You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1043 lines
40KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. typedef int DWTELEM;
  36. typedef short IDWTELEM;
  37. void fdct_ifast (DCTELEM *data);
  38. void fdct_ifast248 (DCTELEM *data);
  39. void ff_jpeg_fdct_islow (DCTELEM *data);
  40. void ff_fdct248_islow (DCTELEM *data);
  41. void j_rev_dct (DCTELEM *data);
  42. void j_rev_dct4 (DCTELEM *data);
  43. void j_rev_dct2 (DCTELEM *data);
  44. void j_rev_dct1 (DCTELEM *data);
  45. void ff_wmv2_idct_c(DCTELEM *data);
  46. void ff_fdct_mmx(DCTELEM *block);
  47. void ff_fdct_mmx2(DCTELEM *block);
  48. void ff_fdct_sse2(DCTELEM *block);
  49. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  53. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  55. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  58. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  59. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  60. const float *win, float add_bias, int len);
  61. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  62. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  63. /* encoding scans */
  64. extern const uint8_t ff_alternate_horizontal_scan[64];
  65. extern const uint8_t ff_alternate_vertical_scan[64];
  66. extern const uint8_t ff_zigzag_direct[64];
  67. extern const uint8_t ff_zigzag248_direct[64];
  68. /* pixel operations */
  69. #define MAX_NEG_CROP 1024
  70. /* temporary */
  71. extern uint32_t ff_squareTbl[512];
  72. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  73. /* VP3 DSP functions */
  74. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  75. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  76. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  77. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  78. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  79. /* VP6 DSP functions */
  80. void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
  81. const int16_t *h_weights, const int16_t *v_weights);
  82. /* 1/2^n downscaling functions from imgconvert.c */
  83. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  84. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  85. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  86. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  87. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  88. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  89. /* minimum alignment rules ;)
  90. If you notice errors in the align stuff, need more alignment for some ASM code
  91. for some CPU or need to use a function with less aligned data then send a mail
  92. to the ffmpeg-devel mailing list, ...
  93. !warning These alignments might not match reality, (missing attribute((align))
  94. stuff somewhere possible).
  95. I (Michael) did not check them, these are just the alignments which I think
  96. could be reached easily ...
  97. !future video codecs might need functions with less strict alignment
  98. */
  99. /*
  100. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  101. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  102. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  103. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  104. void clear_blocks_c(DCTELEM *blocks);
  105. */
  106. /* add and put pixel (decoding) */
  107. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  108. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  109. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  110. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  111. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  112. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  113. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  114. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  115. typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h);
  116. #define DEF_OLD_QPEL(name)\
  117. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  118. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  119. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  120. DEF_OLD_QPEL(qpel16_mc11_old_c)
  121. DEF_OLD_QPEL(qpel16_mc31_old_c)
  122. DEF_OLD_QPEL(qpel16_mc12_old_c)
  123. DEF_OLD_QPEL(qpel16_mc32_old_c)
  124. DEF_OLD_QPEL(qpel16_mc13_old_c)
  125. DEF_OLD_QPEL(qpel16_mc33_old_c)
  126. DEF_OLD_QPEL(qpel8_mc11_old_c)
  127. DEF_OLD_QPEL(qpel8_mc31_old_c)
  128. DEF_OLD_QPEL(qpel8_mc12_old_c)
  129. DEF_OLD_QPEL(qpel8_mc32_old_c)
  130. DEF_OLD_QPEL(qpel8_mc13_old_c)
  131. DEF_OLD_QPEL(qpel8_mc33_old_c)
  132. #define CALL_2X_PIXELS(a, b, n)\
  133. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  134. b(block , pixels , line_size, h);\
  135. b(block+n, pixels+n, line_size, h);\
  136. }
  137. /* motion estimation */
  138. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  139. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  140. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  141. // for snow slices
  142. typedef struct slice_buffer_s slice_buffer;
  143. /**
  144. * Scantable.
  145. */
  146. typedef struct ScanTable{
  147. const uint8_t *scantable;
  148. uint8_t permutated[64];
  149. uint8_t raster_end[64];
  150. #if ARCH_PPC
  151. /** Used by dct_quantize_altivec to find last-non-zero */
  152. DECLARE_ALIGNED(16, uint8_t, inverse)[64];
  153. #endif
  154. } ScanTable;
  155. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  156. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  157. int block_w, int block_h,
  158. int src_x, int src_y, int w, int h);
  159. /**
  160. * DSPContext.
  161. */
  162. typedef struct DSPContext {
  163. /* pixel ops : interface with DCT */
  164. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  165. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  166. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  167. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  168. void (*put_pixels_nonclamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  169. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  170. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  171. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  172. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  173. /**
  174. * translational global motion compensation.
  175. */
  176. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  177. /**
  178. * global motion compensation.
  179. */
  180. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  181. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  182. void (*clear_block)(DCTELEM *block/*align 16*/);
  183. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  184. int (*pix_sum)(uint8_t * pix, int line_size);
  185. int (*pix_norm1)(uint8_t * pix, int line_size);
  186. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  187. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  188. me_cmp_func sse[6];
  189. me_cmp_func hadamard8_diff[6];
  190. me_cmp_func dct_sad[6];
  191. me_cmp_func quant_psnr[6];
  192. me_cmp_func bit[6];
  193. me_cmp_func rd[6];
  194. me_cmp_func vsad[6];
  195. me_cmp_func vsse[6];
  196. me_cmp_func nsse[6];
  197. me_cmp_func w53[6];
  198. me_cmp_func w97[6];
  199. me_cmp_func dct_max[6];
  200. me_cmp_func dct264_sad[6];
  201. me_cmp_func me_pre_cmp[6];
  202. me_cmp_func me_cmp[6];
  203. me_cmp_func me_sub_cmp[6];
  204. me_cmp_func mb_cmp[6];
  205. me_cmp_func ildct_cmp[6]; //only width 16 used
  206. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  207. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  208. int size);
  209. /**
  210. * Halfpel motion compensation with rounding (a+b+1)>>1.
  211. * this is an array[4][4] of motion compensation functions for 4
  212. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  213. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  214. * @param block destination where the result is stored
  215. * @param pixels source
  216. * @param line_size number of bytes in a horizontal line of block
  217. * @param h height
  218. */
  219. op_pixels_func put_pixels_tab[4][4];
  220. /**
  221. * Halfpel motion compensation with rounding (a+b+1)>>1.
  222. * This is an array[4][4] of motion compensation functions for 4
  223. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  224. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  225. * @param block destination into which the result is averaged (a+b+1)>>1
  226. * @param pixels source
  227. * @param line_size number of bytes in a horizontal line of block
  228. * @param h height
  229. */
  230. op_pixels_func avg_pixels_tab[4][4];
  231. /**
  232. * Halfpel motion compensation with no rounding (a+b)>>1.
  233. * this is an array[2][4] of motion compensation functions for 2
  234. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  235. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  236. * @param block destination where the result is stored
  237. * @param pixels source
  238. * @param line_size number of bytes in a horizontal line of block
  239. * @param h height
  240. */
  241. op_pixels_func put_no_rnd_pixels_tab[4][4];
  242. /**
  243. * Halfpel motion compensation with no rounding (a+b)>>1.
  244. * this is an array[2][4] of motion compensation functions for 2
  245. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  246. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  247. * @param block destination into which the result is averaged (a+b)>>1
  248. * @param pixels source
  249. * @param line_size number of bytes in a horizontal line of block
  250. * @param h height
  251. */
  252. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  253. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  254. /**
  255. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  256. * this is an array[12] of motion compensation functions for the 9 thirdpe
  257. * positions<br>
  258. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  259. * @param block destination where the result is stored
  260. * @param pixels source
  261. * @param line_size number of bytes in a horizontal line of block
  262. * @param h height
  263. */
  264. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  265. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  266. qpel_mc_func put_qpel_pixels_tab[2][16];
  267. qpel_mc_func avg_qpel_pixels_tab[2][16];
  268. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  269. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  270. qpel_mc_func put_mspel_pixels_tab[8];
  271. /**
  272. * h264 Chroma MC
  273. */
  274. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  275. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  276. /* This is really one func used in VC-1 decoding */
  277. h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
  278. h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
  279. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  280. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  281. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  282. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  283. h264_weight_func weight_h264_pixels_tab[10];
  284. h264_biweight_func biweight_h264_pixels_tab[10];
  285. /* AVS specific */
  286. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  287. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  288. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  289. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  290. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  291. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  292. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  293. me_cmp_func pix_abs[2][4];
  294. /* huffyuv specific */
  295. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  296. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  297. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  298. /**
  299. * subtract huffyuv's variant of median prediction
  300. * note, this might read from src1[-1], src2[-1]
  301. */
  302. void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
  303. void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
  304. int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
  305. void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha);
  306. /* this might write to dst[w] */
  307. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  308. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  309. void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
  310. void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
  311. /* v/h_loop_filter_luma_intra: align 16 */
  312. void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  313. void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  314. void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
  315. void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
  316. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  317. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  318. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  319. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  320. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  321. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  322. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  323. void (*h261_loop_filter)(uint8_t *src, int stride);
  324. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  325. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  326. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  327. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  328. void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
  329. const int16_t *h_weights,const int16_t *v_weights);
  330. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  331. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  332. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  333. /* no alignment needed */
  334. void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  335. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  336. void (*vector_fmul)(float *dst, const float *src, int len);
  337. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  338. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  339. void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
  340. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  341. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  342. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  343. void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
  344. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  345. /**
  346. * Multiply a vector of floats by a scalar float. Source and
  347. * destination vectors must overlap exactly or not at all.
  348. * @param dst result vector, 16-byte aligned
  349. * @param src input vector, 16-byte aligned
  350. * @param mul scalar value
  351. * @param len length of vector, multiple of 4
  352. */
  353. void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
  354. int len);
  355. /**
  356. * Multiply a vector of floats by concatenated short vectors of
  357. * floats and by a scalar float. Source and destination vectors
  358. * must overlap exactly or not at all.
  359. * [0]: short vectors of length 2, 8-byte aligned
  360. * [1]: short vectors of length 4, 16-byte aligned
  361. * @param dst output vector, 16-byte aligned
  362. * @param src input vector, 16-byte aligned
  363. * @param sv array of pointers to short vectors
  364. * @param mul scalar value
  365. * @param len number of elements in src and dst, multiple of 4
  366. */
  367. void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
  368. const float **sv, float mul, int len);
  369. /**
  370. * Multiply short vectors of floats by a scalar float, store
  371. * concatenated result.
  372. * [0]: short vectors of length 2, 8-byte aligned
  373. * [1]: short vectors of length 4, 16-byte aligned
  374. * @param dst output vector, 16-byte aligned
  375. * @param sv array of pointers to short vectors
  376. * @param mul scalar value
  377. * @param len number of output elements, multiple of 4
  378. */
  379. void (*sv_fmul_scalar[2])(float *dst, const float **sv,
  380. float mul, int len);
  381. /**
  382. * Calculate the scalar product of two vectors of floats.
  383. * @param v1 first vector, 16-byte aligned
  384. * @param v2 second vector, 16-byte aligned
  385. * @param len length of vectors, multiple of 4
  386. */
  387. float (*scalarproduct_float)(const float *v1, const float *v2, int len);
  388. /**
  389. * Calculate the sum and difference of two vectors of floats.
  390. * @param v1 first input vector, sum output, 16-byte aligned
  391. * @param v2 second input vector, difference output, 16-byte aligned
  392. * @param len length of vectors, multiple of 4
  393. */
  394. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  395. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  396. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  397. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  398. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  399. /* (I)DCT */
  400. void (*fdct)(DCTELEM *block/* align 16*/);
  401. void (*fdct248)(DCTELEM *block/* align 16*/);
  402. /* IDCT really*/
  403. void (*idct)(DCTELEM *block/* align 16*/);
  404. /**
  405. * block -> idct -> clip to unsigned 8 bit -> dest.
  406. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  407. * @param line_size size in bytes of a horizontal line of dest
  408. */
  409. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  410. /**
  411. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  412. * @param line_size size in bytes of a horizontal line of dest
  413. */
  414. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  415. /**
  416. * idct input permutation.
  417. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  418. * IDCT)
  419. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  420. * with the zigzag/alternate scan<br>
  421. * an example to avoid confusion:
  422. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  423. * - (x -> referece dct -> reference idct -> x)
  424. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  425. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  426. */
  427. uint8_t idct_permutation[64];
  428. int idct_permutation_type;
  429. #define FF_NO_IDCT_PERM 1
  430. #define FF_LIBMPEG2_IDCT_PERM 2
  431. #define FF_SIMPLE_IDCT_PERM 3
  432. #define FF_TRANSPOSE_IDCT_PERM 4
  433. #define FF_PARTTRANS_IDCT_PERM 5
  434. #define FF_SSE2_IDCT_PERM 6
  435. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  436. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  437. #define BASIS_SHIFT 16
  438. #define RECON_SHIFT 6
  439. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  440. #define EDGE_WIDTH 16
  441. /* h264 functions */
  442. /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
  443. NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
  444. The reason for above, is that no 2 out of one list may use a different permutation.
  445. */
  446. void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  447. void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  448. void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  449. void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  450. void (*h264_dct)(DCTELEM block[4][4]);
  451. void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  452. void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  453. void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  454. void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  455. /* snow wavelet */
  456. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  457. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  458. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  459. void (*prefetch)(void *mem, int stride, int h);
  460. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  461. /* mlp/truehd functions */
  462. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  463. int firorder, int iirorder,
  464. unsigned int filter_shift, int32_t mask, int blocksize,
  465. int32_t *sample_buffer);
  466. /* vc1 functions */
  467. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  468. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  469. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  470. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  471. void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  472. void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  473. void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  474. void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  475. void (*vc1_v_overlap)(uint8_t* src, int stride);
  476. void (*vc1_h_overlap)(uint8_t* src, int stride);
  477. void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
  478. void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
  479. void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
  480. void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
  481. void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
  482. void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
  483. /* put 8x8 block with bicubic interpolation and quarterpel precision
  484. * last argument is actually round value instead of height
  485. */
  486. op_pixels_func put_vc1_mspel_pixels_tab[16];
  487. op_pixels_func avg_vc1_mspel_pixels_tab[16];
  488. /* intrax8 functions */
  489. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  490. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  491. int * range, int * sum, int edges);
  492. /**
  493. * Calculate scalar product of two vectors.
  494. * @param len length of vectors, should be multiple of 16
  495. * @param shift number of bits to discard from product
  496. */
  497. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  498. /* ape functions */
  499. /**
  500. * Calculate scalar product of v1 and v2,
  501. * and v1[i] += v3[i] * mul
  502. * @param len length of vectors, should be multiple of 16
  503. */
  504. int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul);
  505. /* rv30 functions */
  506. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  507. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  508. /* rv40 functions */
  509. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  510. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  511. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  512. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  513. /* bink functions */
  514. op_fill_func fill_block_tab[2];
  515. void (*scale_block)(const uint8_t src[64]/*align 8*/, uint8_t *dst/*align 8*/, int linesize);
  516. } DSPContext;
  517. void dsputil_static_init(void);
  518. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  519. int ff_check_alignment(void);
  520. /**
  521. * permute block according to permuatation.
  522. * @param last last non zero element in scantable order
  523. */
  524. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  525. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  526. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  527. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  528. {
  529. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  530. }
  531. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  532. {
  533. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  534. }
  535. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  536. switch(type&0xFF){
  537. default:
  538. case FF_CMP_SAD:
  539. return lambda>>FF_LAMBDA_SHIFT;
  540. case FF_CMP_DCT:
  541. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  542. case FF_CMP_W53:
  543. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  544. case FF_CMP_W97:
  545. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  546. case FF_CMP_SATD:
  547. case FF_CMP_DCT264:
  548. return (2*lambda)>>FF_LAMBDA_SHIFT;
  549. case FF_CMP_RD:
  550. case FF_CMP_PSNR:
  551. case FF_CMP_SSE:
  552. case FF_CMP_NSSE:
  553. return lambda2>>FF_LAMBDA_SHIFT;
  554. case FF_CMP_BIT:
  555. return 1;
  556. }
  557. }
  558. /**
  559. * Empty mmx state.
  560. * this must be called between any dsp function and float/double code.
  561. * for example sin(); dsp->idct_put(); emms_c(); cos()
  562. */
  563. #define emms_c()
  564. /* should be defined by architectures supporting
  565. one or more MultiMedia extension */
  566. int mm_support(void);
  567. extern int mm_flags;
  568. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  569. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  570. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  571. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  572. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  573. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  574. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  575. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  576. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  577. #define DECLARE_ALIGNED_16(t, v, ...) DECLARE_ALIGNED(16, t, v)
  578. #define DECLARE_ALIGNED_8(t, v, ...) DECLARE_ALIGNED(8, t, v)
  579. #if HAVE_MMX
  580. #undef emms_c
  581. static inline void emms(void)
  582. {
  583. __asm__ volatile ("emms;":::"memory");
  584. }
  585. #define emms_c() \
  586. {\
  587. if (mm_flags & FF_MM_MMX)\
  588. emms();\
  589. }
  590. #elif ARCH_ARM
  591. #if HAVE_NEON
  592. # define STRIDE_ALIGN 16
  593. #endif
  594. #elif ARCH_PPC
  595. #define STRIDE_ALIGN 16
  596. #elif HAVE_MMI
  597. #define STRIDE_ALIGN 16
  598. #else
  599. #define mm_flags 0
  600. #define mm_support() 0
  601. #endif
  602. #ifndef STRIDE_ALIGN
  603. # define STRIDE_ALIGN 8
  604. #endif
  605. #define LOCAL_ALIGNED(a, t, v, s, ...) \
  606. uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)]; \
  607. t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a)
  608. #if HAVE_LOCAL_ALIGNED_8
  609. # define LOCAL_ALIGNED_8(t, v, s, ...) DECLARE_ALIGNED_8(t, v) s __VA_ARGS__
  610. #else
  611. # define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__)
  612. #endif
  613. #if HAVE_LOCAL_ALIGNED_16
  614. # define LOCAL_ALIGNED_16(t, v, s, ...) DECLARE_ALIGNED_16(t, v) s __VA_ARGS__
  615. #else
  616. # define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__)
  617. #endif
  618. /* PSNR */
  619. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  620. int orig_linesize[3], int coded_linesize,
  621. AVCodecContext *avctx);
  622. /* FFT computation */
  623. /* NOTE: soon integer code will be added, so you must use the
  624. FFTSample type */
  625. typedef float FFTSample;
  626. typedef struct FFTComplex {
  627. FFTSample re, im;
  628. } FFTComplex;
  629. typedef struct FFTContext {
  630. int nbits;
  631. int inverse;
  632. uint16_t *revtab;
  633. FFTComplex *exptab;
  634. FFTComplex *exptab1; /* only used by SSE code */
  635. FFTComplex *tmp_buf;
  636. int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
  637. int mdct_bits; /* n = 2^nbits */
  638. /* pre/post rotation tables */
  639. FFTSample *tcos;
  640. FFTSample *tsin;
  641. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  642. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  643. void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  644. void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  645. void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  646. int split_radix;
  647. int permutation;
  648. #define FF_MDCT_PERM_NONE 0
  649. #define FF_MDCT_PERM_INTERLEAVE 1
  650. } FFTContext;
  651. #if CONFIG_HARDCODED_TABLES
  652. #define COSTABLE_CONST const
  653. #define SINTABLE_CONST const
  654. #define SINETABLE_CONST const
  655. #else
  656. #define COSTABLE_CONST
  657. #define SINTABLE_CONST
  658. #define SINETABLE_CONST
  659. #endif
  660. #define COSTABLE(size) \
  661. COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size)[size/2]
  662. #define SINTABLE(size) \
  663. SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size)[size/2]
  664. #define SINETABLE(size) \
  665. SINETABLE_CONST DECLARE_ALIGNED_16(float, ff_sine_##size)[size]
  666. extern COSTABLE(16);
  667. extern COSTABLE(32);
  668. extern COSTABLE(64);
  669. extern COSTABLE(128);
  670. extern COSTABLE(256);
  671. extern COSTABLE(512);
  672. extern COSTABLE(1024);
  673. extern COSTABLE(2048);
  674. extern COSTABLE(4096);
  675. extern COSTABLE(8192);
  676. extern COSTABLE(16384);
  677. extern COSTABLE(32768);
  678. extern COSTABLE(65536);
  679. extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17];
  680. /**
  681. * Initializes the cosine table in ff_cos_tabs[index]
  682. * \param index index in ff_cos_tabs array of the table to initialize
  683. */
  684. void ff_init_ff_cos_tabs(int index);
  685. extern SINTABLE(16);
  686. extern SINTABLE(32);
  687. extern SINTABLE(64);
  688. extern SINTABLE(128);
  689. extern SINTABLE(256);
  690. extern SINTABLE(512);
  691. extern SINTABLE(1024);
  692. extern SINTABLE(2048);
  693. extern SINTABLE(4096);
  694. extern SINTABLE(8192);
  695. extern SINTABLE(16384);
  696. extern SINTABLE(32768);
  697. extern SINTABLE(65536);
  698. /**
  699. * Sets up a complex FFT.
  700. * @param nbits log2 of the length of the input array
  701. * @param inverse if 0 perform the forward transform, if 1 perform the inverse
  702. */
  703. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  704. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  705. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  706. void ff_fft_init_altivec(FFTContext *s);
  707. void ff_fft_init_mmx(FFTContext *s);
  708. void ff_fft_init_arm(FFTContext *s);
  709. /**
  710. * Do the permutation needed BEFORE calling ff_fft_calc().
  711. */
  712. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  713. {
  714. s->fft_permute(s, z);
  715. }
  716. /**
  717. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  718. * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
  719. */
  720. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  721. {
  722. s->fft_calc(s, z);
  723. }
  724. void ff_fft_end(FFTContext *s);
  725. /* MDCT computation */
  726. static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
  727. {
  728. s->imdct_calc(s, output, input);
  729. }
  730. static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
  731. {
  732. s->imdct_half(s, output, input);
  733. }
  734. static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
  735. const FFTSample *input)
  736. {
  737. s->mdct_calc(s, output, input);
  738. }
  739. /**
  740. * Generate a Kaiser-Bessel Derived Window.
  741. * @param window pointer to half window
  742. * @param alpha determines window shape
  743. * @param n size of half window
  744. */
  745. void ff_kbd_window_init(float *window, float alpha, int n);
  746. /**
  747. * Generate a sine window.
  748. * @param window pointer to half window
  749. * @param n size of half window
  750. */
  751. void ff_sine_window_init(float *window, int n);
  752. /**
  753. * initialize the specified entry of ff_sine_windows
  754. */
  755. void ff_init_ff_sine_windows(int index);
  756. extern SINETABLE( 32);
  757. extern SINETABLE( 64);
  758. extern SINETABLE( 128);
  759. extern SINETABLE( 256);
  760. extern SINETABLE( 512);
  761. extern SINETABLE(1024);
  762. extern SINETABLE(2048);
  763. extern SINETABLE(4096);
  764. extern SINETABLE_CONST float * const ff_sine_windows[13];
  765. int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
  766. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  767. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  768. void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  769. void ff_mdct_end(FFTContext *s);
  770. /* Real Discrete Fourier Transform */
  771. enum RDFTransformType {
  772. RDFT,
  773. IRDFT,
  774. RIDFT,
  775. IRIDFT,
  776. };
  777. typedef struct {
  778. int nbits;
  779. int inverse;
  780. int sign_convention;
  781. /* pre/post rotation tables */
  782. const FFTSample *tcos;
  783. SINTABLE_CONST FFTSample *tsin;
  784. FFTContext fft;
  785. } RDFTContext;
  786. /**
  787. * Sets up a real FFT.
  788. * @param nbits log2 of the length of the input array
  789. * @param trans the type of transform
  790. */
  791. int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
  792. void ff_rdft_calc(RDFTContext *s, FFTSample *data);
  793. void ff_rdft_end(RDFTContext *s);
  794. /* Discrete Cosine Transform */
  795. typedef struct {
  796. int nbits;
  797. int inverse;
  798. FFTSample *data;
  799. RDFTContext rdft;
  800. const float *costab;
  801. FFTSample *csc2;
  802. } DCTContext;
  803. /**
  804. * Sets up (Inverse)DCT.
  805. * @param nbits log2 of the length of the input array
  806. * @param inverse >0 forward transform, <0 inverse transform
  807. */
  808. int ff_dct_init(DCTContext *s, int nbits, int inverse);
  809. void ff_dct_calc(DCTContext *s, FFTSample *data);
  810. void ff_dct_end (DCTContext *s);
  811. #define WRAPPER8_16(name8, name16)\
  812. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  813. return name8(s, dst , src , stride, h)\
  814. +name8(s, dst+8 , src+8 , stride, h);\
  815. }
  816. #define WRAPPER8_16_SQ(name8, name16)\
  817. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  818. int score=0;\
  819. score +=name8(s, dst , src , stride, 8);\
  820. score +=name8(s, dst+8 , src+8 , stride, 8);\
  821. if(h==16){\
  822. dst += 8*stride;\
  823. src += 8*stride;\
  824. score +=name8(s, dst , src , stride, 8);\
  825. score +=name8(s, dst+8 , src+8 , stride, 8);\
  826. }\
  827. return score;\
  828. }
  829. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  830. {
  831. int i;
  832. for(i=0; i<h; i++)
  833. {
  834. AV_WN16(dst , AV_RN16(src ));
  835. dst+=dstStride;
  836. src+=srcStride;
  837. }
  838. }
  839. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  840. {
  841. int i;
  842. for(i=0; i<h; i++)
  843. {
  844. AV_WN32(dst , AV_RN32(src ));
  845. dst+=dstStride;
  846. src+=srcStride;
  847. }
  848. }
  849. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  850. {
  851. int i;
  852. for(i=0; i<h; i++)
  853. {
  854. AV_WN32(dst , AV_RN32(src ));
  855. AV_WN32(dst+4 , AV_RN32(src+4 ));
  856. dst+=dstStride;
  857. src+=srcStride;
  858. }
  859. }
  860. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  861. {
  862. int i;
  863. for(i=0; i<h; i++)
  864. {
  865. AV_WN32(dst , AV_RN32(src ));
  866. AV_WN32(dst+4 , AV_RN32(src+4 ));
  867. dst[8]= src[8];
  868. dst+=dstStride;
  869. src+=srcStride;
  870. }
  871. }
  872. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  873. {
  874. int i;
  875. for(i=0; i<h; i++)
  876. {
  877. AV_WN32(dst , AV_RN32(src ));
  878. AV_WN32(dst+4 , AV_RN32(src+4 ));
  879. AV_WN32(dst+8 , AV_RN32(src+8 ));
  880. AV_WN32(dst+12, AV_RN32(src+12));
  881. dst+=dstStride;
  882. src+=srcStride;
  883. }
  884. }
  885. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  886. {
  887. int i;
  888. for(i=0; i<h; i++)
  889. {
  890. AV_WN32(dst , AV_RN32(src ));
  891. AV_WN32(dst+4 , AV_RN32(src+4 ));
  892. AV_WN32(dst+8 , AV_RN32(src+8 ));
  893. AV_WN32(dst+12, AV_RN32(src+12));
  894. dst[16]= src[16];
  895. dst+=dstStride;
  896. src+=srcStride;
  897. }
  898. }
  899. #endif /* AVCODEC_DSPUTIL_H */