You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3153 lines
114KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_mvpred.h"
  33. #include "h264_parser.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "vdpau_internal.h"
  38. #include "cabac.h"
  39. //#undef NDEBUG
  40. #include <assert.h>
  41. static const uint8_t rem6[52]={
  42. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  43. };
  44. static const uint8_t div6[52]={
  45. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  46. };
  47. void ff_h264_write_back_intra_pred_mode(H264Context *h){
  48. const int mb_xy= h->mb_xy;
  49. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  50. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  51. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  52. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  53. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  54. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  55. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  56. }
  57. /**
  58. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  59. */
  60. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  61. MpegEncContext * const s = &h->s;
  62. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  63. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  64. int i;
  65. if(!(h->top_samples_available&0x8000)){
  66. for(i=0; i<4; i++){
  67. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  68. if(status<0){
  69. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  70. return -1;
  71. } else if(status){
  72. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  73. }
  74. }
  75. }
  76. if((h->left_samples_available&0x8888)!=0x8888){
  77. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  78. for(i=0; i<4; i++){
  79. if(!(h->left_samples_available&mask[i])){
  80. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  81. if(status<0){
  82. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  83. return -1;
  84. } else if(status){
  85. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  86. }
  87. }
  88. }
  89. }
  90. return 0;
  91. } //FIXME cleanup like ff_h264_check_intra_pred_mode
  92. /**
  93. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  94. */
  95. int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
  96. MpegEncContext * const s = &h->s;
  97. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  98. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  99. if(mode > 6U) {
  100. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  101. return -1;
  102. }
  103. if(!(h->top_samples_available&0x8000)){
  104. mode= top[ mode ];
  105. if(mode<0){
  106. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  107. return -1;
  108. }
  109. }
  110. if((h->left_samples_available&0x8080) != 0x8080){
  111. mode= left[ mode ];
  112. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  113. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  114. }
  115. if(mode<0){
  116. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  117. return -1;
  118. }
  119. }
  120. return mode;
  121. }
  122. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  123. int i, si, di;
  124. uint8_t *dst;
  125. int bufidx;
  126. // src[0]&0x80; //forbidden bit
  127. h->nal_ref_idc= src[0]>>5;
  128. h->nal_unit_type= src[0]&0x1F;
  129. src++; length--;
  130. #if 0
  131. for(i=0; i<length; i++)
  132. printf("%2X ", src[i]);
  133. #endif
  134. #if HAVE_FAST_UNALIGNED
  135. # if HAVE_FAST_64BIT
  136. # define RS 7
  137. for(i=0; i+1<length; i+=9){
  138. if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  139. # else
  140. # define RS 3
  141. for(i=0; i+1<length; i+=5){
  142. if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
  143. # endif
  144. continue;
  145. if(i>0 && !src[i]) i--;
  146. while(src[i]) i++;
  147. #else
  148. # define RS 0
  149. for(i=0; i+1<length; i+=2){
  150. if(src[i]) continue;
  151. if(i>0 && src[i-1]==0) i--;
  152. #endif
  153. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  154. if(src[i+2]!=3){
  155. /* startcode, so we must be past the end */
  156. length=i;
  157. }
  158. break;
  159. }
  160. i-= RS;
  161. }
  162. if(i>=length-1){ //no escaped 0
  163. *dst_length= length;
  164. *consumed= length+1; //+1 for the header
  165. return src;
  166. }
  167. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  168. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
  169. dst= h->rbsp_buffer[bufidx];
  170. if (dst == NULL){
  171. return NULL;
  172. }
  173. //printf("decoding esc\n");
  174. memcpy(dst, src, i);
  175. si=di=i;
  176. while(si+2<length){
  177. //remove escapes (very rare 1:2^22)
  178. if(src[si+2]>3){
  179. dst[di++]= src[si++];
  180. dst[di++]= src[si++];
  181. }else if(src[si]==0 && src[si+1]==0){
  182. if(src[si+2]==3){ //escape
  183. dst[di++]= 0;
  184. dst[di++]= 0;
  185. si+=3;
  186. continue;
  187. }else //next start code
  188. goto nsc;
  189. }
  190. dst[di++]= src[si++];
  191. }
  192. while(si<length)
  193. dst[di++]= src[si++];
  194. nsc:
  195. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  196. *dst_length= di;
  197. *consumed= si + 1;//+1 for the header
  198. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  199. return dst;
  200. }
  201. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  202. int v= *src;
  203. int r;
  204. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  205. for(r=1; r<9; r++){
  206. if(v&1) return r;
  207. v>>=1;
  208. }
  209. return 0;
  210. }
  211. /**
  212. * IDCT transforms the 16 dc values and dequantizes them.
  213. * @param qp quantization parameter
  214. */
  215. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  216. #define stride 16
  217. int i;
  218. int temp[16]; //FIXME check if this is a good idea
  219. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  220. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  221. //memset(block, 64, 2*256);
  222. //return;
  223. for(i=0; i<4; i++){
  224. const int offset= y_offset[i];
  225. const int z0= block[offset+stride*0] + block[offset+stride*4];
  226. const int z1= block[offset+stride*0] - block[offset+stride*4];
  227. const int z2= block[offset+stride*1] - block[offset+stride*5];
  228. const int z3= block[offset+stride*1] + block[offset+stride*5];
  229. temp[4*i+0]= z0+z3;
  230. temp[4*i+1]= z1+z2;
  231. temp[4*i+2]= z1-z2;
  232. temp[4*i+3]= z0-z3;
  233. }
  234. for(i=0; i<4; i++){
  235. const int offset= x_offset[i];
  236. const int z0= temp[4*0+i] + temp[4*2+i];
  237. const int z1= temp[4*0+i] - temp[4*2+i];
  238. const int z2= temp[4*1+i] - temp[4*3+i];
  239. const int z3= temp[4*1+i] + temp[4*3+i];
  240. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  241. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  242. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  243. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  244. }
  245. }
  246. #if 0
  247. /**
  248. * DCT transforms the 16 dc values.
  249. * @param qp quantization parameter ??? FIXME
  250. */
  251. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  252. // const int qmul= dequant_coeff[qp][0];
  253. int i;
  254. int temp[16]; //FIXME check if this is a good idea
  255. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  256. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  257. for(i=0; i<4; i++){
  258. const int offset= y_offset[i];
  259. const int z0= block[offset+stride*0] + block[offset+stride*4];
  260. const int z1= block[offset+stride*0] - block[offset+stride*4];
  261. const int z2= block[offset+stride*1] - block[offset+stride*5];
  262. const int z3= block[offset+stride*1] + block[offset+stride*5];
  263. temp[4*i+0]= z0+z3;
  264. temp[4*i+1]= z1+z2;
  265. temp[4*i+2]= z1-z2;
  266. temp[4*i+3]= z0-z3;
  267. }
  268. for(i=0; i<4; i++){
  269. const int offset= x_offset[i];
  270. const int z0= temp[4*0+i] + temp[4*2+i];
  271. const int z1= temp[4*0+i] - temp[4*2+i];
  272. const int z2= temp[4*1+i] - temp[4*3+i];
  273. const int z3= temp[4*1+i] + temp[4*3+i];
  274. block[stride*0 +offset]= (z0 + z3)>>1;
  275. block[stride*2 +offset]= (z1 + z2)>>1;
  276. block[stride*8 +offset]= (z1 - z2)>>1;
  277. block[stride*10+offset]= (z0 - z3)>>1;
  278. }
  279. }
  280. #endif
  281. #undef xStride
  282. #undef stride
  283. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  284. const int stride= 16*2;
  285. const int xStride= 16;
  286. int a,b,c,d,e;
  287. a= block[stride*0 + xStride*0];
  288. b= block[stride*0 + xStride*1];
  289. c= block[stride*1 + xStride*0];
  290. d= block[stride*1 + xStride*1];
  291. e= a-b;
  292. a= a+b;
  293. b= c-d;
  294. c= c+d;
  295. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  296. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  297. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  298. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  299. }
  300. #if 0
  301. static void chroma_dc_dct_c(DCTELEM *block){
  302. const int stride= 16*2;
  303. const int xStride= 16;
  304. int a,b,c,d,e;
  305. a= block[stride*0 + xStride*0];
  306. b= block[stride*0 + xStride*1];
  307. c= block[stride*1 + xStride*0];
  308. d= block[stride*1 + xStride*1];
  309. e= a-b;
  310. a= a+b;
  311. b= c-d;
  312. c= c+d;
  313. block[stride*0 + xStride*0]= (a+c);
  314. block[stride*0 + xStride*1]= (e+b);
  315. block[stride*1 + xStride*0]= (a-c);
  316. block[stride*1 + xStride*1]= (e-b);
  317. }
  318. #endif
  319. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  320. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  321. int src_x_offset, int src_y_offset,
  322. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  323. MpegEncContext * const s = &h->s;
  324. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  325. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  326. const int luma_xy= (mx&3) + ((my&3)<<2);
  327. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  328. uint8_t * src_cb, * src_cr;
  329. int extra_width= h->emu_edge_width;
  330. int extra_height= h->emu_edge_height;
  331. int emu=0;
  332. const int full_mx= mx>>2;
  333. const int full_my= my>>2;
  334. const int pic_width = 16*s->mb_width;
  335. const int pic_height = 16*s->mb_height >> MB_FIELD;
  336. if(mx&7) extra_width -= 3;
  337. if(my&7) extra_height -= 3;
  338. if( full_mx < 0-extra_width
  339. || full_my < 0-extra_height
  340. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  341. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  342. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  343. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  344. emu=1;
  345. }
  346. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  347. if(!square){
  348. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  349. }
  350. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  351. if(MB_FIELD){
  352. // chroma offset when predicting from a field of opposite parity
  353. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  354. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  355. }
  356. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  357. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  358. if(emu){
  359. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  360. src_cb= s->edge_emu_buffer;
  361. }
  362. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  363. if(emu){
  364. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  365. src_cr= s->edge_emu_buffer;
  366. }
  367. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  368. }
  369. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  370. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  371. int x_offset, int y_offset,
  372. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  373. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  374. int list0, int list1){
  375. MpegEncContext * const s = &h->s;
  376. qpel_mc_func *qpix_op= qpix_put;
  377. h264_chroma_mc_func chroma_op= chroma_put;
  378. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  379. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  380. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  381. x_offset += 8*s->mb_x;
  382. y_offset += 8*(s->mb_y >> MB_FIELD);
  383. if(list0){
  384. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  385. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  386. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  387. qpix_op, chroma_op);
  388. qpix_op= qpix_avg;
  389. chroma_op= chroma_avg;
  390. }
  391. if(list1){
  392. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  393. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  394. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  395. qpix_op, chroma_op);
  396. }
  397. }
  398. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  399. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  400. int x_offset, int y_offset,
  401. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  402. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  403. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  404. int list0, int list1){
  405. MpegEncContext * const s = &h->s;
  406. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  407. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  408. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  409. x_offset += 8*s->mb_x;
  410. y_offset += 8*(s->mb_y >> MB_FIELD);
  411. if(list0 && list1){
  412. /* don't optimize for luma-only case, since B-frames usually
  413. * use implicit weights => chroma too. */
  414. uint8_t *tmp_cb = s->obmc_scratchpad;
  415. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  416. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  417. int refn0 = h->ref_cache[0][ scan8[n] ];
  418. int refn1 = h->ref_cache[1][ scan8[n] ];
  419. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  420. dest_y, dest_cb, dest_cr,
  421. x_offset, y_offset, qpix_put, chroma_put);
  422. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  423. tmp_y, tmp_cb, tmp_cr,
  424. x_offset, y_offset, qpix_put, chroma_put);
  425. if(h->use_weight == 2){
  426. int weight0 = h->implicit_weight[refn0][refn1];
  427. int weight1 = 64 - weight0;
  428. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  429. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  430. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  431. }else{
  432. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  433. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  434. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  435. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  436. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  437. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  438. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  439. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  440. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  441. }
  442. }else{
  443. int list = list1 ? 1 : 0;
  444. int refn = h->ref_cache[list][ scan8[n] ];
  445. Picture *ref= &h->ref_list[list][refn];
  446. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  447. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  448. qpix_put, chroma_put);
  449. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  450. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  451. if(h->use_weight_chroma){
  452. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  453. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  454. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  455. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  456. }
  457. }
  458. }
  459. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  460. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  461. int x_offset, int y_offset,
  462. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  463. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  464. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  465. int list0, int list1){
  466. if((h->use_weight==2 && list0 && list1
  467. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  468. || h->use_weight==1)
  469. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  470. x_offset, y_offset, qpix_put, chroma_put,
  471. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  472. else
  473. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  474. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  475. }
  476. static inline void prefetch_motion(H264Context *h, int list){
  477. /* fetch pixels for estimated mv 4 macroblocks ahead
  478. * optimized for 64byte cache lines */
  479. MpegEncContext * const s = &h->s;
  480. const int refn = h->ref_cache[list][scan8[0]];
  481. if(refn >= 0){
  482. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  483. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  484. uint8_t **src= h->ref_list[list][refn].data;
  485. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  486. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  487. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  488. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  489. }
  490. }
  491. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  492. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  493. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  494. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  495. MpegEncContext * const s = &h->s;
  496. const int mb_xy= h->mb_xy;
  497. const int mb_type= s->current_picture.mb_type[mb_xy];
  498. assert(IS_INTER(mb_type));
  499. prefetch_motion(h, 0);
  500. if(IS_16X16(mb_type)){
  501. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  502. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  503. weight_op, weight_avg,
  504. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  505. }else if(IS_16X8(mb_type)){
  506. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  507. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  508. &weight_op[1], &weight_avg[1],
  509. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  510. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  511. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  512. &weight_op[1], &weight_avg[1],
  513. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  514. }else if(IS_8X16(mb_type)){
  515. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  516. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  517. &weight_op[2], &weight_avg[2],
  518. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  519. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  520. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  521. &weight_op[2], &weight_avg[2],
  522. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  523. }else{
  524. int i;
  525. assert(IS_8X8(mb_type));
  526. for(i=0; i<4; i++){
  527. const int sub_mb_type= h->sub_mb_type[i];
  528. const int n= 4*i;
  529. int x_offset= (i&1)<<2;
  530. int y_offset= (i&2)<<1;
  531. if(IS_SUB_8X8(sub_mb_type)){
  532. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  533. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  534. &weight_op[3], &weight_avg[3],
  535. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  536. }else if(IS_SUB_8X4(sub_mb_type)){
  537. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  538. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  539. &weight_op[4], &weight_avg[4],
  540. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  541. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  542. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  543. &weight_op[4], &weight_avg[4],
  544. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  545. }else if(IS_SUB_4X8(sub_mb_type)){
  546. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  547. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  548. &weight_op[5], &weight_avg[5],
  549. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  550. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  551. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  552. &weight_op[5], &weight_avg[5],
  553. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  554. }else{
  555. int j;
  556. assert(IS_SUB_4X4(sub_mb_type));
  557. for(j=0; j<4; j++){
  558. int sub_x_offset= x_offset + 2*(j&1);
  559. int sub_y_offset= y_offset + (j&2);
  560. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  561. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  562. &weight_op[6], &weight_avg[6],
  563. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  564. }
  565. }
  566. }
  567. }
  568. prefetch_motion(h, 1);
  569. }
  570. static void free_tables(H264Context *h){
  571. int i;
  572. H264Context *hx;
  573. av_freep(&h->intra4x4_pred_mode);
  574. av_freep(&h->chroma_pred_mode_table);
  575. av_freep(&h->cbp_table);
  576. av_freep(&h->mvd_table[0]);
  577. av_freep(&h->mvd_table[1]);
  578. av_freep(&h->direct_table);
  579. av_freep(&h->non_zero_count);
  580. av_freep(&h->slice_table_base);
  581. h->slice_table= NULL;
  582. av_freep(&h->list_counts);
  583. av_freep(&h->mb2b_xy);
  584. av_freep(&h->mb2b8_xy);
  585. for(i = 0; i < MAX_THREADS; i++) {
  586. hx = h->thread_context[i];
  587. if(!hx) continue;
  588. av_freep(&hx->top_borders[1]);
  589. av_freep(&hx->top_borders[0]);
  590. av_freep(&hx->s.obmc_scratchpad);
  591. av_freep(&hx->rbsp_buffer[1]);
  592. av_freep(&hx->rbsp_buffer[0]);
  593. hx->rbsp_buffer_size[0] = 0;
  594. hx->rbsp_buffer_size[1] = 0;
  595. if (i) av_freep(&h->thread_context[i]);
  596. }
  597. }
  598. static void init_dequant8_coeff_table(H264Context *h){
  599. int i,q,x;
  600. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  601. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  602. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  603. for(i=0; i<2; i++ ){
  604. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  605. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  606. break;
  607. }
  608. for(q=0; q<52; q++){
  609. int shift = div6[q];
  610. int idx = rem6[q];
  611. for(x=0; x<64; x++)
  612. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  613. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  614. h->pps.scaling_matrix8[i][x]) << shift;
  615. }
  616. }
  617. }
  618. static void init_dequant4_coeff_table(H264Context *h){
  619. int i,j,q,x;
  620. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  621. for(i=0; i<6; i++ ){
  622. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  623. for(j=0; j<i; j++){
  624. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  625. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  626. break;
  627. }
  628. }
  629. if(j<i)
  630. continue;
  631. for(q=0; q<52; q++){
  632. int shift = div6[q] + 2;
  633. int idx = rem6[q];
  634. for(x=0; x<16; x++)
  635. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  636. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  637. h->pps.scaling_matrix4[i][x]) << shift;
  638. }
  639. }
  640. }
  641. static void init_dequant_tables(H264Context *h){
  642. int i,x;
  643. init_dequant4_coeff_table(h);
  644. if(h->pps.transform_8x8_mode)
  645. init_dequant8_coeff_table(h);
  646. if(h->sps.transform_bypass){
  647. for(i=0; i<6; i++)
  648. for(x=0; x<16; x++)
  649. h->dequant4_coeff[i][0][x] = 1<<6;
  650. if(h->pps.transform_8x8_mode)
  651. for(i=0; i<2; i++)
  652. for(x=0; x<64; x++)
  653. h->dequant8_coeff[i][0][x] = 1<<6;
  654. }
  655. }
  656. int ff_h264_alloc_tables(H264Context *h){
  657. MpegEncContext * const s = &h->s;
  658. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  659. int x,y;
  660. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t), fail)
  661. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail)
  662. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  663. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  664. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  665. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t), fail);
  666. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t), fail);
  667. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 32*big_mb_num * sizeof(uint8_t) , fail);
  668. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  669. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  670. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  671. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  672. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b8_xy , big_mb_num * sizeof(uint32_t), fail);
  673. for(y=0; y<s->mb_height; y++){
  674. for(x=0; x<s->mb_width; x++){
  675. const int mb_xy= x + y*s->mb_stride;
  676. const int b_xy = 4*x + 4*y*h->b_stride;
  677. const int b8_xy= 2*x + 2*y*h->b8_stride;
  678. h->mb2b_xy [mb_xy]= b_xy;
  679. h->mb2b8_xy[mb_xy]= b8_xy;
  680. }
  681. }
  682. s->obmc_scratchpad = NULL;
  683. if(!h->dequant4_coeff[0])
  684. init_dequant_tables(h);
  685. return 0;
  686. fail:
  687. free_tables(h);
  688. return -1;
  689. }
  690. /**
  691. * Mimic alloc_tables(), but for every context thread.
  692. */
  693. static void clone_tables(H264Context *dst, H264Context *src){
  694. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  695. dst->non_zero_count = src->non_zero_count;
  696. dst->slice_table = src->slice_table;
  697. dst->cbp_table = src->cbp_table;
  698. dst->mb2b_xy = src->mb2b_xy;
  699. dst->mb2b8_xy = src->mb2b8_xy;
  700. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  701. dst->mvd_table[0] = src->mvd_table[0];
  702. dst->mvd_table[1] = src->mvd_table[1];
  703. dst->direct_table = src->direct_table;
  704. dst->list_counts = src->list_counts;
  705. dst->s.obmc_scratchpad = NULL;
  706. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  707. }
  708. /**
  709. * Init context
  710. * Allocate buffers which are not shared amongst multiple threads.
  711. */
  712. static int context_init(H264Context *h){
  713. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  714. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  715. return 0;
  716. fail:
  717. return -1; // free_tables will clean up for us
  718. }
  719. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
  720. static av_cold void common_init(H264Context *h){
  721. MpegEncContext * const s = &h->s;
  722. s->width = s->avctx->width;
  723. s->height = s->avctx->height;
  724. s->codec_id= s->avctx->codec->id;
  725. ff_h264_pred_init(&h->hpc, s->codec_id);
  726. h->dequant_coeff_pps= -1;
  727. s->unrestricted_mv=1;
  728. s->decode=1; //FIXME
  729. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  730. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  731. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  732. }
  733. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  734. H264Context *h= avctx->priv_data;
  735. MpegEncContext * const s = &h->s;
  736. MPV_decode_defaults(s);
  737. s->avctx = avctx;
  738. common_init(h);
  739. s->out_format = FMT_H264;
  740. s->workaround_bugs= avctx->workaround_bugs;
  741. // set defaults
  742. // s->decode_mb= ff_h263_decode_mb;
  743. s->quarter_sample = 1;
  744. if(!avctx->has_b_frames)
  745. s->low_delay= 1;
  746. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  747. ff_h264_decode_init_vlc();
  748. h->thread_context[0] = h;
  749. h->outputed_poc = INT_MIN;
  750. h->prev_poc_msb= 1<<16;
  751. h->x264_build = -1;
  752. ff_h264_reset_sei(h);
  753. if(avctx->codec_id == CODEC_ID_H264){
  754. if(avctx->ticks_per_frame == 1){
  755. s->avctx->time_base.den *=2;
  756. }
  757. avctx->ticks_per_frame = 2;
  758. }
  759. if(avctx->extradata_size > 0 && avctx->extradata && *(char *)avctx->extradata == 1){
  760. int i, cnt, nalsize;
  761. unsigned char *p = avctx->extradata;
  762. h->is_avc = 1;
  763. if(avctx->extradata_size < 7) {
  764. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  765. return -1;
  766. }
  767. /* sps and pps in the avcC always have length coded with 2 bytes,
  768. so put a fake nal_length_size = 2 while parsing them */
  769. h->nal_length_size = 2;
  770. // Decode sps from avcC
  771. cnt = *(p+5) & 0x1f; // Number of sps
  772. p += 6;
  773. for (i = 0; i < cnt; i++) {
  774. nalsize = AV_RB16(p) + 2;
  775. if(decode_nal_units(h, p, nalsize) < 0) {
  776. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  777. return -1;
  778. }
  779. p += nalsize;
  780. }
  781. // Decode pps from avcC
  782. cnt = *(p++); // Number of pps
  783. for (i = 0; i < cnt; i++) {
  784. nalsize = AV_RB16(p) + 2;
  785. if(decode_nal_units(h, p, nalsize) != nalsize) {
  786. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  787. return -1;
  788. }
  789. p += nalsize;
  790. }
  791. // Now store right nal length size, that will be use to parse all other nals
  792. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  793. } else {
  794. h->is_avc = 0;
  795. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  796. return -1;
  797. }
  798. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  799. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  800. s->low_delay = 0;
  801. }
  802. return 0;
  803. }
  804. int ff_h264_frame_start(H264Context *h){
  805. MpegEncContext * const s = &h->s;
  806. int i;
  807. if(MPV_frame_start(s, s->avctx) < 0)
  808. return -1;
  809. ff_er_frame_start(s);
  810. /*
  811. * MPV_frame_start uses pict_type to derive key_frame.
  812. * This is incorrect for H.264; IDR markings must be used.
  813. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  814. * See decode_nal_units().
  815. */
  816. s->current_picture_ptr->key_frame= 0;
  817. s->current_picture_ptr->mmco_reset= 0;
  818. assert(s->linesize && s->uvlinesize);
  819. for(i=0; i<16; i++){
  820. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  821. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  822. }
  823. for(i=0; i<4; i++){
  824. h->block_offset[16+i]=
  825. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  826. h->block_offset[24+16+i]=
  827. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  828. }
  829. /* can't be in alloc_tables because linesize isn't known there.
  830. * FIXME: redo bipred weight to not require extra buffer? */
  831. for(i = 0; i < s->avctx->thread_count; i++)
  832. if(!h->thread_context[i]->s.obmc_scratchpad)
  833. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  834. /* some macroblocks will be accessed before they're available */
  835. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  836. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  837. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  838. // We mark the current picture as non-reference after allocating it, so
  839. // that if we break out due to an error it can be released automatically
  840. // in the next MPV_frame_start().
  841. // SVQ3 as well as most other codecs have only last/next/current and thus
  842. // get released even with set reference, besides SVQ3 and others do not
  843. // mark frames as reference later "naturally".
  844. if(s->codec_id != CODEC_ID_SVQ3)
  845. s->current_picture_ptr->reference= 0;
  846. s->current_picture_ptr->field_poc[0]=
  847. s->current_picture_ptr->field_poc[1]= INT_MAX;
  848. assert(s->current_picture_ptr->long_ref==0);
  849. return 0;
  850. }
  851. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  852. MpegEncContext * const s = &h->s;
  853. uint8_t *top_border;
  854. int top_idx = 1;
  855. src_y -= linesize;
  856. src_cb -= uvlinesize;
  857. src_cr -= uvlinesize;
  858. if(!simple && FRAME_MBAFF){
  859. if(s->mb_y&1){
  860. if(!MB_MBAFF){
  861. top_border = h->top_borders[0][s->mb_x];
  862. AV_COPY128(top_border, src_y + 15*linesize);
  863. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  864. AV_COPY64(top_border+16, src_cb+7*uvlinesize);
  865. AV_COPY64(top_border+24, src_cr+7*uvlinesize);
  866. }
  867. }
  868. }else if(MB_MBAFF){
  869. top_idx = 0;
  870. }else
  871. return;
  872. }
  873. top_border = h->top_borders[top_idx][s->mb_x];
  874. // There are two lines saved, the line above the the top macroblock of a pair,
  875. // and the line above the bottom macroblock
  876. AV_COPY128(top_border, src_y + 16*linesize);
  877. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  878. AV_COPY64(top_border+16, src_cb+8*uvlinesize);
  879. AV_COPY64(top_border+24, src_cr+8*uvlinesize);
  880. }
  881. }
  882. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  883. MpegEncContext * const s = &h->s;
  884. int deblock_left;
  885. int deblock_top;
  886. int top_idx = 1;
  887. uint8_t *top_border_m1;
  888. uint8_t *top_border;
  889. if(!simple && FRAME_MBAFF){
  890. if(s->mb_y&1){
  891. if(!MB_MBAFF)
  892. return;
  893. }else{
  894. top_idx = MB_MBAFF ? 0 : 1;
  895. }
  896. }
  897. if(h->deblocking_filter == 2) {
  898. deblock_left = h->left_type[0];
  899. deblock_top = h->top_type;
  900. } else {
  901. deblock_left = (s->mb_x > 0);
  902. deblock_top = (s->mb_y > !!MB_FIELD);
  903. }
  904. src_y -= linesize + 1;
  905. src_cb -= uvlinesize + 1;
  906. src_cr -= uvlinesize + 1;
  907. top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
  908. top_border = h->top_borders[top_idx][s->mb_x];
  909. #define XCHG(a,b,xchg)\
  910. if (xchg) AV_SWAP64(b,a);\
  911. else AV_COPY64(b,a);
  912. if(deblock_top){
  913. if(deblock_left){
  914. XCHG(top_border_m1+8, src_y -7, 1);
  915. }
  916. XCHG(top_border+0, src_y +1, xchg);
  917. XCHG(top_border+8, src_y +9, 1);
  918. if(s->mb_x+1 < s->mb_width){
  919. XCHG(h->top_borders[top_idx][s->mb_x+1], src_y +17, 1);
  920. }
  921. }
  922. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  923. if(deblock_top){
  924. if(deblock_left){
  925. XCHG(top_border_m1+16, src_cb -7, 1);
  926. XCHG(top_border_m1+24, src_cr -7, 1);
  927. }
  928. XCHG(top_border+16, src_cb+1, 1);
  929. XCHG(top_border+24, src_cr+1, 1);
  930. }
  931. }
  932. }
  933. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  934. MpegEncContext * const s = &h->s;
  935. const int mb_x= s->mb_x;
  936. const int mb_y= s->mb_y;
  937. const int mb_xy= h->mb_xy;
  938. const int mb_type= s->current_picture.mb_type[mb_xy];
  939. uint8_t *dest_y, *dest_cb, *dest_cr;
  940. int linesize, uvlinesize /*dct_offset*/;
  941. int i;
  942. int *block_offset = &h->block_offset[0];
  943. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  944. /* is_h264 should always be true if SVQ3 is disabled. */
  945. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  946. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  947. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  948. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  949. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  950. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  951. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  952. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  953. h->list_counts[mb_xy]= h->list_count;
  954. if (!simple && MB_FIELD) {
  955. linesize = h->mb_linesize = s->linesize * 2;
  956. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  957. block_offset = &h->block_offset[24];
  958. if(mb_y&1){ //FIXME move out of this function?
  959. dest_y -= s->linesize*15;
  960. dest_cb-= s->uvlinesize*7;
  961. dest_cr-= s->uvlinesize*7;
  962. }
  963. if(FRAME_MBAFF) {
  964. int list;
  965. for(list=0; list<h->list_count; list++){
  966. if(!USES_LIST(mb_type, list))
  967. continue;
  968. if(IS_16X16(mb_type)){
  969. int8_t *ref = &h->ref_cache[list][scan8[0]];
  970. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  971. }else{
  972. for(i=0; i<16; i+=4){
  973. int ref = h->ref_cache[list][scan8[i]];
  974. if(ref >= 0)
  975. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  976. }
  977. }
  978. }
  979. }
  980. } else {
  981. linesize = h->mb_linesize = s->linesize;
  982. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  983. // dct_offset = s->linesize * 16;
  984. }
  985. if (!simple && IS_INTRA_PCM(mb_type)) {
  986. for (i=0; i<16; i++) {
  987. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  988. }
  989. for (i=0; i<8; i++) {
  990. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  991. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  992. }
  993. } else {
  994. if(IS_INTRA(mb_type)){
  995. if(h->deblocking_filter)
  996. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  997. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  998. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  999. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  1000. }
  1001. if(IS_INTRA4x4(mb_type)){
  1002. if(simple || !s->encoding){
  1003. if(IS_8x8DCT(mb_type)){
  1004. if(transform_bypass){
  1005. idct_dc_add =
  1006. idct_add = s->dsp.add_pixels8;
  1007. }else{
  1008. idct_dc_add = s->dsp.h264_idct8_dc_add;
  1009. idct_add = s->dsp.h264_idct8_add;
  1010. }
  1011. for(i=0; i<16; i+=4){
  1012. uint8_t * const ptr= dest_y + block_offset[i];
  1013. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1014. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1015. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  1016. }else{
  1017. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  1018. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1019. (h->topright_samples_available<<i)&0x4000, linesize);
  1020. if(nnz){
  1021. if(nnz == 1 && h->mb[i*16])
  1022. idct_dc_add(ptr, h->mb + i*16, linesize);
  1023. else
  1024. idct_add (ptr, h->mb + i*16, linesize);
  1025. }
  1026. }
  1027. }
  1028. }else{
  1029. if(transform_bypass){
  1030. idct_dc_add =
  1031. idct_add = s->dsp.add_pixels4;
  1032. }else{
  1033. idct_dc_add = s->dsp.h264_idct_dc_add;
  1034. idct_add = s->dsp.h264_idct_add;
  1035. }
  1036. for(i=0; i<16; i++){
  1037. uint8_t * const ptr= dest_y + block_offset[i];
  1038. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1039. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1040. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  1041. }else{
  1042. uint8_t *topright;
  1043. int nnz, tr;
  1044. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1045. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1046. assert(mb_y || linesize <= block_offset[i]);
  1047. if(!topright_avail){
  1048. tr= ptr[3 - linesize]*0x01010101;
  1049. topright= (uint8_t*) &tr;
  1050. }else
  1051. topright= ptr + 4 - linesize;
  1052. }else
  1053. topright= NULL;
  1054. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1055. nnz = h->non_zero_count_cache[ scan8[i] ];
  1056. if(nnz){
  1057. if(is_h264){
  1058. if(nnz == 1 && h->mb[i*16])
  1059. idct_dc_add(ptr, h->mb + i*16, linesize);
  1060. else
  1061. idct_add (ptr, h->mb + i*16, linesize);
  1062. }else
  1063. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  1064. }
  1065. }
  1066. }
  1067. }
  1068. }
  1069. }else{
  1070. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1071. if(is_h264){
  1072. if(!transform_bypass)
  1073. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  1074. }else
  1075. ff_svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  1076. }
  1077. if(h->deblocking_filter)
  1078. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  1079. }else if(is_h264){
  1080. hl_motion(h, dest_y, dest_cb, dest_cr,
  1081. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1082. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1083. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  1084. }
  1085. if(!IS_INTRA4x4(mb_type)){
  1086. if(is_h264){
  1087. if(IS_INTRA16x16(mb_type)){
  1088. if(transform_bypass){
  1089. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1090. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  1091. }else{
  1092. for(i=0; i<16; i++){
  1093. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1094. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  1095. }
  1096. }
  1097. }else{
  1098. s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1099. }
  1100. }else if(h->cbp&15){
  1101. if(transform_bypass){
  1102. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1103. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1104. for(i=0; i<16; i+=di){
  1105. if(h->non_zero_count_cache[ scan8[i] ]){
  1106. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  1107. }
  1108. }
  1109. }else{
  1110. if(IS_8x8DCT(mb_type)){
  1111. s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1112. }else{
  1113. s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1114. }
  1115. }
  1116. }
  1117. }else{
  1118. for(i=0; i<16; i++){
  1119. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  1120. uint8_t * const ptr= dest_y + block_offset[i];
  1121. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1122. }
  1123. }
  1124. }
  1125. }
  1126. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1127. uint8_t *dest[2] = {dest_cb, dest_cr};
  1128. if(transform_bypass){
  1129. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1130. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  1131. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  1132. }else{
  1133. idct_add = s->dsp.add_pixels4;
  1134. for(i=16; i<16+8; i++){
  1135. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1136. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1137. }
  1138. }
  1139. }else{
  1140. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1141. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1142. if(is_h264){
  1143. idct_add = s->dsp.h264_idct_add;
  1144. idct_dc_add = s->dsp.h264_idct_dc_add;
  1145. for(i=16; i<16+8; i++){
  1146. if(h->non_zero_count_cache[ scan8[i] ])
  1147. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1148. else if(h->mb[i*16])
  1149. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1150. }
  1151. }else{
  1152. for(i=16; i<16+8; i++){
  1153. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1154. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  1155. ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2);
  1156. }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. }
  1162. if(h->cbp || IS_INTRA(mb_type))
  1163. s->dsp.clear_blocks(h->mb);
  1164. }
  1165. /**
  1166. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1167. */
  1168. static void hl_decode_mb_simple(H264Context *h){
  1169. hl_decode_mb_internal(h, 1);
  1170. }
  1171. /**
  1172. * Process a macroblock; this handles edge cases, such as interlacing.
  1173. */
  1174. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1175. hl_decode_mb_internal(h, 0);
  1176. }
  1177. void ff_h264_hl_decode_mb(H264Context *h){
  1178. MpegEncContext * const s = &h->s;
  1179. const int mb_xy= h->mb_xy;
  1180. const int mb_type= s->current_picture.mb_type[mb_xy];
  1181. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1182. if (is_complex)
  1183. hl_decode_mb_complex(h);
  1184. else hl_decode_mb_simple(h);
  1185. }
  1186. static int pred_weight_table(H264Context *h){
  1187. MpegEncContext * const s = &h->s;
  1188. int list, i;
  1189. int luma_def, chroma_def;
  1190. h->use_weight= 0;
  1191. h->use_weight_chroma= 0;
  1192. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1193. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1194. luma_def = 1<<h->luma_log2_weight_denom;
  1195. chroma_def = 1<<h->chroma_log2_weight_denom;
  1196. for(list=0; list<2; list++){
  1197. h->luma_weight_flag[list] = 0;
  1198. h->chroma_weight_flag[list] = 0;
  1199. for(i=0; i<h->ref_count[list]; i++){
  1200. int luma_weight_flag, chroma_weight_flag;
  1201. luma_weight_flag= get_bits1(&s->gb);
  1202. if(luma_weight_flag){
  1203. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  1204. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  1205. if( h->luma_weight[list][i] != luma_def
  1206. || h->luma_offset[list][i] != 0) {
  1207. h->use_weight= 1;
  1208. h->luma_weight_flag[list]= 1;
  1209. }
  1210. }else{
  1211. h->luma_weight[list][i]= luma_def;
  1212. h->luma_offset[list][i]= 0;
  1213. }
  1214. if(CHROMA){
  1215. chroma_weight_flag= get_bits1(&s->gb);
  1216. if(chroma_weight_flag){
  1217. int j;
  1218. for(j=0; j<2; j++){
  1219. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  1220. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  1221. if( h->chroma_weight[list][i][j] != chroma_def
  1222. || h->chroma_offset[list][i][j] != 0) {
  1223. h->use_weight_chroma= 1;
  1224. h->chroma_weight_flag[list]= 1;
  1225. }
  1226. }
  1227. }else{
  1228. int j;
  1229. for(j=0; j<2; j++){
  1230. h->chroma_weight[list][i][j]= chroma_def;
  1231. h->chroma_offset[list][i][j]= 0;
  1232. }
  1233. }
  1234. }
  1235. }
  1236. if(h->slice_type_nos != FF_B_TYPE) break;
  1237. }
  1238. h->use_weight= h->use_weight || h->use_weight_chroma;
  1239. return 0;
  1240. }
  1241. static void implicit_weight_table(H264Context *h){
  1242. MpegEncContext * const s = &h->s;
  1243. int ref0, ref1, i;
  1244. int cur_poc = s->current_picture_ptr->poc;
  1245. for (i = 0; i < 2; i++) {
  1246. h->luma_weight_flag[i] = 0;
  1247. h->chroma_weight_flag[i] = 0;
  1248. }
  1249. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  1250. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1251. h->use_weight= 0;
  1252. h->use_weight_chroma= 0;
  1253. return;
  1254. }
  1255. h->use_weight= 2;
  1256. h->use_weight_chroma= 2;
  1257. h->luma_log2_weight_denom= 5;
  1258. h->chroma_log2_weight_denom= 5;
  1259. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  1260. int poc0 = h->ref_list[0][ref0].poc;
  1261. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  1262. int poc1 = h->ref_list[1][ref1].poc;
  1263. int td = av_clip(poc1 - poc0, -128, 127);
  1264. if(td){
  1265. int tb = av_clip(cur_poc - poc0, -128, 127);
  1266. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1267. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  1268. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  1269. h->implicit_weight[ref0][ref1] = 32;
  1270. else
  1271. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  1272. }else
  1273. h->implicit_weight[ref0][ref1] = 32;
  1274. }
  1275. }
  1276. }
  1277. /**
  1278. * instantaneous decoder refresh.
  1279. */
  1280. static void idr(H264Context *h){
  1281. ff_h264_remove_all_refs(h);
  1282. h->prev_frame_num= 0;
  1283. h->prev_frame_num_offset= 0;
  1284. h->prev_poc_msb=
  1285. h->prev_poc_lsb= 0;
  1286. }
  1287. /* forget old pics after a seek */
  1288. static void flush_dpb(AVCodecContext *avctx){
  1289. H264Context *h= avctx->priv_data;
  1290. int i;
  1291. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  1292. if(h->delayed_pic[i])
  1293. h->delayed_pic[i]->reference= 0;
  1294. h->delayed_pic[i]= NULL;
  1295. }
  1296. h->outputed_poc= INT_MIN;
  1297. h->prev_interlaced_frame = 1;
  1298. idr(h);
  1299. if(h->s.current_picture_ptr)
  1300. h->s.current_picture_ptr->reference= 0;
  1301. h->s.first_field= 0;
  1302. ff_h264_reset_sei(h);
  1303. ff_mpeg_flush(avctx);
  1304. }
  1305. static int init_poc(H264Context *h){
  1306. MpegEncContext * const s = &h->s;
  1307. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  1308. int field_poc[2];
  1309. Picture *cur = s->current_picture_ptr;
  1310. h->frame_num_offset= h->prev_frame_num_offset;
  1311. if(h->frame_num < h->prev_frame_num)
  1312. h->frame_num_offset += max_frame_num;
  1313. if(h->sps.poc_type==0){
  1314. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  1315. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  1316. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  1317. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  1318. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  1319. else
  1320. h->poc_msb = h->prev_poc_msb;
  1321. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  1322. field_poc[0] =
  1323. field_poc[1] = h->poc_msb + h->poc_lsb;
  1324. if(s->picture_structure == PICT_FRAME)
  1325. field_poc[1] += h->delta_poc_bottom;
  1326. }else if(h->sps.poc_type==1){
  1327. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  1328. int i;
  1329. if(h->sps.poc_cycle_length != 0)
  1330. abs_frame_num = h->frame_num_offset + h->frame_num;
  1331. else
  1332. abs_frame_num = 0;
  1333. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  1334. abs_frame_num--;
  1335. expected_delta_per_poc_cycle = 0;
  1336. for(i=0; i < h->sps.poc_cycle_length; i++)
  1337. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  1338. if(abs_frame_num > 0){
  1339. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  1340. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  1341. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  1342. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  1343. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  1344. } else
  1345. expectedpoc = 0;
  1346. if(h->nal_ref_idc == 0)
  1347. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  1348. field_poc[0] = expectedpoc + h->delta_poc[0];
  1349. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  1350. if(s->picture_structure == PICT_FRAME)
  1351. field_poc[1] += h->delta_poc[1];
  1352. }else{
  1353. int poc= 2*(h->frame_num_offset + h->frame_num);
  1354. if(!h->nal_ref_idc)
  1355. poc--;
  1356. field_poc[0]= poc;
  1357. field_poc[1]= poc;
  1358. }
  1359. if(s->picture_structure != PICT_BOTTOM_FIELD)
  1360. s->current_picture_ptr->field_poc[0]= field_poc[0];
  1361. if(s->picture_structure != PICT_TOP_FIELD)
  1362. s->current_picture_ptr->field_poc[1]= field_poc[1];
  1363. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  1364. return 0;
  1365. }
  1366. /**
  1367. * initialize scan tables
  1368. */
  1369. static void init_scan_tables(H264Context *h){
  1370. MpegEncContext * const s = &h->s;
  1371. int i;
  1372. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  1373. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  1374. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  1375. }else{
  1376. for(i=0; i<16; i++){
  1377. #define T(x) (x>>2) | ((x<<2) & 0xF)
  1378. h->zigzag_scan[i] = T(zigzag_scan[i]);
  1379. h-> field_scan[i] = T( field_scan[i]);
  1380. #undef T
  1381. }
  1382. }
  1383. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  1384. memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t));
  1385. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  1386. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  1387. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  1388. }else{
  1389. for(i=0; i<64; i++){
  1390. #define T(x) (x>>3) | ((x&7)<<3)
  1391. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  1392. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  1393. h->field_scan8x8[i] = T(field_scan8x8[i]);
  1394. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  1395. #undef T
  1396. }
  1397. }
  1398. if(h->sps.transform_bypass){ //FIXME same ugly
  1399. h->zigzag_scan_q0 = zigzag_scan;
  1400. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  1401. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  1402. h->field_scan_q0 = field_scan;
  1403. h->field_scan8x8_q0 = field_scan8x8;
  1404. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  1405. }else{
  1406. h->zigzag_scan_q0 = h->zigzag_scan;
  1407. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  1408. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  1409. h->field_scan_q0 = h->field_scan;
  1410. h->field_scan8x8_q0 = h->field_scan8x8;
  1411. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  1412. }
  1413. }
  1414. static void field_end(H264Context *h){
  1415. MpegEncContext * const s = &h->s;
  1416. AVCodecContext * const avctx= s->avctx;
  1417. s->mb_y= 0;
  1418. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  1419. s->current_picture_ptr->pict_type= s->pict_type;
  1420. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1421. ff_vdpau_h264_set_reference_frames(s);
  1422. if(!s->dropable) {
  1423. ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1424. h->prev_poc_msb= h->poc_msb;
  1425. h->prev_poc_lsb= h->poc_lsb;
  1426. }
  1427. h->prev_frame_num_offset= h->frame_num_offset;
  1428. h->prev_frame_num= h->frame_num;
  1429. if (avctx->hwaccel) {
  1430. if (avctx->hwaccel->end_frame(avctx) < 0)
  1431. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  1432. }
  1433. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1434. ff_vdpau_h264_picture_complete(s);
  1435. /*
  1436. * FIXME: Error handling code does not seem to support interlaced
  1437. * when slices span multiple rows
  1438. * The ff_er_add_slice calls don't work right for bottom
  1439. * fields; they cause massive erroneous error concealing
  1440. * Error marking covers both fields (top and bottom).
  1441. * This causes a mismatched s->error_count
  1442. * and a bad error table. Further, the error count goes to
  1443. * INT_MAX when called for bottom field, because mb_y is
  1444. * past end by one (callers fault) and resync_mb_y != 0
  1445. * causes problems for the first MB line, too.
  1446. */
  1447. if (!FIELD_PICTURE)
  1448. ff_er_frame_end(s);
  1449. MPV_frame_end(s);
  1450. h->current_slice=0;
  1451. }
  1452. /**
  1453. * Replicates H264 "master" context to thread contexts.
  1454. */
  1455. static void clone_slice(H264Context *dst, H264Context *src)
  1456. {
  1457. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  1458. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  1459. dst->s.current_picture = src->s.current_picture;
  1460. dst->s.linesize = src->s.linesize;
  1461. dst->s.uvlinesize = src->s.uvlinesize;
  1462. dst->s.first_field = src->s.first_field;
  1463. dst->prev_poc_msb = src->prev_poc_msb;
  1464. dst->prev_poc_lsb = src->prev_poc_lsb;
  1465. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  1466. dst->prev_frame_num = src->prev_frame_num;
  1467. dst->short_ref_count = src->short_ref_count;
  1468. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  1469. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  1470. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  1471. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  1472. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  1473. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  1474. }
  1475. /**
  1476. * decodes a slice header.
  1477. * This will also call MPV_common_init() and frame_start() as needed.
  1478. *
  1479. * @param h h264context
  1480. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  1481. *
  1482. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1483. */
  1484. static int decode_slice_header(H264Context *h, H264Context *h0){
  1485. MpegEncContext * const s = &h->s;
  1486. MpegEncContext * const s0 = &h0->s;
  1487. unsigned int first_mb_in_slice;
  1488. unsigned int pps_id;
  1489. int num_ref_idx_active_override_flag;
  1490. unsigned int slice_type, tmp, i, j;
  1491. int default_ref_list_done = 0;
  1492. int last_pic_structure;
  1493. s->dropable= h->nal_ref_idc == 0;
  1494. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  1495. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  1496. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  1497. }else{
  1498. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  1499. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  1500. }
  1501. first_mb_in_slice= get_ue_golomb(&s->gb);
  1502. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  1503. if(h0->current_slice && FIELD_PICTURE){
  1504. field_end(h);
  1505. }
  1506. h0->current_slice = 0;
  1507. if (!s0->first_field)
  1508. s->current_picture_ptr= NULL;
  1509. }
  1510. slice_type= get_ue_golomb_31(&s->gb);
  1511. if(slice_type > 9){
  1512. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  1513. return -1;
  1514. }
  1515. if(slice_type > 4){
  1516. slice_type -= 5;
  1517. h->slice_type_fixed=1;
  1518. }else
  1519. h->slice_type_fixed=0;
  1520. slice_type= golomb_to_pict_type[ slice_type ];
  1521. if (slice_type == FF_I_TYPE
  1522. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  1523. default_ref_list_done = 1;
  1524. }
  1525. h->slice_type= slice_type;
  1526. h->slice_type_nos= slice_type & 3;
  1527. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  1528. pps_id= get_ue_golomb(&s->gb);
  1529. if(pps_id>=MAX_PPS_COUNT){
  1530. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  1531. return -1;
  1532. }
  1533. if(!h0->pps_buffers[pps_id]) {
  1534. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  1535. return -1;
  1536. }
  1537. h->pps= *h0->pps_buffers[pps_id];
  1538. if(!h0->sps_buffers[h->pps.sps_id]) {
  1539. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  1540. return -1;
  1541. }
  1542. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1543. if(h == h0 && h->dequant_coeff_pps != pps_id){
  1544. h->dequant_coeff_pps = pps_id;
  1545. init_dequant_tables(h);
  1546. }
  1547. s->mb_width= h->sps.mb_width;
  1548. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1549. h->b_stride= s->mb_width*4;
  1550. h->b8_stride= s->mb_width*2;
  1551. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  1552. if(h->sps.frame_mbs_only_flag)
  1553. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  1554. else
  1555. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  1556. if (s->context_initialized
  1557. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  1558. if(h != h0)
  1559. return -1; // width / height changed during parallelized decoding
  1560. free_tables(h);
  1561. flush_dpb(s->avctx);
  1562. MPV_common_end(s);
  1563. }
  1564. if (!s->context_initialized) {
  1565. if(h != h0)
  1566. return -1; // we cant (re-)initialize context during parallel decoding
  1567. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1568. s->avctx->sample_aspect_ratio= h->sps.sar;
  1569. if(!s->avctx->sample_aspect_ratio.den)
  1570. s->avctx->sample_aspect_ratio.den = 1;
  1571. if(h->sps.video_signal_type_present_flag){
  1572. s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  1573. if(h->sps.colour_description_present_flag){
  1574. s->avctx->color_primaries = h->sps.color_primaries;
  1575. s->avctx->color_trc = h->sps.color_trc;
  1576. s->avctx->colorspace = h->sps.colorspace;
  1577. }
  1578. }
  1579. if(h->sps.timing_info_present_flag){
  1580. int64_t den= h->sps.time_scale;
  1581. if(h->x264_build < 44U)
  1582. den *= 2;
  1583. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  1584. h->sps.num_units_in_tick, den, 1<<30);
  1585. }
  1586. s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts);
  1587. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  1588. if (MPV_common_init(s) < 0)
  1589. return -1;
  1590. s->first_field = 0;
  1591. h->prev_interlaced_frame = 1;
  1592. init_scan_tables(h);
  1593. ff_h264_alloc_tables(h);
  1594. for(i = 1; i < s->avctx->thread_count; i++) {
  1595. H264Context *c;
  1596. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  1597. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  1598. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  1599. c->sps = h->sps;
  1600. c->pps = h->pps;
  1601. init_scan_tables(c);
  1602. clone_tables(c, h);
  1603. }
  1604. for(i = 0; i < s->avctx->thread_count; i++)
  1605. if(context_init(h->thread_context[i]) < 0)
  1606. return -1;
  1607. }
  1608. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  1609. h->mb_mbaff = 0;
  1610. h->mb_aff_frame = 0;
  1611. last_pic_structure = s0->picture_structure;
  1612. if(h->sps.frame_mbs_only_flag){
  1613. s->picture_structure= PICT_FRAME;
  1614. }else{
  1615. if(get_bits1(&s->gb)) { //field_pic_flag
  1616. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  1617. } else {
  1618. s->picture_structure= PICT_FRAME;
  1619. h->mb_aff_frame = h->sps.mb_aff;
  1620. }
  1621. }
  1622. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  1623. if(h0->current_slice == 0){
  1624. while(h->frame_num != h->prev_frame_num &&
  1625. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  1626. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  1627. if (ff_h264_frame_start(h) < 0)
  1628. return -1;
  1629. h->prev_frame_num++;
  1630. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  1631. s->current_picture_ptr->frame_num= h->prev_frame_num;
  1632. ff_h264_execute_ref_pic_marking(h, NULL, 0);
  1633. }
  1634. /* See if we have a decoded first field looking for a pair... */
  1635. if (s0->first_field) {
  1636. assert(s0->current_picture_ptr);
  1637. assert(s0->current_picture_ptr->data[0]);
  1638. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  1639. /* figure out if we have a complementary field pair */
  1640. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  1641. /*
  1642. * Previous field is unmatched. Don't display it, but let it
  1643. * remain for reference if marked as such.
  1644. */
  1645. s0->current_picture_ptr = NULL;
  1646. s0->first_field = FIELD_PICTURE;
  1647. } else {
  1648. if (h->nal_ref_idc &&
  1649. s0->current_picture_ptr->reference &&
  1650. s0->current_picture_ptr->frame_num != h->frame_num) {
  1651. /*
  1652. * This and previous field were reference, but had
  1653. * different frame_nums. Consider this field first in
  1654. * pair. Throw away previous field except for reference
  1655. * purposes.
  1656. */
  1657. s0->first_field = 1;
  1658. s0->current_picture_ptr = NULL;
  1659. } else {
  1660. /* Second field in complementary pair */
  1661. s0->first_field = 0;
  1662. }
  1663. }
  1664. } else {
  1665. /* Frame or first field in a potentially complementary pair */
  1666. assert(!s0->current_picture_ptr);
  1667. s0->first_field = FIELD_PICTURE;
  1668. }
  1669. if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) {
  1670. s0->first_field = 0;
  1671. return -1;
  1672. }
  1673. }
  1674. if(h != h0)
  1675. clone_slice(h, h0);
  1676. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  1677. assert(s->mb_num == s->mb_width * s->mb_height);
  1678. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  1679. first_mb_in_slice >= s->mb_num){
  1680. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1681. return -1;
  1682. }
  1683. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  1684. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  1685. if (s->picture_structure == PICT_BOTTOM_FIELD)
  1686. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  1687. assert(s->mb_y < s->mb_height);
  1688. if(s->picture_structure==PICT_FRAME){
  1689. h->curr_pic_num= h->frame_num;
  1690. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  1691. }else{
  1692. h->curr_pic_num= 2*h->frame_num + 1;
  1693. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  1694. }
  1695. if(h->nal_unit_type == NAL_IDR_SLICE){
  1696. get_ue_golomb(&s->gb); /* idr_pic_id */
  1697. }
  1698. if(h->sps.poc_type==0){
  1699. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  1700. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  1701. h->delta_poc_bottom= get_se_golomb(&s->gb);
  1702. }
  1703. }
  1704. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  1705. h->delta_poc[0]= get_se_golomb(&s->gb);
  1706. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  1707. h->delta_poc[1]= get_se_golomb(&s->gb);
  1708. }
  1709. init_poc(h);
  1710. if(h->pps.redundant_pic_cnt_present){
  1711. h->redundant_pic_count= get_ue_golomb(&s->gb);
  1712. }
  1713. //set defaults, might be overridden a few lines later
  1714. h->ref_count[0]= h->pps.ref_count[0];
  1715. h->ref_count[1]= h->pps.ref_count[1];
  1716. if(h->slice_type_nos != FF_I_TYPE){
  1717. if(h->slice_type_nos == FF_B_TYPE){
  1718. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  1719. }
  1720. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  1721. if(num_ref_idx_active_override_flag){
  1722. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  1723. if(h->slice_type_nos==FF_B_TYPE)
  1724. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  1725. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  1726. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  1727. h->ref_count[0]= h->ref_count[1]= 1;
  1728. return -1;
  1729. }
  1730. }
  1731. if(h->slice_type_nos == FF_B_TYPE)
  1732. h->list_count= 2;
  1733. else
  1734. h->list_count= 1;
  1735. }else
  1736. h->list_count= 0;
  1737. if(!default_ref_list_done){
  1738. ff_h264_fill_default_ref_list(h);
  1739. }
  1740. if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0)
  1741. return -1;
  1742. if(h->slice_type_nos!=FF_I_TYPE){
  1743. s->last_picture_ptr= &h->ref_list[0][0];
  1744. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  1745. }
  1746. if(h->slice_type_nos==FF_B_TYPE){
  1747. s->next_picture_ptr= &h->ref_list[1][0];
  1748. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  1749. }
  1750. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  1751. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  1752. pred_weight_table(h);
  1753. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  1754. implicit_weight_table(h);
  1755. else {
  1756. h->use_weight = 0;
  1757. for (i = 0; i < 2; i++) {
  1758. h->luma_weight_flag[i] = 0;
  1759. h->chroma_weight_flag[i] = 0;
  1760. }
  1761. }
  1762. if(h->nal_ref_idc)
  1763. ff_h264_decode_ref_pic_marking(h0, &s->gb);
  1764. if(FRAME_MBAFF)
  1765. ff_h264_fill_mbaff_ref_list(h);
  1766. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  1767. ff_h264_direct_dist_scale_factor(h);
  1768. ff_h264_direct_ref_list_init(h);
  1769. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  1770. tmp = get_ue_golomb_31(&s->gb);
  1771. if(tmp > 2){
  1772. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  1773. return -1;
  1774. }
  1775. h->cabac_init_idc= tmp;
  1776. }
  1777. h->last_qscale_diff = 0;
  1778. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  1779. if(tmp>51){
  1780. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1781. return -1;
  1782. }
  1783. s->qscale= tmp;
  1784. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1785. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1786. //FIXME qscale / qp ... stuff
  1787. if(h->slice_type == FF_SP_TYPE){
  1788. get_bits1(&s->gb); /* sp_for_switch_flag */
  1789. }
  1790. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  1791. get_se_golomb(&s->gb); /* slice_qs_delta */
  1792. }
  1793. h->deblocking_filter = 1;
  1794. h->slice_alpha_c0_offset = 52;
  1795. h->slice_beta_offset = 52;
  1796. if( h->pps.deblocking_filter_parameters_present ) {
  1797. tmp= get_ue_golomb_31(&s->gb);
  1798. if(tmp > 2){
  1799. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  1800. return -1;
  1801. }
  1802. h->deblocking_filter= tmp;
  1803. if(h->deblocking_filter < 2)
  1804. h->deblocking_filter^= 1; // 1<->0
  1805. if( h->deblocking_filter ) {
  1806. h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
  1807. h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
  1808. if( h->slice_alpha_c0_offset > 104U
  1809. || h->slice_beta_offset > 104U){
  1810. av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
  1811. return -1;
  1812. }
  1813. }
  1814. }
  1815. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  1816. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  1817. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  1818. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  1819. h->deblocking_filter= 0;
  1820. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1821. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  1822. /* Cheat slightly for speed:
  1823. Do not bother to deblock across slices. */
  1824. h->deblocking_filter = 2;
  1825. } else {
  1826. h0->max_contexts = 1;
  1827. if(!h0->single_decode_warning) {
  1828. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1829. h0->single_decode_warning = 1;
  1830. }
  1831. if(h != h0)
  1832. return 1; // deblocking switched inside frame
  1833. }
  1834. }
  1835. h->qp_thresh= 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  1836. #if 0 //FMO
  1837. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  1838. slice_group_change_cycle= get_bits(&s->gb, ?);
  1839. #endif
  1840. h0->last_slice_type = slice_type;
  1841. h->slice_num = ++h0->current_slice;
  1842. if(h->slice_num >= MAX_SLICES){
  1843. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  1844. }
  1845. for(j=0; j<2; j++){
  1846. int id_list[16];
  1847. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  1848. for(i=0; i<16; i++){
  1849. id_list[i]= 60;
  1850. if(h->ref_list[j][i].data[0]){
  1851. int k;
  1852. uint8_t *base= h->ref_list[j][i].base[0];
  1853. for(k=0; k<h->short_ref_count; k++)
  1854. if(h->short_ref[k]->base[0] == base){
  1855. id_list[i]= k;
  1856. break;
  1857. }
  1858. for(k=0; k<h->long_ref_count; k++)
  1859. if(h->long_ref[k] && h->long_ref[k]->base[0] == base){
  1860. id_list[i]= h->short_ref_count + k;
  1861. break;
  1862. }
  1863. }
  1864. }
  1865. ref2frm[0]=
  1866. ref2frm[1]= -1;
  1867. for(i=0; i<16; i++)
  1868. ref2frm[i+2]= 4*id_list[i]
  1869. +(h->ref_list[j][i].reference&3);
  1870. ref2frm[18+0]=
  1871. ref2frm[18+1]= -1;
  1872. for(i=16; i<48; i++)
  1873. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  1874. +(h->ref_list[j][i].reference&3);
  1875. }
  1876. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  1877. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  1878. s->avctx->refs= h->sps.ref_frame_count;
  1879. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  1880. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1881. h->slice_num,
  1882. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  1883. first_mb_in_slice,
  1884. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1885. pps_id, h->frame_num,
  1886. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  1887. h->ref_count[0], h->ref_count[1],
  1888. s->qscale,
  1889. h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
  1890. h->use_weight,
  1891. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  1892. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  1893. );
  1894. }
  1895. return 0;
  1896. }
  1897. int ff_h264_get_slice_type(const H264Context *h)
  1898. {
  1899. switch (h->slice_type) {
  1900. case FF_P_TYPE: return 0;
  1901. case FF_B_TYPE: return 1;
  1902. case FF_I_TYPE: return 2;
  1903. case FF_SP_TYPE: return 3;
  1904. case FF_SI_TYPE: return 4;
  1905. default: return -1;
  1906. }
  1907. }
  1908. static void loop_filter(H264Context *h){
  1909. MpegEncContext * const s = &h->s;
  1910. uint8_t *dest_y, *dest_cb, *dest_cr;
  1911. int linesize, uvlinesize, mb_x, mb_y;
  1912. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  1913. const int old_slice_type= h->slice_type;
  1914. if(h->deblocking_filter) {
  1915. for(mb_x= 0; mb_x<s->mb_width; mb_x++){
  1916. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  1917. int mb_xy, mb_type;
  1918. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  1919. h->slice_num= h->slice_table[mb_xy];
  1920. mb_type= s->current_picture.mb_type[mb_xy];
  1921. h->list_count= h->list_counts[mb_xy];
  1922. if(FRAME_MBAFF)
  1923. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  1924. s->mb_x= mb_x;
  1925. s->mb_y= mb_y;
  1926. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  1927. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  1928. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  1929. //FIXME simplify above
  1930. if (MB_FIELD) {
  1931. linesize = h->mb_linesize = s->linesize * 2;
  1932. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  1933. if(mb_y&1){ //FIXME move out of this function?
  1934. dest_y -= s->linesize*15;
  1935. dest_cb-= s->uvlinesize*7;
  1936. dest_cr-= s->uvlinesize*7;
  1937. }
  1938. } else {
  1939. linesize = h->mb_linesize = s->linesize;
  1940. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  1941. }
  1942. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  1943. if(fill_filter_caches(h, mb_type))
  1944. continue;
  1945. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  1946. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  1947. if (FRAME_MBAFF) {
  1948. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1949. } else {
  1950. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1951. }
  1952. }
  1953. }
  1954. }
  1955. h->slice_type= old_slice_type;
  1956. s->mb_x= 0;
  1957. s->mb_y= end_mb_y - FRAME_MBAFF;
  1958. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1959. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1960. }
  1961. static void predict_field_decoding_flag(H264Context *h){
  1962. MpegEncContext * const s = &h->s;
  1963. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  1964. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  1965. ? s->current_picture.mb_type[mb_xy-1]
  1966. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  1967. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  1968. : 0;
  1969. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1970. }
  1971. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  1972. H264Context *h = *(void**)arg;
  1973. MpegEncContext * const s = &h->s;
  1974. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  1975. s->mb_skip_run= -1;
  1976. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  1977. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  1978. if( h->pps.cabac ) {
  1979. /* realign */
  1980. align_get_bits( &s->gb );
  1981. /* init cabac */
  1982. ff_init_cabac_states( &h->cabac);
  1983. ff_init_cabac_decoder( &h->cabac,
  1984. s->gb.buffer + get_bits_count(&s->gb)/8,
  1985. (get_bits_left(&s->gb) + 7)/8);
  1986. ff_h264_init_cabac_states(h);
  1987. for(;;){
  1988. //START_TIMER
  1989. int ret = ff_h264_decode_mb_cabac(h);
  1990. int eos;
  1991. //STOP_TIMER("decode_mb_cabac")
  1992. if(ret>=0) ff_h264_hl_decode_mb(h);
  1993. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  1994. s->mb_y++;
  1995. ret = ff_h264_decode_mb_cabac(h);
  1996. if(ret>=0) ff_h264_hl_decode_mb(h);
  1997. s->mb_y--;
  1998. }
  1999. eos = get_cabac_terminate( &h->cabac );
  2000. if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
  2001. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2002. return 0;
  2003. }
  2004. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  2005. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  2006. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2007. return -1;
  2008. }
  2009. if( ++s->mb_x >= s->mb_width ) {
  2010. s->mb_x = 0;
  2011. loop_filter(h);
  2012. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2013. ++s->mb_y;
  2014. if(FIELD_OR_MBAFF_PICTURE) {
  2015. ++s->mb_y;
  2016. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2017. predict_field_decoding_flag(h);
  2018. }
  2019. }
  2020. if( eos || s->mb_y >= s->mb_height ) {
  2021. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2022. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2023. return 0;
  2024. }
  2025. }
  2026. } else {
  2027. for(;;){
  2028. int ret = ff_h264_decode_mb_cavlc(h);
  2029. if(ret>=0) ff_h264_hl_decode_mb(h);
  2030. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  2031. s->mb_y++;
  2032. ret = ff_h264_decode_mb_cavlc(h);
  2033. if(ret>=0) ff_h264_hl_decode_mb(h);
  2034. s->mb_y--;
  2035. }
  2036. if(ret<0){
  2037. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2038. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2039. return -1;
  2040. }
  2041. if(++s->mb_x >= s->mb_width){
  2042. s->mb_x=0;
  2043. loop_filter(h);
  2044. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2045. ++s->mb_y;
  2046. if(FIELD_OR_MBAFF_PICTURE) {
  2047. ++s->mb_y;
  2048. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2049. predict_field_decoding_flag(h);
  2050. }
  2051. if(s->mb_y >= s->mb_height){
  2052. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2053. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  2054. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2055. return 0;
  2056. }else{
  2057. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2058. return -1;
  2059. }
  2060. }
  2061. }
  2062. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  2063. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2064. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  2065. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2066. return 0;
  2067. }else{
  2068. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2069. return -1;
  2070. }
  2071. }
  2072. }
  2073. }
  2074. #if 0
  2075. for(;s->mb_y < s->mb_height; s->mb_y++){
  2076. for(;s->mb_x < s->mb_width; s->mb_x++){
  2077. int ret= decode_mb(h);
  2078. ff_h264_hl_decode_mb(h);
  2079. if(ret<0){
  2080. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2081. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2082. return -1;
  2083. }
  2084. if(++s->mb_x >= s->mb_width){
  2085. s->mb_x=0;
  2086. if(++s->mb_y >= s->mb_height){
  2087. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2088. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2089. return 0;
  2090. }else{
  2091. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2092. return -1;
  2093. }
  2094. }
  2095. }
  2096. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  2097. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2098. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2099. return 0;
  2100. }else{
  2101. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2102. return -1;
  2103. }
  2104. }
  2105. }
  2106. s->mb_x=0;
  2107. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2108. }
  2109. #endif
  2110. return -1; //not reached
  2111. }
  2112. /**
  2113. * Call decode_slice() for each context.
  2114. *
  2115. * @param h h264 master context
  2116. * @param context_count number of contexts to execute
  2117. */
  2118. static void execute_decode_slices(H264Context *h, int context_count){
  2119. MpegEncContext * const s = &h->s;
  2120. AVCodecContext * const avctx= s->avctx;
  2121. H264Context *hx;
  2122. int i;
  2123. if (s->avctx->hwaccel)
  2124. return;
  2125. if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2126. return;
  2127. if(context_count == 1) {
  2128. decode_slice(avctx, &h);
  2129. } else {
  2130. for(i = 1; i < context_count; i++) {
  2131. hx = h->thread_context[i];
  2132. hx->s.error_recognition = avctx->error_recognition;
  2133. hx->s.error_count = 0;
  2134. }
  2135. avctx->execute(avctx, (void *)decode_slice,
  2136. h->thread_context, NULL, context_count, sizeof(void*));
  2137. /* pull back stuff from slices to master context */
  2138. hx = h->thread_context[context_count - 1];
  2139. s->mb_x = hx->s.mb_x;
  2140. s->mb_y = hx->s.mb_y;
  2141. s->dropable = hx->s.dropable;
  2142. s->picture_structure = hx->s.picture_structure;
  2143. for(i = 1; i < context_count; i++)
  2144. h->s.error_count += h->thread_context[i]->s.error_count;
  2145. }
  2146. }
  2147. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  2148. MpegEncContext * const s = &h->s;
  2149. AVCodecContext * const avctx= s->avctx;
  2150. int buf_index=0;
  2151. H264Context *hx; ///< thread context
  2152. int context_count = 0;
  2153. int next_avc= h->is_avc ? 0 : buf_size;
  2154. h->max_contexts = avctx->thread_count;
  2155. #if 0
  2156. int i;
  2157. for(i=0; i<50; i++){
  2158. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  2159. }
  2160. #endif
  2161. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  2162. h->current_slice = 0;
  2163. if (!s->first_field)
  2164. s->current_picture_ptr= NULL;
  2165. ff_h264_reset_sei(h);
  2166. }
  2167. for(;;){
  2168. int consumed;
  2169. int dst_length;
  2170. int bit_length;
  2171. const uint8_t *ptr;
  2172. int i, nalsize = 0;
  2173. int err;
  2174. if(buf_index >= next_avc) {
  2175. if(buf_index >= buf_size) break;
  2176. nalsize = 0;
  2177. for(i = 0; i < h->nal_length_size; i++)
  2178. nalsize = (nalsize << 8) | buf[buf_index++];
  2179. if(nalsize <= 1 || nalsize > buf_size - buf_index){
  2180. if(nalsize == 1){
  2181. buf_index++;
  2182. continue;
  2183. }else{
  2184. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  2185. break;
  2186. }
  2187. }
  2188. next_avc= buf_index + nalsize;
  2189. } else {
  2190. // start code prefix search
  2191. for(; buf_index + 3 < next_avc; buf_index++){
  2192. // This should always succeed in the first iteration.
  2193. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  2194. break;
  2195. }
  2196. if(buf_index+3 >= buf_size) break;
  2197. buf_index+=3;
  2198. if(buf_index >= next_avc) continue;
  2199. }
  2200. hx = h->thread_context[context_count];
  2201. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  2202. if (ptr==NULL || dst_length < 0){
  2203. return -1;
  2204. }
  2205. i= buf_index + consumed;
  2206. if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
  2207. buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
  2208. s->workaround_bugs |= FF_BUG_TRUNCATED;
  2209. if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
  2210. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  2211. dst_length--;
  2212. }
  2213. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  2214. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  2215. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  2216. }
  2217. if (h->is_avc && (nalsize != consumed) && nalsize){
  2218. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  2219. }
  2220. buf_index += consumed;
  2221. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  2222. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2223. continue;
  2224. again:
  2225. err = 0;
  2226. switch(hx->nal_unit_type){
  2227. case NAL_IDR_SLICE:
  2228. if (h->nal_unit_type != NAL_IDR_SLICE) {
  2229. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  2230. return -1;
  2231. }
  2232. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  2233. case NAL_SLICE:
  2234. init_get_bits(&hx->s.gb, ptr, bit_length);
  2235. hx->intra_gb_ptr=
  2236. hx->inter_gb_ptr= &hx->s.gb;
  2237. hx->s.data_partitioning = 0;
  2238. if((err = decode_slice_header(hx, h)))
  2239. break;
  2240. avctx->profile = hx->sps.profile_idc;
  2241. avctx->level = hx->sps.level_idc;
  2242. if (s->avctx->hwaccel && h->current_slice == 1) {
  2243. if (s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  2244. return -1;
  2245. }
  2246. s->current_picture_ptr->key_frame |=
  2247. (hx->nal_unit_type == NAL_IDR_SLICE) ||
  2248. (h->sei_recovery_frame_cnt >= 0);
  2249. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  2250. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2251. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2252. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2253. && avctx->skip_frame < AVDISCARD_ALL){
  2254. if(avctx->hwaccel) {
  2255. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  2256. return -1;
  2257. }else
  2258. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2259. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  2260. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  2261. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  2262. }else
  2263. context_count++;
  2264. }
  2265. break;
  2266. case NAL_DPA:
  2267. init_get_bits(&hx->s.gb, ptr, bit_length);
  2268. hx->intra_gb_ptr=
  2269. hx->inter_gb_ptr= NULL;
  2270. if ((err = decode_slice_header(hx, h)) < 0)
  2271. break;
  2272. avctx->profile = hx->sps.profile_idc;
  2273. avctx->level = hx->sps.level_idc;
  2274. hx->s.data_partitioning = 1;
  2275. break;
  2276. case NAL_DPB:
  2277. init_get_bits(&hx->intra_gb, ptr, bit_length);
  2278. hx->intra_gb_ptr= &hx->intra_gb;
  2279. break;
  2280. case NAL_DPC:
  2281. init_get_bits(&hx->inter_gb, ptr, bit_length);
  2282. hx->inter_gb_ptr= &hx->inter_gb;
  2283. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  2284. && s->context_initialized
  2285. && s->hurry_up < 5
  2286. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2287. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2288. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2289. && avctx->skip_frame < AVDISCARD_ALL)
  2290. context_count++;
  2291. break;
  2292. case NAL_SEI:
  2293. init_get_bits(&s->gb, ptr, bit_length);
  2294. ff_h264_decode_sei(h);
  2295. break;
  2296. case NAL_SPS:
  2297. init_get_bits(&s->gb, ptr, bit_length);
  2298. ff_h264_decode_seq_parameter_set(h);
  2299. if(s->flags& CODEC_FLAG_LOW_DELAY)
  2300. s->low_delay=1;
  2301. if(avctx->has_b_frames < 2)
  2302. avctx->has_b_frames= !s->low_delay;
  2303. break;
  2304. case NAL_PPS:
  2305. init_get_bits(&s->gb, ptr, bit_length);
  2306. ff_h264_decode_picture_parameter_set(h, bit_length);
  2307. break;
  2308. case NAL_AUD:
  2309. case NAL_END_SEQUENCE:
  2310. case NAL_END_STREAM:
  2311. case NAL_FILLER_DATA:
  2312. case NAL_SPS_EXT:
  2313. case NAL_AUXILIARY_SLICE:
  2314. break;
  2315. default:
  2316. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  2317. }
  2318. if(context_count == h->max_contexts) {
  2319. execute_decode_slices(h, context_count);
  2320. context_count = 0;
  2321. }
  2322. if (err < 0)
  2323. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  2324. else if(err == 1) {
  2325. /* Slice could not be decoded in parallel mode, copy down
  2326. * NAL unit stuff to context 0 and restart. Note that
  2327. * rbsp_buffer is not transferred, but since we no longer
  2328. * run in parallel mode this should not be an issue. */
  2329. h->nal_unit_type = hx->nal_unit_type;
  2330. h->nal_ref_idc = hx->nal_ref_idc;
  2331. hx = h;
  2332. goto again;
  2333. }
  2334. }
  2335. if(context_count)
  2336. execute_decode_slices(h, context_count);
  2337. return buf_index;
  2338. }
  2339. /**
  2340. * returns the number of bytes consumed for building the current frame
  2341. */
  2342. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  2343. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  2344. if(pos+10>buf_size) pos=buf_size; // oops ;)
  2345. return pos;
  2346. }
  2347. static int decode_frame(AVCodecContext *avctx,
  2348. void *data, int *data_size,
  2349. AVPacket *avpkt)
  2350. {
  2351. const uint8_t *buf = avpkt->data;
  2352. int buf_size = avpkt->size;
  2353. H264Context *h = avctx->priv_data;
  2354. MpegEncContext *s = &h->s;
  2355. AVFrame *pict = data;
  2356. int buf_index;
  2357. s->flags= avctx->flags;
  2358. s->flags2= avctx->flags2;
  2359. /* end of stream, output what is still in the buffers */
  2360. if (buf_size == 0) {
  2361. Picture *out;
  2362. int i, out_idx;
  2363. //FIXME factorize this with the output code below
  2364. out = h->delayed_pic[0];
  2365. out_idx = 0;
  2366. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2367. if(h->delayed_pic[i]->poc < out->poc){
  2368. out = h->delayed_pic[i];
  2369. out_idx = i;
  2370. }
  2371. for(i=out_idx; h->delayed_pic[i]; i++)
  2372. h->delayed_pic[i] = h->delayed_pic[i+1];
  2373. if(out){
  2374. *data_size = sizeof(AVFrame);
  2375. *pict= *(AVFrame*)out;
  2376. }
  2377. return 0;
  2378. }
  2379. buf_index=decode_nal_units(h, buf, buf_size);
  2380. if(buf_index < 0)
  2381. return -1;
  2382. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  2383. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  2384. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  2385. return -1;
  2386. }
  2387. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  2388. Picture *out = s->current_picture_ptr;
  2389. Picture *cur = s->current_picture_ptr;
  2390. int i, pics, out_of_order, out_idx;
  2391. field_end(h);
  2392. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  2393. /* Wait for second field. */
  2394. *data_size = 0;
  2395. } else {
  2396. cur->interlaced_frame = 0;
  2397. cur->repeat_pict = 0;
  2398. /* Signal interlacing information externally. */
  2399. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  2400. if(h->sps.pic_struct_present_flag){
  2401. switch (h->sei_pic_struct)
  2402. {
  2403. case SEI_PIC_STRUCT_FRAME:
  2404. break;
  2405. case SEI_PIC_STRUCT_TOP_FIELD:
  2406. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  2407. cur->interlaced_frame = 1;
  2408. break;
  2409. case SEI_PIC_STRUCT_TOP_BOTTOM:
  2410. case SEI_PIC_STRUCT_BOTTOM_TOP:
  2411. if (FIELD_OR_MBAFF_PICTURE)
  2412. cur->interlaced_frame = 1;
  2413. else
  2414. // try to flag soft telecine progressive
  2415. cur->interlaced_frame = h->prev_interlaced_frame;
  2416. break;
  2417. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  2418. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  2419. // Signal the possibility of telecined film externally (pic_struct 5,6)
  2420. // From these hints, let the applications decide if they apply deinterlacing.
  2421. cur->repeat_pict = 1;
  2422. break;
  2423. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  2424. // Force progressive here, as doubling interlaced frame is a bad idea.
  2425. cur->repeat_pict = 2;
  2426. break;
  2427. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  2428. cur->repeat_pict = 4;
  2429. break;
  2430. }
  2431. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  2432. cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0;
  2433. }else{
  2434. /* Derive interlacing flag from used decoding process. */
  2435. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  2436. }
  2437. h->prev_interlaced_frame = cur->interlaced_frame;
  2438. if (cur->field_poc[0] != cur->field_poc[1]){
  2439. /* Derive top_field_first from field pocs. */
  2440. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  2441. }else{
  2442. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  2443. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  2444. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  2445. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  2446. cur->top_field_first = 1;
  2447. else
  2448. cur->top_field_first = 0;
  2449. }else{
  2450. /* Most likely progressive */
  2451. cur->top_field_first = 0;
  2452. }
  2453. }
  2454. //FIXME do something with unavailable reference frames
  2455. /* Sort B-frames into display order */
  2456. if(h->sps.bitstream_restriction_flag
  2457. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  2458. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  2459. s->low_delay = 0;
  2460. }
  2461. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  2462. && !h->sps.bitstream_restriction_flag){
  2463. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  2464. s->low_delay= 0;
  2465. }
  2466. pics = 0;
  2467. while(h->delayed_pic[pics]) pics++;
  2468. assert(pics <= MAX_DELAYED_PIC_COUNT);
  2469. h->delayed_pic[pics++] = cur;
  2470. if(cur->reference == 0)
  2471. cur->reference = DELAYED_PIC_REF;
  2472. out = h->delayed_pic[0];
  2473. out_idx = 0;
  2474. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2475. if(h->delayed_pic[i]->poc < out->poc){
  2476. out = h->delayed_pic[i];
  2477. out_idx = i;
  2478. }
  2479. if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset))
  2480. h->outputed_poc= INT_MIN;
  2481. out_of_order = out->poc < h->outputed_poc;
  2482. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  2483. { }
  2484. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  2485. || (s->low_delay &&
  2486. ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2)
  2487. || cur->pict_type == FF_B_TYPE)))
  2488. {
  2489. s->low_delay = 0;
  2490. s->avctx->has_b_frames++;
  2491. }
  2492. if(out_of_order || pics > s->avctx->has_b_frames){
  2493. out->reference &= ~DELAYED_PIC_REF;
  2494. for(i=out_idx; h->delayed_pic[i]; i++)
  2495. h->delayed_pic[i] = h->delayed_pic[i+1];
  2496. }
  2497. if(!out_of_order && pics > s->avctx->has_b_frames){
  2498. *data_size = sizeof(AVFrame);
  2499. if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) {
  2500. h->outputed_poc = INT_MIN;
  2501. } else
  2502. h->outputed_poc = out->poc;
  2503. *pict= *(AVFrame*)out;
  2504. }else{
  2505. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  2506. }
  2507. }
  2508. }
  2509. assert(pict->data[0] || !*data_size);
  2510. ff_print_debug_info(s, pict);
  2511. //printf("out %d\n", (int)pict->data[0]);
  2512. return get_consumed_bytes(s, buf_index, buf_size);
  2513. }
  2514. #if 0
  2515. static inline void fill_mb_avail(H264Context *h){
  2516. MpegEncContext * const s = &h->s;
  2517. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2518. if(s->mb_y){
  2519. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  2520. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  2521. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  2522. }else{
  2523. h->mb_avail[0]=
  2524. h->mb_avail[1]=
  2525. h->mb_avail[2]= 0;
  2526. }
  2527. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  2528. h->mb_avail[4]= 1; //FIXME move out
  2529. h->mb_avail[5]= 0; //FIXME move out
  2530. }
  2531. #endif
  2532. #ifdef TEST
  2533. #undef printf
  2534. #undef random
  2535. #define COUNT 8000
  2536. #define SIZE (COUNT*40)
  2537. int main(void){
  2538. int i;
  2539. uint8_t temp[SIZE];
  2540. PutBitContext pb;
  2541. GetBitContext gb;
  2542. // int int_temp[10000];
  2543. DSPContext dsp;
  2544. AVCodecContext avctx;
  2545. dsputil_init(&dsp, &avctx);
  2546. init_put_bits(&pb, temp, SIZE);
  2547. printf("testing unsigned exp golomb\n");
  2548. for(i=0; i<COUNT; i++){
  2549. START_TIMER
  2550. set_ue_golomb(&pb, i);
  2551. STOP_TIMER("set_ue_golomb");
  2552. }
  2553. flush_put_bits(&pb);
  2554. init_get_bits(&gb, temp, 8*SIZE);
  2555. for(i=0; i<COUNT; i++){
  2556. int j, s;
  2557. s= show_bits(&gb, 24);
  2558. START_TIMER
  2559. j= get_ue_golomb(&gb);
  2560. if(j != i){
  2561. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2562. // return -1;
  2563. }
  2564. STOP_TIMER("get_ue_golomb");
  2565. }
  2566. init_put_bits(&pb, temp, SIZE);
  2567. printf("testing signed exp golomb\n");
  2568. for(i=0; i<COUNT; i++){
  2569. START_TIMER
  2570. set_se_golomb(&pb, i - COUNT/2);
  2571. STOP_TIMER("set_se_golomb");
  2572. }
  2573. flush_put_bits(&pb);
  2574. init_get_bits(&gb, temp, 8*SIZE);
  2575. for(i=0; i<COUNT; i++){
  2576. int j, s;
  2577. s= show_bits(&gb, 24);
  2578. START_TIMER
  2579. j= get_se_golomb(&gb);
  2580. if(j != i - COUNT/2){
  2581. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2582. // return -1;
  2583. }
  2584. STOP_TIMER("get_se_golomb");
  2585. }
  2586. #if 0
  2587. printf("testing 4x4 (I)DCT\n");
  2588. DCTELEM block[16];
  2589. uint8_t src[16], ref[16];
  2590. uint64_t error= 0, max_error=0;
  2591. for(i=0; i<COUNT; i++){
  2592. int j;
  2593. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  2594. for(j=0; j<16; j++){
  2595. ref[j]= random()%255;
  2596. src[j]= random()%255;
  2597. }
  2598. h264_diff_dct_c(block, src, ref, 4);
  2599. //normalize
  2600. for(j=0; j<16; j++){
  2601. // printf("%d ", block[j]);
  2602. block[j]= block[j]*4;
  2603. if(j&1) block[j]= (block[j]*4 + 2)/5;
  2604. if(j&4) block[j]= (block[j]*4 + 2)/5;
  2605. }
  2606. // printf("\n");
  2607. s->dsp.h264_idct_add(ref, block, 4);
  2608. /* for(j=0; j<16; j++){
  2609. printf("%d ", ref[j]);
  2610. }
  2611. printf("\n");*/
  2612. for(j=0; j<16; j++){
  2613. int diff= FFABS(src[j] - ref[j]);
  2614. error+= diff*diff;
  2615. max_error= FFMAX(max_error, diff);
  2616. }
  2617. }
  2618. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  2619. printf("testing quantizer\n");
  2620. for(qp=0; qp<52; qp++){
  2621. for(i=0; i<16; i++)
  2622. src1_block[i]= src2_block[i]= random()%255;
  2623. }
  2624. printf("Testing NAL layer\n");
  2625. uint8_t bitstream[COUNT];
  2626. uint8_t nal[COUNT*2];
  2627. H264Context h;
  2628. memset(&h, 0, sizeof(H264Context));
  2629. for(i=0; i<COUNT; i++){
  2630. int zeros= i;
  2631. int nal_length;
  2632. int consumed;
  2633. int out_length;
  2634. uint8_t *out;
  2635. int j;
  2636. for(j=0; j<COUNT; j++){
  2637. bitstream[j]= (random() % 255) + 1;
  2638. }
  2639. for(j=0; j<zeros; j++){
  2640. int pos= random() % COUNT;
  2641. while(bitstream[pos] == 0){
  2642. pos++;
  2643. pos %= COUNT;
  2644. }
  2645. bitstream[pos]=0;
  2646. }
  2647. START_TIMER
  2648. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  2649. if(nal_length<0){
  2650. printf("encoding failed\n");
  2651. return -1;
  2652. }
  2653. out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length);
  2654. STOP_TIMER("NAL")
  2655. if(out_length != COUNT){
  2656. printf("incorrect length %d %d\n", out_length, COUNT);
  2657. return -1;
  2658. }
  2659. if(consumed != nal_length){
  2660. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  2661. return -1;
  2662. }
  2663. if(memcmp(bitstream, out, COUNT)){
  2664. printf("mismatch\n");
  2665. return -1;
  2666. }
  2667. }
  2668. #endif
  2669. printf("Testing RBSP\n");
  2670. return 0;
  2671. }
  2672. #endif /* TEST */
  2673. av_cold void ff_h264_free_context(H264Context *h)
  2674. {
  2675. int i;
  2676. free_tables(h); //FIXME cleanup init stuff perhaps
  2677. for(i = 0; i < MAX_SPS_COUNT; i++)
  2678. av_freep(h->sps_buffers + i);
  2679. for(i = 0; i < MAX_PPS_COUNT; i++)
  2680. av_freep(h->pps_buffers + i);
  2681. }
  2682. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  2683. {
  2684. H264Context *h = avctx->priv_data;
  2685. MpegEncContext *s = &h->s;
  2686. ff_h264_free_context(h);
  2687. MPV_common_end(s);
  2688. // memset(h, 0, sizeof(H264Context));
  2689. return 0;
  2690. }
  2691. AVCodec h264_decoder = {
  2692. "h264",
  2693. CODEC_TYPE_VIDEO,
  2694. CODEC_ID_H264,
  2695. sizeof(H264Context),
  2696. ff_h264_decode_init,
  2697. NULL,
  2698. ff_h264_decode_end,
  2699. decode_frame,
  2700. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  2701. .flush= flush_dpb,
  2702. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  2703. .pix_fmts= ff_hwaccel_pixfmt_list_420,
  2704. };
  2705. #if CONFIG_H264_VDPAU_DECODER
  2706. AVCodec h264_vdpau_decoder = {
  2707. "h264_vdpau",
  2708. CODEC_TYPE_VIDEO,
  2709. CODEC_ID_H264,
  2710. sizeof(H264Context),
  2711. ff_h264_decode_init,
  2712. NULL,
  2713. ff_h264_decode_end,
  2714. decode_frame,
  2715. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  2716. .flush= flush_dpb,
  2717. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  2718. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  2719. };
  2720. #endif