You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

444 lines
12KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file libavcodec/fft-test.c
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/lfg.h"
  25. #include "dsputil.h"
  26. #include <math.h>
  27. #include <unistd.h>
  28. #include <sys/time.h>
  29. #include <stdlib.h>
  30. #include <string.h>
  31. #undef exit
  32. /* reference fft */
  33. #define MUL16(a,b) ((a) * (b))
  34. #define CMAC(pre, pim, are, aim, bre, bim) \
  35. {\
  36. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  37. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  38. }
  39. FFTComplex *exptab;
  40. static void fft_ref_init(int nbits, int inverse)
  41. {
  42. int n, i;
  43. double c1, s1, alpha;
  44. n = 1 << nbits;
  45. exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  46. for (i = 0; i < (n/2); i++) {
  47. alpha = 2 * M_PI * (float)i / (float)n;
  48. c1 = cos(alpha);
  49. s1 = sin(alpha);
  50. if (!inverse)
  51. s1 = -s1;
  52. exptab[i].re = c1;
  53. exptab[i].im = s1;
  54. }
  55. }
  56. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  57. {
  58. int n, i, j, k, n2;
  59. double tmp_re, tmp_im, s, c;
  60. FFTComplex *q;
  61. n = 1 << nbits;
  62. n2 = n >> 1;
  63. for (i = 0; i < n; i++) {
  64. tmp_re = 0;
  65. tmp_im = 0;
  66. q = tab;
  67. for (j = 0; j < n; j++) {
  68. k = (i * j) & (n - 1);
  69. if (k >= n2) {
  70. c = -exptab[k - n2].re;
  71. s = -exptab[k - n2].im;
  72. } else {
  73. c = exptab[k].re;
  74. s = exptab[k].im;
  75. }
  76. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  77. q++;
  78. }
  79. tabr[i].re = tmp_re;
  80. tabr[i].im = tmp_im;
  81. }
  82. }
  83. static void imdct_ref(float *out, float *in, int nbits)
  84. {
  85. int n = 1<<nbits;
  86. int k, i, a;
  87. double sum, f;
  88. for (i = 0; i < n; i++) {
  89. sum = 0;
  90. for (k = 0; k < n/2; k++) {
  91. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  92. f = cos(M_PI * a / (double)(2 * n));
  93. sum += f * in[k];
  94. }
  95. out[i] = -sum;
  96. }
  97. }
  98. /* NOTE: no normalisation by 1 / N is done */
  99. static void mdct_ref(float *output, float *input, int nbits)
  100. {
  101. int n = 1<<nbits;
  102. int k, i;
  103. double a, s;
  104. /* do it by hand */
  105. for (k = 0; k < n/2; k++) {
  106. s = 0;
  107. for (i = 0; i < n; i++) {
  108. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  109. s += input[i] * cos(a);
  110. }
  111. output[k] = s;
  112. }
  113. }
  114. static void idct_ref(float *output, float *input, int nbits)
  115. {
  116. int n = 1<<nbits;
  117. int k, i;
  118. double a, s;
  119. /* do it by hand */
  120. for (i = 0; i < n; i++) {
  121. s = 0.5 * input[0];
  122. for (k = 1; k < n; k++) {
  123. a = M_PI*k*(i+0.5) / n;
  124. s += input[k] * cos(a);
  125. }
  126. output[i] = 2 * s / n;
  127. }
  128. }
  129. static void dct_ref(float *output, float *input, int nbits)
  130. {
  131. int n = 1<<nbits;
  132. int k, i;
  133. double a, s;
  134. /* do it by hand */
  135. for (k = 0; k < n; k++) {
  136. s = 0;
  137. for (i = 0; i < n; i++) {
  138. a = M_PI*k*(i+0.5) / n;
  139. s += input[i] * cos(a);
  140. }
  141. output[k] = s;
  142. }
  143. }
  144. static float frandom(AVLFG *prng)
  145. {
  146. return (int16_t)av_lfg_get(prng) / 32768.0;
  147. }
  148. static int64_t gettime(void)
  149. {
  150. struct timeval tv;
  151. gettimeofday(&tv,NULL);
  152. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  153. }
  154. static void check_diff(float *tab1, float *tab2, int n, double scale)
  155. {
  156. int i;
  157. double max= 0;
  158. double error= 0;
  159. for (i = 0; i < n; i++) {
  160. double e= fabsf(tab1[i] - (tab2[i] / scale));
  161. if (e >= 1e-3) {
  162. av_log(NULL, AV_LOG_ERROR, "ERROR %d: %f %f\n",
  163. i, tab1[i], tab2[i]);
  164. }
  165. error+= e*e;
  166. if(e>max) max= e;
  167. }
  168. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  169. }
  170. static void help(void)
  171. {
  172. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  173. "-h print this help\n"
  174. "-s speed test\n"
  175. "-m (I)MDCT test\n"
  176. "-d (I)DCT test\n"
  177. "-i inverse transform test\n"
  178. "-n b set the transform size to 2^b\n"
  179. "-f x set scale factor for output data of (I)MDCT to x\n"
  180. );
  181. exit(1);
  182. }
  183. enum tf_transform {
  184. TRANSFORM_FFT,
  185. TRANSFORM_MDCT,
  186. TRANSFORM_RDFT,
  187. TRANSFORM_DCT,
  188. };
  189. int main(int argc, char **argv)
  190. {
  191. FFTComplex *tab, *tab1, *tab_ref;
  192. FFTSample *tab2;
  193. int it, i, c;
  194. int do_speed = 0;
  195. enum tf_transform transform = TRANSFORM_FFT;
  196. int do_inverse = 0;
  197. FFTContext s1, *s = &s1;
  198. FFTContext m1, *m = &m1;
  199. RDFTContext r1, *r = &r1;
  200. DCTContext d1, *d = &d1;
  201. int fft_nbits, fft_size, fft_size_2;
  202. double scale = 1.0;
  203. AVLFG prng;
  204. av_lfg_init(&prng, 1);
  205. fft_nbits = 9;
  206. for(;;) {
  207. c = getopt(argc, argv, "hsimrdn:f:");
  208. if (c == -1)
  209. break;
  210. switch(c) {
  211. case 'h':
  212. help();
  213. break;
  214. case 's':
  215. do_speed = 1;
  216. break;
  217. case 'i':
  218. do_inverse = 1;
  219. break;
  220. case 'm':
  221. transform = TRANSFORM_MDCT;
  222. break;
  223. case 'r':
  224. transform = TRANSFORM_RDFT;
  225. break;
  226. case 'd':
  227. transform = TRANSFORM_DCT;
  228. break;
  229. case 'n':
  230. fft_nbits = atoi(optarg);
  231. break;
  232. case 'f':
  233. scale = atof(optarg);
  234. break;
  235. }
  236. }
  237. fft_size = 1 << fft_nbits;
  238. fft_size_2 = fft_size >> 1;
  239. tab = av_malloc(fft_size * sizeof(FFTComplex));
  240. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  241. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  242. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  243. switch (transform) {
  244. case TRANSFORM_MDCT:
  245. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  246. if (do_inverse)
  247. av_log(NULL, AV_LOG_INFO,"IMDCT");
  248. else
  249. av_log(NULL, AV_LOG_INFO,"MDCT");
  250. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  251. break;
  252. case TRANSFORM_FFT:
  253. if (do_inverse)
  254. av_log(NULL, AV_LOG_INFO,"IFFT");
  255. else
  256. av_log(NULL, AV_LOG_INFO,"FFT");
  257. ff_fft_init(s, fft_nbits, do_inverse);
  258. fft_ref_init(fft_nbits, do_inverse);
  259. break;
  260. case TRANSFORM_RDFT:
  261. if (do_inverse)
  262. av_log(NULL, AV_LOG_INFO,"IRDFT");
  263. else
  264. av_log(NULL, AV_LOG_INFO,"RDFT");
  265. ff_rdft_init(r, fft_nbits, do_inverse ? IRDFT : RDFT);
  266. fft_ref_init(fft_nbits, do_inverse);
  267. break;
  268. case TRANSFORM_DCT:
  269. if (do_inverse)
  270. av_log(NULL, AV_LOG_INFO,"IDCT");
  271. else
  272. av_log(NULL, AV_LOG_INFO,"DCT");
  273. ff_dct_init(d, fft_nbits, do_inverse);
  274. break;
  275. }
  276. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  277. /* generate random data */
  278. for (i = 0; i < fft_size; i++) {
  279. tab1[i].re = frandom(&prng);
  280. tab1[i].im = frandom(&prng);
  281. }
  282. /* checking result */
  283. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  284. switch (transform) {
  285. case TRANSFORM_MDCT:
  286. if (do_inverse) {
  287. imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  288. ff_imdct_calc(m, tab2, (float *)tab1);
  289. check_diff((float *)tab_ref, tab2, fft_size, scale);
  290. } else {
  291. mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  292. ff_mdct_calc(m, tab2, (float *)tab1);
  293. check_diff((float *)tab_ref, tab2, fft_size / 2, scale);
  294. }
  295. break;
  296. case TRANSFORM_FFT:
  297. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  298. ff_fft_permute(s, tab);
  299. ff_fft_calc(s, tab);
  300. fft_ref(tab_ref, tab1, fft_nbits);
  301. check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 1.0);
  302. break;
  303. case TRANSFORM_RDFT:
  304. if (do_inverse) {
  305. tab1[ 0].im = 0;
  306. tab1[fft_size_2].im = 0;
  307. for (i = 1; i < fft_size_2; i++) {
  308. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  309. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  310. }
  311. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  312. tab2[1] = tab1[fft_size_2].re;
  313. ff_rdft_calc(r, tab2);
  314. fft_ref(tab_ref, tab1, fft_nbits);
  315. for (i = 0; i < fft_size; i++) {
  316. tab[i].re = tab2[i];
  317. tab[i].im = 0;
  318. }
  319. check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  320. } else {
  321. for (i = 0; i < fft_size; i++) {
  322. tab2[i] = tab1[i].re;
  323. tab1[i].im = 0;
  324. }
  325. ff_rdft_calc(r, tab2);
  326. fft_ref(tab_ref, tab1, fft_nbits);
  327. tab_ref[0].im = tab_ref[fft_size_2].re;
  328. check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  329. }
  330. break;
  331. case TRANSFORM_DCT:
  332. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  333. ff_dct_calc(d, tab);
  334. if (do_inverse) {
  335. idct_ref(tab_ref, tab1, fft_nbits);
  336. } else {
  337. dct_ref(tab_ref, tab1, fft_nbits);
  338. }
  339. check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  340. break;
  341. }
  342. /* do a speed test */
  343. if (do_speed) {
  344. int64_t time_start, duration;
  345. int nb_its;
  346. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  347. /* we measure during about 1 seconds */
  348. nb_its = 1;
  349. for(;;) {
  350. time_start = gettime();
  351. for (it = 0; it < nb_its; it++) {
  352. switch (transform) {
  353. case TRANSFORM_MDCT:
  354. if (do_inverse) {
  355. ff_imdct_calc(m, (float *)tab, (float *)tab1);
  356. } else {
  357. ff_mdct_calc(m, (float *)tab, (float *)tab1);
  358. }
  359. break;
  360. case TRANSFORM_FFT:
  361. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  362. ff_fft_calc(s, tab);
  363. break;
  364. case TRANSFORM_RDFT:
  365. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  366. ff_rdft_calc(r, tab2);
  367. break;
  368. case TRANSFORM_DCT:
  369. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  370. ff_dct_calc(d, tab2);
  371. break;
  372. }
  373. }
  374. duration = gettime() - time_start;
  375. if (duration >= 1000000)
  376. break;
  377. nb_its *= 2;
  378. }
  379. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  380. (double)duration / nb_its,
  381. (double)duration / 1000000.0,
  382. nb_its);
  383. }
  384. switch (transform) {
  385. case TRANSFORM_MDCT:
  386. ff_mdct_end(m);
  387. break;
  388. case TRANSFORM_FFT:
  389. ff_fft_end(s);
  390. break;
  391. case TRANSFORM_RDFT:
  392. ff_rdft_end(r);
  393. break;
  394. case TRANSFORM_DCT:
  395. ff_dct_end(d);
  396. break;
  397. }
  398. return 0;
  399. }