  931. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  932. AV_COPY32(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy + h->b_stride*left_block[2]]);
  933. AV_COPY32(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy + h->b_stride*left_block[3]]);
  934. }else{
  935. AV_ZERO32(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  936. AV_ZERO32(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  937. }
  938. AV_ZERO32(h->mvd_cache [list][scan8[5 ]+1]);
  939. AV_ZERO32(h->mvd_cache [list][scan8[7 ]+1]);
  940. AV_ZERO32(h->mvd_cache [list][scan8[13]+1]); //FIXME remove past 3 (init somewhere else)
  941. AV_ZERO32(h->mvd_cache [list][scan8[4 ]]);
  942. AV_ZERO32(h->mvd_cache [list][scan8[12]]);
  943. if(h->slice_type_nos == FF_B_TYPE){
  944. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  945. if(IS_DIRECT(top_type)){
  946. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_DIRECT2>>1));
  947. }else if(IS_8X8(top_type)){
  948. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  949. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  950. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  951. }else{
  952. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  953. }
  954. if(IS_DIRECT(left_type[0]))
  955. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  956. else if(IS_8X8(left_type[0]))
  957. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  958. else
  959. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  960. if(IS_DIRECT(left_type[1]))
  961. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  962. else if(IS_8X8(left_type[1]))
  963. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  964. else
  965. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  966. }
  967. }
  968. }
  969. if(FRAME_MBAFF){
  970. #define MAP_MVS\
  971. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  972. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  973. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  974. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  975. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  976. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  977. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  978. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  979. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  980. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  981. if(MB_FIELD){
  982. #define MAP_F2F(idx, mb_type)\
  983. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  984. h->ref_cache[list][idx] <<= 1;\
  985. h->mv_cache[list][idx][1] /= 2;\
  986. h->mvd_cache[list][idx][1] >>=1;\
  987. }
  988. MAP_MVS
  989. #undef MAP_F2F
  990. }else{
  991. #define MAP_F2F(idx, mb_type)\
  992. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  993. h->ref_cache[list][idx] >>= 1;\
  994. h->mv_cache[list][idx][1] <<= 1;\
  995. h->mvd_cache[list][idx][1] <<= 1;\
  996. }
  997. MAP_MVS
  998. #undef MAP_F2F
  999. }
  1000. }
  1001. }
  1002. }
  1003. #endif
  1004. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1005. }
  1006. /**
  1007. *
  1008. * @returns non zero if the loop filter can be skiped
  1009. */
  1010. static int fill_filter_caches(H264Context *h, int mb_type){
  1011. MpegEncContext * const s = &h->s;
  1012. const int mb_xy= h->mb_xy;
  1013. int top_xy, left_xy[2];
  1014. int top_type, left_type[2];
  1015. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  1016. //FIXME deblocking could skip the intra and nnz parts.
  1017. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1018. * stuff, I can't imagine that these complex rules are worth it. */
  1019. left_xy[1] = left_xy[0] = mb_xy-1;
  1020. if(FRAME_MBAFF){
  1021. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  1022. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1023. if(s->mb_y&1){
  1024. if (left_mb_field_flag != curr_mb_field_flag) {
  1025. left_xy[0] -= s->mb_stride;
  1026. }
  1027. }else{
  1028. if(curr_mb_field_flag){
  1029. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1030. }
  1031. if (left_mb_field_flag != curr_mb_field_flag) {
  1032. left_xy[1] += s->mb_stride;
  1033. }
  1034. }
  1035. }
  1036. h->top_mb_xy = top_xy;
  1037. h->left_mb_xy[0] = left_xy[0];
  1038. h->left_mb_xy[1] = left_xy[1];
  1039. {
  1040. //for sufficiently low qp, filtering wouldn't do anything
  1041. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1042. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1043. int qp = s->current_picture.qscale_table[mb_xy];
  1044. if(qp <= qp_thresh
  1045. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1046. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1047. if(!FRAME_MBAFF)
  1048. return 1;
  1049. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1050. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1051. return 1;
  1052. }
  1053. }
  1054. if(h->deblocking_filter == 2){
  1055. h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  1056. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  1057. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  1058. }else{
  1059. h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  1060. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  1061. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  1062. }
  1063. if(IS_INTRA(mb_type))
  1064. return 0;
  1065. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1066. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1067. AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
  1068. AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
  1069. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  1070. h->cbp= h->cbp_table[mb_xy];
  1071. {
  1072. int list;
  1073. for(list=0; list<h->list_count; list++){
  1074. int8_t *ref;
  1075. int y, b_stride;
  1076. int16_t (*mv_dst)[2];
  1077. int16_t (*mv_src)[2];
  1078. if(!USES_LIST(mb_type, list)){
  1079. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  1080. AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1081. AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1082. AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1083. AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1084. continue;
  1085. }
  1086. ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  1087. {
  1088. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1089. AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1090. AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1091. ref += h->b8_stride;
  1092. AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1093. AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1094. }
  1095. b_stride = h->b_stride;
  1096. mv_dst = &h->mv_cache[list][scan8[0]];
  1097. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  1098. for(y=0; y<4; y++){
  1099. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  1100. }
  1101. }
  1102. }
  1103. /*
  1104. 0 . T T. T T T T
  1105. 1 L . .L . . . .
  1106. 2 L . .L . . . .
  1107. 3 . T TL . . . .
  1108. 4 L . .L . . . .
  1109. 5 L . .. . . . .
  1110. */
  1111. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  1112. if(top_type){
  1113. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  1114. }
  1115. if(left_type[0]){
  1116. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  1117. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  1118. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  1119. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  1120. }
  1121. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  1122. if(!CABAC && h->pps.transform_8x8_mode){
  1123. if(IS_8x8DCT(top_type)){
  1124. h->non_zero_count_cache[4+8*0]=
  1125. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  1126. h->non_zero_count_cache[6+8*0]=
  1127. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  1128. }
  1129. if(IS_8x8DCT(left_type[0])){
  1130. h->non_zero_count_cache[3+8*1]=
  1131. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  1132. }
  1133. if(IS_8x8DCT(left_type[1])){
  1134. h->non_zero_count_cache[3+8*3]=
  1135. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  1136. }
  1137. if(IS_8x8DCT(mb_type)){
  1138. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  1139. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  1140. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  1141. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  1142. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  1143. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  1144. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  1145. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  1146. }
  1147. }
  1148. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  1149. int list;
  1150. for(list=0; list<h->list_count; list++){
  1151. if(USES_LIST(top_type, list)){
  1152. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1153. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  1154. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1155. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  1156. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  1157. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  1158. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  1159. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  1160. }else{
  1161. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  1162. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1163. }
  1164. if(!IS_INTERLACED(mb_type^left_type[0])){
  1165. if(USES_LIST(left_type[0], list)){
  1166. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1167. const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
  1168. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1169. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
  1170. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
  1171. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
  1172. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
  1173. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1174. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
  1175. h->ref_cache[list][scan8[0] - 1 +16 ]=
  1176. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
  1177. }else{
  1178. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
  1179. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
  1180. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
  1181. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
  1182. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1183. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  1184. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  1185. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  1186. }
  1187. }
  1188. }
  1189. }
  1190. return 0;
  1191. }
  1192. /**
  1193. * gets the predicted intra4x4 prediction mode.
  1194. */
  1195. static inline int pred_intra_mode(H264Context *h, int n){
  1196. const int index8= scan8[n];
  1197. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1198. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1199. const int min= FFMIN(left, top);
  1200. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1201. if(min<0) return DC_PRED;
  1202. else return min;
  1203. }
  1204. static inline void write_back_non_zero_count(H264Context *h){
  1205. const int mb_xy= h->mb_xy;
  1206. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1207. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1208. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1209. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1210. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1211. }
  1212. static inline void write_back_motion(H264Context *h, int mb_type){
  1213. MpegEncContext * const s = &h->s;
  1214. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1215. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1216. int list;
  1217. if(!USES_LIST(mb_type, 0))
  1218. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1219. for(list=0; list<h->list_count; list++){
  1220. int y, b_stride;
  1221. int16_t (*mv_dst)[2];
  1222. int16_t (*mv_src)[2];
  1223. if(!USES_LIST(mb_type, list))
  1224. continue;
  1225. b_stride = h->b_stride;
  1226. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1227. mv_src = &h->mv_cache[list][scan8[0]];
  1228. for(y=0; y<4; y++){
  1229. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1230. }
  1231. if( CABAC ) {
  1232. int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
  1233. int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1234. if(IS_SKIP(mb_type))
  1235. fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
  1236. else
  1237. for(y=0; y<4; y++){
  1238. AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
  1239. }
  1240. }
  1241. {
  1242. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1243. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1244. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1245. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1246. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1247. }
  1248. }
  1249. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1250. if(IS_8X8(mb_type)){
  1251. uint8_t *direct_table = &h->direct_table[b8_xy];
  1252. direct_table[1+0*h->b8_stride] = h->sub_mb_type[1]>>1;
  1253. direct_table[0+1*h->b8_stride] = h->sub_mb_type[2]>>1;
  1254. direct_table[1+1*h->b8_stride] = h->sub_mb_type[3]>>1;
  1255. }
  1256. }
  1257. }
  1258. static inline int get_dct8x8_allowed(H264Context *h){
  1259. if(h->sps.direct_8x8_inference_flag)
  1260. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1261. else
  1262. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1263. }
  1264. /**
  1265. * decodes a P_SKIP or B_SKIP macroblock
  1266. */
  1267. static void decode_mb_skip(H264Context *h){
  1268. MpegEncContext * const s = &h->s;
  1269. const int mb_xy= h->mb_xy;
  1270. int mb_type=0;
  1271. memset(h->non_zero_count[mb_xy], 0, 32);
  1272. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1273. if(MB_FIELD)
  1274. mb_type|= MB_TYPE_INTERLACED;
  1275. if( h->slice_type_nos == FF_B_TYPE )
  1276. {
  1277. // just for fill_caches. pred_direct_motion will set the real mb_type
  1278. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1279. if(h->direct_spatial_mv_pred){
  1280. fill_decode_neighbors(h, mb_type);
  1281. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1282. }
  1283. ff_h264_pred_direct_motion(h, &mb_type);
  1284. mb_type|= MB_TYPE_SKIP;
  1285. }
  1286. else
  1287. {
  1288. int mx, my;
  1289. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1290. fill_decode_neighbors(h, mb_type);
  1291. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1292. pred_pskip_motion(h, &mx, &my);
  1293. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1294. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1295. }
  1296. write_back_motion(h, mb_type);
  1297. s->current_picture.mb_type[mb_xy]= mb_type;
  1298. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1299. h->slice_table[ mb_xy ]= h->slice_num;
  1300. h->prev_mb_skipped= 1;
  1301. }
  1302. #include "h264_mvpred.h" //For pred_pskip_motion()
  1303. #endif /* AVCODEC_H264_H */