You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5142 lines
145KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @section Notes on filtergraph escaping
  156. Some filter arguments require the use of special characters, typically
  157. @code{:} to separate key=value pairs in a named options list. In this
  158. case the user should perform a first level escaping when specifying
  159. the filter arguments. For example, consider the following literal
  160. string to be embedded in the @ref{drawtext} filter arguments:
  161. @example
  162. this is a 'string': may contain one, or more, special characters
  163. @end example
  164. Since @code{:} is special for the filter arguments syntax, it needs to
  165. be escaped, so you get:
  166. @example
  167. text=this is a \'string\'\: may contain one, or more, special characters
  168. @end example
  169. A second level of escaping is required when embedding the filter
  170. arguments in a filtergraph description, in order to escape all the
  171. filtergraph special characters. Thus the example above becomes:
  172. @example
  173. drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters
  174. @end example
  175. Finally an additional level of escaping may be needed when writing the
  176. filtergraph description in a shell command, which depends on the
  177. escaping rules of the adopted shell. For example, assuming that
  178. @code{\} is special and needs to be escaped with another @code{\}, the
  179. previous string will finally result in:
  180. @example
  181. -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"
  182. @end example
  183. Sometimes, it might be more convenient to employ quoting in place of
  184. escaping. For example the string:
  185. @example
  186. Caesar: tu quoque, Brute, fili mi
  187. @end example
  188. Can be quoted in the filter arguments as:
  189. @example
  190. text='Caesar: tu quoque, Brute, fili mi'
  191. @end example
  192. And finally inserted in a filtergraph like:
  193. @example
  194. drawtext=text=\'Caesar: tu quoque\, Brute\, fili mi\'
  195. @end example
  196. See the @ref{quoting_and_escaping, Quoting and escaping} section for
  197. more information about the escaping and quoting rules adopted by
  198. FFmpeg.
  199. @c man end FILTERGRAPH DESCRIPTION
  200. @chapter Audio Filters
  201. @c man begin AUDIO FILTERS
  202. When you configure your FFmpeg build, you can disable any of the
  203. existing filters using @code{--disable-filters}.
  204. The configure output will show the audio filters included in your
  205. build.
  206. Below is a description of the currently available audio filters.
  207. @section aconvert
  208. Convert the input audio format to the specified formats.
  209. The filter accepts a string of the form:
  210. "@var{sample_format}:@var{channel_layout}".
  211. @var{sample_format} specifies the sample format, and can be a string or the
  212. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  213. suffix for a planar sample format.
  214. @var{channel_layout} specifies the channel layout, and can be a string
  215. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  216. The special parameter "auto", signifies that the filter will
  217. automatically select the output format depending on the output filter.
  218. Some examples follow.
  219. @itemize
  220. @item
  221. Convert input to float, planar, stereo:
  222. @example
  223. aconvert=fltp:stereo
  224. @end example
  225. @item
  226. Convert input to unsigned 8-bit, automatically select out channel layout:
  227. @example
  228. aconvert=u8:auto
  229. @end example
  230. @end itemize
  231. @section aformat
  232. Convert the input audio to one of the specified formats. The framework will
  233. negotiate the most appropriate format to minimize conversions.
  234. The filter accepts the following named parameters:
  235. @table @option
  236. @item sample_fmts
  237. A comma-separated list of requested sample formats.
  238. @item sample_rates
  239. A comma-separated list of requested sample rates.
  240. @item channel_layouts
  241. A comma-separated list of requested channel layouts.
  242. @end table
  243. If a parameter is omitted, all values are allowed.
  244. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  245. @example
  246. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  247. @end example
  248. @section amerge
  249. Merge two or more audio streams into a single multi-channel stream.
  250. The filter accepts the following named options:
  251. @table @option
  252. @item inputs
  253. Set the number of inputs. Default is 2.
  254. @end table
  255. If the channel layouts of the inputs are disjoint, and therefore compatible,
  256. the channel layout of the output will be set accordingly and the channels
  257. will be reordered as necessary. If the channel layouts of the inputs are not
  258. disjoint, the output will have all the channels of the first input then all
  259. the channels of the second input, in that order, and the channel layout of
  260. the output will be the default value corresponding to the total number of
  261. channels.
  262. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  263. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  264. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  265. first input, b1 is the first channel of the second input).
  266. On the other hand, if both input are in stereo, the output channels will be
  267. in the default order: a1, a2, b1, b2, and the channel layout will be
  268. arbitrarily set to 4.0, which may or may not be the expected value.
  269. All inputs must have the same sample rate, and format.
  270. If inputs do not have the same duration, the output will stop with the
  271. shortest.
  272. Example: merge two mono files into a stereo stream:
  273. @example
  274. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  275. @end example
  276. Example: multiple merges:
  277. @example
  278. ffmpeg -f lavfi -i "
  279. amovie=input.mkv:si=0 [a0];
  280. amovie=input.mkv:si=1 [a1];
  281. amovie=input.mkv:si=2 [a2];
  282. amovie=input.mkv:si=3 [a3];
  283. amovie=input.mkv:si=4 [a4];
  284. amovie=input.mkv:si=5 [a5];
  285. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  286. @end example
  287. @section amix
  288. Mixes multiple audio inputs into a single output.
  289. For example
  290. @example
  291. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  292. @end example
  293. will mix 3 input audio streams to a single output with the same duration as the
  294. first input and a dropout transition time of 3 seconds.
  295. The filter accepts the following named parameters:
  296. @table @option
  297. @item inputs
  298. Number of inputs. If unspecified, it defaults to 2.
  299. @item duration
  300. How to determine the end-of-stream.
  301. @table @option
  302. @item longest
  303. Duration of longest input. (default)
  304. @item shortest
  305. Duration of shortest input.
  306. @item first
  307. Duration of first input.
  308. @end table
  309. @item dropout_transition
  310. Transition time, in seconds, for volume renormalization when an input
  311. stream ends. The default value is 2 seconds.
  312. @end table
  313. @section anull
  314. Pass the audio source unchanged to the output.
  315. @section aresample
  316. Resample the input audio to the specified sample rate.
  317. The filter accepts exactly one parameter, the output sample rate. If not
  318. specified then the filter will automatically convert between its input
  319. and output sample rates.
  320. For example, to resample the input audio to 44100Hz:
  321. @example
  322. aresample=44100
  323. @end example
  324. @section asetnsamples
  325. Set the number of samples per each output audio frame.
  326. The last output packet may contain a different number of samples, as
  327. the filter will flush all the remaining samples when the input audio
  328. signal its end.
  329. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  330. separated by ":".
  331. @table @option
  332. @item nb_out_samples, n
  333. Set the number of frames per each output audio frame. The number is
  334. intended as the number of samples @emph{per each channel}.
  335. Default value is 1024.
  336. @item pad, p
  337. If set to 1, the filter will pad the last audio frame with zeroes, so
  338. that the last frame will contain the same number of samples as the
  339. previous ones. Default value is 1.
  340. @end table
  341. For example, to set the number of per-frame samples to 1234 and
  342. disable padding for the last frame, use:
  343. @example
  344. asetnsamples=n=1234:p=0
  345. @end example
  346. @section ashowinfo
  347. Show a line containing various information for each input audio frame.
  348. The input audio is not modified.
  349. The shown line contains a sequence of key/value pairs of the form
  350. @var{key}:@var{value}.
  351. A description of each shown parameter follows:
  352. @table @option
  353. @item n
  354. sequential number of the input frame, starting from 0
  355. @item pts
  356. Presentation timestamp of the input frame, in time base units; the time base
  357. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  358. @item pts_time
  359. presentation timestamp of the input frame in seconds
  360. @item pos
  361. position of the frame in the input stream, -1 if this information in
  362. unavailable and/or meaningless (for example in case of synthetic audio)
  363. @item fmt
  364. sample format
  365. @item chlayout
  366. channel layout
  367. @item rate
  368. sample rate for the audio frame
  369. @item nb_samples
  370. number of samples (per channel) in the frame
  371. @item checksum
  372. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  373. the data is treated as if all the planes were concatenated.
  374. @item plane_checksums
  375. A list of Adler-32 checksums for each data plane.
  376. @end table
  377. @section asplit
  378. Split input audio into several identical outputs.
  379. The filter accepts a single parameter which specifies the number of outputs. If
  380. unspecified, it defaults to 2.
  381. For example:
  382. @example
  383. [in] asplit [out0][out1]
  384. @end example
  385. will create two separate outputs from the same input.
  386. To create 3 or more outputs, you need to specify the number of
  387. outputs, like in:
  388. @example
  389. [in] asplit=3 [out0][out1][out2]
  390. @end example
  391. @example
  392. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  393. @end example
  394. will create 5 copies of the input audio.
  395. @section astreamsync
  396. Forward two audio streams and control the order the buffers are forwarded.
  397. The argument to the filter is an expression deciding which stream should be
  398. forwarded next: if the result is negative, the first stream is forwarded; if
  399. the result is positive or zero, the second stream is forwarded. It can use
  400. the following variables:
  401. @table @var
  402. @item b1 b2
  403. number of buffers forwarded so far on each stream
  404. @item s1 s2
  405. number of samples forwarded so far on each stream
  406. @item t1 t2
  407. current timestamp of each stream
  408. @end table
  409. The default value is @code{t1-t2}, which means to always forward the stream
  410. that has a smaller timestamp.
  411. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  412. input, while avoiding too much of a desynchronization:
  413. @example
  414. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  415. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  416. [a2] [b2] amerge
  417. @end example
  418. @section atempo
  419. Adjust audio tempo.
  420. The filter accepts exactly one parameter, the audio tempo. If not
  421. specified then the filter will assume nominal 1.0 tempo. Tempo must
  422. be in the [0.5, 2.0] range.
  423. For example, to slow down audio to 80% tempo:
  424. @example
  425. atempo=0.8
  426. @end example
  427. For example, to speed up audio to 125% tempo:
  428. @example
  429. atempo=1.25
  430. @end example
  431. @section earwax
  432. Make audio easier to listen to on headphones.
  433. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  434. so that when listened to on headphones the stereo image is moved from
  435. inside your head (standard for headphones) to outside and in front of
  436. the listener (standard for speakers).
  437. Ported from SoX.
  438. @section pan
  439. Mix channels with specific gain levels. The filter accepts the output
  440. channel layout followed by a set of channels definitions.
  441. This filter is also designed to remap efficiently the channels of an audio
  442. stream.
  443. The filter accepts parameters of the form:
  444. "@var{l}:@var{outdef}:@var{outdef}:..."
  445. @table @option
  446. @item l
  447. output channel layout or number of channels
  448. @item outdef
  449. output channel specification, of the form:
  450. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  451. @item out_name
  452. output channel to define, either a channel name (FL, FR, etc.) or a channel
  453. number (c0, c1, etc.)
  454. @item gain
  455. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  456. @item in_name
  457. input channel to use, see out_name for details; it is not possible to mix
  458. named and numbered input channels
  459. @end table
  460. If the `=' in a channel specification is replaced by `<', then the gains for
  461. that specification will be renormalized so that the total is 1, thus
  462. avoiding clipping noise.
  463. @subsection Mixing examples
  464. For example, if you want to down-mix from stereo to mono, but with a bigger
  465. factor for the left channel:
  466. @example
  467. pan=1:c0=0.9*c0+0.1*c1
  468. @end example
  469. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  470. 7-channels surround:
  471. @example
  472. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  473. @end example
  474. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  475. that should be preferred (see "-ac" option) unless you have very specific
  476. needs.
  477. @subsection Remapping examples
  478. The channel remapping will be effective if, and only if:
  479. @itemize
  480. @item gain coefficients are zeroes or ones,
  481. @item only one input per channel output,
  482. @end itemize
  483. If all these conditions are satisfied, the filter will notify the user ("Pure
  484. channel mapping detected"), and use an optimized and lossless method to do the
  485. remapping.
  486. For example, if you have a 5.1 source and want a stereo audio stream by
  487. dropping the extra channels:
  488. @example
  489. pan="stereo: c0=FL : c1=FR"
  490. @end example
  491. Given the same source, you can also switch front left and front right channels
  492. and keep the input channel layout:
  493. @example
  494. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  495. @end example
  496. If the input is a stereo audio stream, you can mute the front left channel (and
  497. still keep the stereo channel layout) with:
  498. @example
  499. pan="stereo:c1=c1"
  500. @end example
  501. Still with a stereo audio stream input, you can copy the right channel in both
  502. front left and right:
  503. @example
  504. pan="stereo: c0=FR : c1=FR"
  505. @end example
  506. @section silencedetect
  507. Detect silence in an audio stream.
  508. This filter logs a message when it detects that the input audio volume is less
  509. or equal to a noise tolerance value for a duration greater or equal to the
  510. minimum detected noise duration.
  511. The printed times and duration are expressed in seconds.
  512. @table @option
  513. @item duration, d
  514. Set silence duration until notification (default is 2 seconds).
  515. @item noise, n
  516. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  517. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  518. @end table
  519. Detect 5 seconds of silence with -50dB noise tolerance:
  520. @example
  521. silencedetect=n=-50dB:d=5
  522. @end example
  523. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  524. tolerance in @file{silence.mp3}:
  525. @example
  526. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  527. @end example
  528. @section volume
  529. Adjust the input audio volume.
  530. The filter accepts exactly one parameter @var{vol}, which expresses
  531. how the audio volume will be increased or decreased.
  532. Output values are clipped to the maximum value.
  533. If @var{vol} is expressed as a decimal number, the output audio
  534. volume is given by the relation:
  535. @example
  536. @var{output_volume} = @var{vol} * @var{input_volume}
  537. @end example
  538. If @var{vol} is expressed as a decimal number followed by the string
  539. "dB", the value represents the requested change in decibels of the
  540. input audio power, and the output audio volume is given by the
  541. relation:
  542. @example
  543. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  544. @end example
  545. Otherwise @var{vol} is considered an expression and its evaluated
  546. value is used for computing the output audio volume according to the
  547. first relation.
  548. Default value for @var{vol} is 1.0.
  549. @subsection Examples
  550. @itemize
  551. @item
  552. Half the input audio volume:
  553. @example
  554. volume=0.5
  555. @end example
  556. The above example is equivalent to:
  557. @example
  558. volume=1/2
  559. @end example
  560. @item
  561. Decrease input audio power by 12 decibels:
  562. @example
  563. volume=-12dB
  564. @end example
  565. @end itemize
  566. @section volumedetect
  567. Detect the volume of the input video.
  568. The filter has no parameters. The input is not modified. Statistics about
  569. the volume will be printed in the log when the input stream end is reached.
  570. In particular it will show the mean volume (root mean square), maximum
  571. volume (on a per-sample basis), and the beginning of an histogram of the
  572. registered volume values (from the maximum value to a cumulated 1/1000 of
  573. the samples).
  574. All volumes are in decibels relative to the maximum PCM value.
  575. Here is an excerpt of the output:
  576. @example
  577. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  578. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  579. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  580. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  581. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  582. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  583. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  584. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  585. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  586. @end example
  587. It means that:
  588. @itemize
  589. @item
  590. The mean square energy is approximately -27 dB, or 10^-2.7.
  591. @item
  592. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  593. @item
  594. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  595. @end itemize
  596. In other words, raising the volume by +4 dB does not cause any clipping,
  597. raising it by +5 dB causes clipping for 6 samples, etc.
  598. @section asyncts
  599. Synchronize audio data with timestamps by squeezing/stretching it and/or
  600. dropping samples/adding silence when needed.
  601. The filter accepts the following named parameters:
  602. @table @option
  603. @item compensate
  604. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  605. by default. When disabled, time gaps are covered with silence.
  606. @item min_delta
  607. Minimum difference between timestamps and audio data (in seconds) to trigger
  608. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  609. this filter, try setting this parameter to 0.
  610. @item max_comp
  611. Maximum compensation in samples per second. Relevant only with compensate=1.
  612. Default value 500.
  613. @item first_pts
  614. Assume the first pts should be this value.
  615. This allows for padding/trimming at the start of stream. By default, no
  616. assumption is made about the first frame's expected pts, so no padding or
  617. trimming is done. For example, this could be set to 0 to pad the beginning with
  618. silence if an audio stream starts after the video stream.
  619. @end table
  620. @section channelsplit
  621. Split each channel in input audio stream into a separate output stream.
  622. This filter accepts the following named parameters:
  623. @table @option
  624. @item channel_layout
  625. Channel layout of the input stream. Default is "stereo".
  626. @end table
  627. For example, assuming a stereo input MP3 file
  628. @example
  629. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  630. @end example
  631. will create an output Matroska file with two audio streams, one containing only
  632. the left channel and the other the right channel.
  633. To split a 5.1 WAV file into per-channel files
  634. @example
  635. ffmpeg -i in.wav -filter_complex
  636. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  637. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  638. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  639. side_right.wav
  640. @end example
  641. @section channelmap
  642. Remap input channels to new locations.
  643. This filter accepts the following named parameters:
  644. @table @option
  645. @item channel_layout
  646. Channel layout of the output stream.
  647. @item map
  648. Map channels from input to output. The argument is a comma-separated list of
  649. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  650. @var{in_channel} form. @var{in_channel} can be either the name of the input
  651. channel (e.g. FL for front left) or its index in the input channel layout.
  652. @var{out_channel} is the name of the output channel or its index in the output
  653. channel layout. If @var{out_channel} is not given then it is implicitly an
  654. index, starting with zero and increasing by one for each mapping.
  655. @end table
  656. If no mapping is present, the filter will implicitly map input channels to
  657. output channels preserving index.
  658. For example, assuming a 5.1+downmix input MOV file
  659. @example
  660. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  661. @end example
  662. will create an output WAV file tagged as stereo from the downmix channels of
  663. the input.
  664. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  665. @example
  666. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  667. @end example
  668. @section join
  669. Join multiple input streams into one multi-channel stream.
  670. The filter accepts the following named parameters:
  671. @table @option
  672. @item inputs
  673. Number of input streams. Defaults to 2.
  674. @item channel_layout
  675. Desired output channel layout. Defaults to stereo.
  676. @item map
  677. Map channels from inputs to output. The argument is a comma-separated list of
  678. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  679. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  680. can be either the name of the input channel (e.g. FL for front left) or its
  681. index in the specified input stream. @var{out_channel} is the name of the output
  682. channel.
  683. @end table
  684. The filter will attempt to guess the mappings when those are not specified
  685. explicitly. It does so by first trying to find an unused matching input channel
  686. and if that fails it picks the first unused input channel.
  687. E.g. to join 3 inputs (with properly set channel layouts)
  688. @example
  689. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  690. @end example
  691. To build a 5.1 output from 6 single-channel streams:
  692. @example
  693. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  694. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  695. out
  696. @end example
  697. @section resample
  698. Convert the audio sample format, sample rate and channel layout. This filter is
  699. not meant to be used directly.
  700. @c man end AUDIO FILTERS
  701. @chapter Audio Sources
  702. @c man begin AUDIO SOURCES
  703. Below is a description of the currently available audio sources.
  704. @section abuffer
  705. Buffer audio frames, and make them available to the filter chain.
  706. This source is mainly intended for a programmatic use, in particular
  707. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  708. It accepts the following mandatory parameters:
  709. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  710. @table @option
  711. @item sample_rate
  712. The sample rate of the incoming audio buffers.
  713. @item sample_fmt
  714. The sample format of the incoming audio buffers.
  715. Either a sample format name or its corresponging integer representation from
  716. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  717. @item channel_layout
  718. The channel layout of the incoming audio buffers.
  719. Either a channel layout name from channel_layout_map in
  720. @file{libavutil/audioconvert.c} or its corresponding integer representation
  721. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  722. @end table
  723. For example:
  724. @example
  725. abuffer=44100:s16p:stereo
  726. @end example
  727. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  728. Since the sample format with name "s16p" corresponds to the number
  729. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  730. equivalent to:
  731. @example
  732. abuffer=44100:6:0x3
  733. @end example
  734. @section aevalsrc
  735. Generate an audio signal specified by an expression.
  736. This source accepts in input one or more expressions (one for each
  737. channel), which are evaluated and used to generate a corresponding
  738. audio signal.
  739. It accepts the syntax: @var{exprs}[::@var{options}].
  740. @var{exprs} is a list of expressions separated by ":", one for each
  741. separate channel. In case the @var{channel_layout} is not
  742. specified, the selected channel layout depends on the number of
  743. provided expressions.
  744. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  745. separated by ":".
  746. The description of the accepted options follows.
  747. @table @option
  748. @item channel_layout, c
  749. Set the channel layout. The number of channels in the specified layout
  750. must be equal to the number of specified expressions.
  751. @item duration, d
  752. Set the minimum duration of the sourced audio. See the function
  753. @code{av_parse_time()} for the accepted format.
  754. Note that the resulting duration may be greater than the specified
  755. duration, as the generated audio is always cut at the end of a
  756. complete frame.
  757. If not specified, or the expressed duration is negative, the audio is
  758. supposed to be generated forever.
  759. @item nb_samples, n
  760. Set the number of samples per channel per each output frame,
  761. default to 1024.
  762. @item sample_rate, s
  763. Specify the sample rate, default to 44100.
  764. @end table
  765. Each expression in @var{exprs} can contain the following constants:
  766. @table @option
  767. @item n
  768. number of the evaluated sample, starting from 0
  769. @item t
  770. time of the evaluated sample expressed in seconds, starting from 0
  771. @item s
  772. sample rate
  773. @end table
  774. @subsection Examples
  775. @itemize
  776. @item
  777. Generate silence:
  778. @example
  779. aevalsrc=0
  780. @end example
  781. @item
  782. Generate a sin signal with frequency of 440 Hz, set sample rate to
  783. 8000 Hz:
  784. @example
  785. aevalsrc="sin(440*2*PI*t)::s=8000"
  786. @end example
  787. @item
  788. Generate a two channels signal, specify the channel layout (Front
  789. Center + Back Center) explicitly:
  790. @example
  791. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  792. @end example
  793. @item
  794. Generate white noise:
  795. @example
  796. aevalsrc="-2+random(0)"
  797. @end example
  798. @item
  799. Generate an amplitude modulated signal:
  800. @example
  801. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  802. @end example
  803. @item
  804. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  805. @example
  806. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  807. @end example
  808. @end itemize
  809. @section anullsrc
  810. Null audio source, return unprocessed audio frames. It is mainly useful
  811. as a template and to be employed in analysis / debugging tools, or as
  812. the source for filters which ignore the input data (for example the sox
  813. synth filter).
  814. It accepts an optional sequence of @var{key}=@var{value} pairs,
  815. separated by ":".
  816. The description of the accepted options follows.
  817. @table @option
  818. @item sample_rate, s
  819. Specify the sample rate, and defaults to 44100.
  820. @item channel_layout, cl
  821. Specify the channel layout, and can be either an integer or a string
  822. representing a channel layout. The default value of @var{channel_layout}
  823. is "stereo".
  824. Check the channel_layout_map definition in
  825. @file{libavcodec/audioconvert.c} for the mapping between strings and
  826. channel layout values.
  827. @item nb_samples, n
  828. Set the number of samples per requested frames.
  829. @end table
  830. Follow some examples:
  831. @example
  832. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  833. anullsrc=r=48000:cl=4
  834. # same as
  835. anullsrc=r=48000:cl=mono
  836. @end example
  837. @section abuffer
  838. Buffer audio frames, and make them available to the filter chain.
  839. This source is not intended to be part of user-supplied graph descriptions but
  840. for insertion by calling programs through the interface defined in
  841. @file{libavfilter/buffersrc.h}.
  842. It accepts the following named parameters:
  843. @table @option
  844. @item time_base
  845. Timebase which will be used for timestamps of submitted frames. It must be
  846. either a floating-point number or in @var{numerator}/@var{denominator} form.
  847. @item sample_rate
  848. Audio sample rate.
  849. @item sample_fmt
  850. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  851. @item channel_layout
  852. Channel layout of the audio data, in the form that can be accepted by
  853. @code{av_get_channel_layout()}.
  854. @end table
  855. All the parameters need to be explicitly defined.
  856. @section flite
  857. Synthesize a voice utterance using the libflite library.
  858. To enable compilation of this filter you need to configure FFmpeg with
  859. @code{--enable-libflite}.
  860. Note that the flite library is not thread-safe.
  861. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  862. separated by ":".
  863. The description of the accepted parameters follows.
  864. @table @option
  865. @item list_voices
  866. If set to 1, list the names of the available voices and exit
  867. immediately. Default value is 0.
  868. @item nb_samples, n
  869. Set the maximum number of samples per frame. Default value is 512.
  870. @item textfile
  871. Set the filename containing the text to speak.
  872. @item text
  873. Set the text to speak.
  874. @item voice, v
  875. Set the voice to use for the speech synthesis. Default value is
  876. @code{kal}. See also the @var{list_voices} option.
  877. @end table
  878. @subsection Examples
  879. @itemize
  880. @item
  881. Read from file @file{speech.txt}, and synthetize the text using the
  882. standard flite voice:
  883. @example
  884. flite=textfile=speech.txt
  885. @end example
  886. @item
  887. Read the specified text selecting the @code{slt} voice:
  888. @example
  889. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  890. @end example
  891. @item
  892. Input text to ffmpeg:
  893. @example
  894. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  895. @end example
  896. @item
  897. Make @file{ffplay} speak the specified text, using @code{flite} and
  898. the @code{lavfi} device:
  899. @example
  900. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  901. @end example
  902. @end itemize
  903. For more information about libflite, check:
  904. @url{http://www.speech.cs.cmu.edu/flite/}
  905. @c man end AUDIO SOURCES
  906. @chapter Audio Sinks
  907. @c man begin AUDIO SINKS
  908. Below is a description of the currently available audio sinks.
  909. @section abuffersink
  910. Buffer audio frames, and make them available to the end of filter chain.
  911. This sink is mainly intended for programmatic use, in particular
  912. through the interface defined in @file{libavfilter/buffersink.h}.
  913. It requires a pointer to an AVABufferSinkContext structure, which
  914. defines the incoming buffers' formats, to be passed as the opaque
  915. parameter to @code{avfilter_init_filter} for initialization.
  916. @section anullsink
  917. Null audio sink, do absolutely nothing with the input audio. It is
  918. mainly useful as a template and to be employed in analysis / debugging
  919. tools.
  920. @section abuffersink
  921. This sink is intended for programmatic use. Frames that arrive on this sink can
  922. be retrieved by the calling program using the interface defined in
  923. @file{libavfilter/buffersink.h}.
  924. This filter accepts no parameters.
  925. @c man end AUDIO SINKS
  926. @chapter Video Filters
  927. @c man begin VIDEO FILTERS
  928. When you configure your FFmpeg build, you can disable any of the
  929. existing filters using @code{--disable-filters}.
  930. The configure output will show the video filters included in your
  931. build.
  932. Below is a description of the currently available video filters.
  933. @section alphaextract
  934. Extract the alpha component from the input as a grayscale video. This
  935. is especially useful with the @var{alphamerge} filter.
  936. @section alphamerge
  937. Add or replace the alpha component of the primary input with the
  938. grayscale value of a second input. This is intended for use with
  939. @var{alphaextract} to allow the transmission or storage of frame
  940. sequences that have alpha in a format that doesn't support an alpha
  941. channel.
  942. For example, to reconstruct full frames from a normal YUV-encoded video
  943. and a separate video created with @var{alphaextract}, you might use:
  944. @example
  945. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  946. @end example
  947. Since this filter is designed for reconstruction, it operates on frame
  948. sequences without considering timestamps, and terminates when either
  949. input reaches end of stream. This will cause problems if your encoding
  950. pipeline drops frames. If you're trying to apply an image as an
  951. overlay to a video stream, consider the @var{overlay} filter instead.
  952. @section ass
  953. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  954. using the libass library.
  955. To enable compilation of this filter you need to configure FFmpeg with
  956. @code{--enable-libass}.
  957. This filter accepts the following named options, expressed as a
  958. sequence of @var{key}=@var{value} pairs, separated by ":".
  959. @table @option
  960. @item filename, f
  961. Set the filename of the ASS file to read. It must be specified.
  962. @item original_size
  963. Specify the size of the original video, the video for which the ASS file
  964. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  965. necessary to correctly scale the fonts if the aspect ratio has been changed.
  966. @end table
  967. If the first key is not specified, it is assumed that the first value
  968. specifies the @option{filename}.
  969. For example, to render the file @file{sub.ass} on top of the input
  970. video, use the command:
  971. @example
  972. ass=sub.ass
  973. @end example
  974. which is equivalent to:
  975. @example
  976. ass=filename=sub.ass
  977. @end example
  978. @section bbox
  979. Compute the bounding box for the non-black pixels in the input frame
  980. luminance plane.
  981. This filter computes the bounding box containing all the pixels with a
  982. luminance value greater than the minimum allowed value.
  983. The parameters describing the bounding box are printed on the filter
  984. log.
  985. @section blackdetect
  986. Detect video intervals that are (almost) completely black. Can be
  987. useful to detect chapter transitions, commercials, or invalid
  988. recordings. Output lines contains the time for the start, end and
  989. duration of the detected black interval expressed in seconds.
  990. In order to display the output lines, you need to set the loglevel at
  991. least to the AV_LOG_INFO value.
  992. This filter accepts a list of options in the form of
  993. @var{key}=@var{value} pairs separated by ":". A description of the
  994. accepted options follows.
  995. @table @option
  996. @item black_min_duration, d
  997. Set the minimum detected black duration expressed in seconds. It must
  998. be a non-negative floating point number.
  999. Default value is 2.0.
  1000. @item picture_black_ratio_th, pic_th
  1001. Set the threshold for considering a picture "black".
  1002. Express the minimum value for the ratio:
  1003. @example
  1004. @var{nb_black_pixels} / @var{nb_pixels}
  1005. @end example
  1006. for which a picture is considered black.
  1007. Default value is 0.98.
  1008. @item pixel_black_th, pix_th
  1009. Set the threshold for considering a pixel "black".
  1010. The threshold expresses the maximum pixel luminance value for which a
  1011. pixel is considered "black". The provided value is scaled according to
  1012. the following equation:
  1013. @example
  1014. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  1015. @end example
  1016. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  1017. the input video format, the range is [0-255] for YUV full-range
  1018. formats and [16-235] for YUV non full-range formats.
  1019. Default value is 0.10.
  1020. @end table
  1021. The following example sets the maximum pixel threshold to the minimum
  1022. value, and detects only black intervals of 2 or more seconds:
  1023. @example
  1024. blackdetect=d=2:pix_th=0.00
  1025. @end example
  1026. @section blackframe
  1027. Detect frames that are (almost) completely black. Can be useful to
  1028. detect chapter transitions or commercials. Output lines consist of
  1029. the frame number of the detected frame, the percentage of blackness,
  1030. the position in the file if known or -1 and the timestamp in seconds.
  1031. In order to display the output lines, you need to set the loglevel at
  1032. least to the AV_LOG_INFO value.
  1033. The filter accepts the syntax:
  1034. @example
  1035. blackframe[=@var{amount}:[@var{threshold}]]
  1036. @end example
  1037. @var{amount} is the percentage of the pixels that have to be below the
  1038. threshold, and defaults to 98.
  1039. @var{threshold} is the threshold below which a pixel value is
  1040. considered black, and defaults to 32.
  1041. @section boxblur
  1042. Apply boxblur algorithm to the input video.
  1043. This filter accepts the parameters:
  1044. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  1045. Chroma and alpha parameters are optional, if not specified they default
  1046. to the corresponding values set for @var{luma_radius} and
  1047. @var{luma_power}.
  1048. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  1049. the radius in pixels of the box used for blurring the corresponding
  1050. input plane. They are expressions, and can contain the following
  1051. constants:
  1052. @table @option
  1053. @item w, h
  1054. the input width and height in pixels
  1055. @item cw, ch
  1056. the input chroma image width and height in pixels
  1057. @item hsub, vsub
  1058. horizontal and vertical chroma subsample values. For example for the
  1059. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1060. @end table
  1061. The radius must be a non-negative number, and must not be greater than
  1062. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1063. and of @code{min(cw,ch)/2} for the chroma planes.
  1064. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1065. how many times the boxblur filter is applied to the corresponding
  1066. plane.
  1067. Some examples follow:
  1068. @itemize
  1069. @item
  1070. Apply a boxblur filter with luma, chroma, and alpha radius
  1071. set to 2:
  1072. @example
  1073. boxblur=2:1
  1074. @end example
  1075. @item
  1076. Set luma radius to 2, alpha and chroma radius to 0
  1077. @example
  1078. boxblur=2:1:0:0:0:0
  1079. @end example
  1080. @item
  1081. Set luma and chroma radius to a fraction of the video dimension
  1082. @example
  1083. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1084. @end example
  1085. @end itemize
  1086. @section colormatrix
  1087. The colormatrix filter allows conversion between any of the following color
  1088. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1089. and FCC (@var{fcc}).
  1090. The syntax of the parameters is @var{source}:@var{destination}:
  1091. @example
  1092. colormatrix=bt601:smpte240m
  1093. @end example
  1094. @section copy
  1095. Copy the input source unchanged to the output. Mainly useful for
  1096. testing purposes.
  1097. @section crop
  1098. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1099. The @var{keep_aspect} parameter is optional, if specified and set to a
  1100. non-zero value will force the output display aspect ratio to be the
  1101. same of the input, by changing the output sample aspect ratio.
  1102. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1103. expressions containing the following constants:
  1104. @table @option
  1105. @item x, y
  1106. the computed values for @var{x} and @var{y}. They are evaluated for
  1107. each new frame.
  1108. @item in_w, in_h
  1109. the input width and height
  1110. @item iw, ih
  1111. same as @var{in_w} and @var{in_h}
  1112. @item out_w, out_h
  1113. the output (cropped) width and height
  1114. @item ow, oh
  1115. same as @var{out_w} and @var{out_h}
  1116. @item a
  1117. same as @var{iw} / @var{ih}
  1118. @item sar
  1119. input sample aspect ratio
  1120. @item dar
  1121. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1122. @item hsub, vsub
  1123. horizontal and vertical chroma subsample values. For example for the
  1124. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1125. @item n
  1126. the number of input frame, starting from 0
  1127. @item pos
  1128. the position in the file of the input frame, NAN if unknown
  1129. @item t
  1130. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1131. @end table
  1132. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1133. the width and height of the output (cropped) video. They are
  1134. evaluated just at the configuration of the filter.
  1135. The default value of @var{out_w} is "in_w", and the default value of
  1136. @var{out_h} is "in_h".
  1137. The expression for @var{out_w} may depend on the value of @var{out_h},
  1138. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1139. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1140. evaluated after @var{out_w} and @var{out_h}.
  1141. The @var{x} and @var{y} parameters specify the expressions for the
  1142. position of the top-left corner of the output (non-cropped) area. They
  1143. are evaluated for each frame. If the evaluated value is not valid, it
  1144. is approximated to the nearest valid value.
  1145. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1146. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1147. the center of the input image.
  1148. The expression for @var{x} may depend on @var{y}, and the expression
  1149. for @var{y} may depend on @var{x}.
  1150. Follow some examples:
  1151. @example
  1152. # crop the central input area with size 100x100
  1153. crop=100:100
  1154. # crop the central input area with size 2/3 of the input video
  1155. "crop=2/3*in_w:2/3*in_h"
  1156. # crop the input video central square
  1157. crop=in_h
  1158. # delimit the rectangle with the top-left corner placed at position
  1159. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1160. # corner of the input image.
  1161. crop=in_w-100:in_h-100:100:100
  1162. # crop 10 pixels from the left and right borders, and 20 pixels from
  1163. # the top and bottom borders
  1164. "crop=in_w-2*10:in_h-2*20"
  1165. # keep only the bottom right quarter of the input image
  1166. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1167. # crop height for getting Greek harmony
  1168. "crop=in_w:1/PHI*in_w"
  1169. # trembling effect
  1170. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1171. # erratic camera effect depending on timestamp
  1172. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1173. # set x depending on the value of y
  1174. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1175. @end example
  1176. @section cropdetect
  1177. Auto-detect crop size.
  1178. Calculate necessary cropping parameters and prints the recommended
  1179. parameters through the logging system. The detected dimensions
  1180. correspond to the non-black area of the input video.
  1181. It accepts the syntax:
  1182. @example
  1183. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1184. @end example
  1185. @table @option
  1186. @item limit
  1187. Threshold, which can be optionally specified from nothing (0) to
  1188. everything (255), defaults to 24.
  1189. @item round
  1190. Value which the width/height should be divisible by, defaults to
  1191. 16. The offset is automatically adjusted to center the video. Use 2 to
  1192. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1193. encoding to most video codecs.
  1194. @item reset
  1195. Counter that determines after how many frames cropdetect will reset
  1196. the previously detected largest video area and start over to detect
  1197. the current optimal crop area. Defaults to 0.
  1198. This can be useful when channel logos distort the video area. 0
  1199. indicates never reset and return the largest area encountered during
  1200. playback.
  1201. @end table
  1202. @section decimate
  1203. This filter drops frames that do not differ greatly from the previous
  1204. frame in order to reduce framerate. The main use of this filter is
  1205. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1206. it could in theory be used for fixing movies that were
  1207. inverse-telecined incorrectly.
  1208. It accepts the following parameters:
  1209. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1210. @table @option
  1211. @item max
  1212. Set the maximum number of consecutive frames which can be dropped (if
  1213. positive), or the minimum interval between dropped frames (if
  1214. negative). If the value is 0, the frame is dropped unregarding the
  1215. number of previous sequentially dropped frames.
  1216. Default value is 0.
  1217. @item hi, lo, frac
  1218. Set the dropping threshold values.
  1219. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1220. represent actual pixel value differences, so a threshold of 64
  1221. corresponds to 1 unit of difference for each pixel, or the same spread
  1222. out differently over the block.
  1223. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1224. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1225. meaning the whole image) differ by more than a threshold of @var{lo}.
  1226. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1227. 64*5, and default value for @var{frac} is 0.33.
  1228. @end table
  1229. @section delogo
  1230. Suppress a TV station logo by a simple interpolation of the surrounding
  1231. pixels. Just set a rectangle covering the logo and watch it disappear
  1232. (and sometimes something even uglier appear - your mileage may vary).
  1233. The filter accepts parameters as a string of the form
  1234. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1235. @var{key}=@var{value} pairs, separated by ":".
  1236. The description of the accepted parameters follows.
  1237. @table @option
  1238. @item x, y
  1239. Specify the top left corner coordinates of the logo. They must be
  1240. specified.
  1241. @item w, h
  1242. Specify the width and height of the logo to clear. They must be
  1243. specified.
  1244. @item band, t
  1245. Specify the thickness of the fuzzy edge of the rectangle (added to
  1246. @var{w} and @var{h}). The default value is 4.
  1247. @item show
  1248. When set to 1, a green rectangle is drawn on the screen to simplify
  1249. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1250. @var{band} is set to 4. The default value is 0.
  1251. @end table
  1252. Some examples follow.
  1253. @itemize
  1254. @item
  1255. Set a rectangle covering the area with top left corner coordinates 0,0
  1256. and size 100x77, setting a band of size 10:
  1257. @example
  1258. delogo=0:0:100:77:10
  1259. @end example
  1260. @item
  1261. As the previous example, but use named options:
  1262. @example
  1263. delogo=x=0:y=0:w=100:h=77:band=10
  1264. @end example
  1265. @end itemize
  1266. @section deshake
  1267. Attempt to fix small changes in horizontal and/or vertical shift. This
  1268. filter helps remove camera shake from hand-holding a camera, bumping a
  1269. tripod, moving on a vehicle, etc.
  1270. The filter accepts parameters as a string of the form
  1271. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1272. A description of the accepted parameters follows.
  1273. @table @option
  1274. @item x, y, w, h
  1275. Specify a rectangular area where to limit the search for motion
  1276. vectors.
  1277. If desired the search for motion vectors can be limited to a
  1278. rectangular area of the frame defined by its top left corner, width
  1279. and height. These parameters have the same meaning as the drawbox
  1280. filter which can be used to visualise the position of the bounding
  1281. box.
  1282. This is useful when simultaneous movement of subjects within the frame
  1283. might be confused for camera motion by the motion vector search.
  1284. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1285. then the full frame is used. This allows later options to be set
  1286. without specifying the bounding box for the motion vector search.
  1287. Default - search the whole frame.
  1288. @item rx, ry
  1289. Specify the maximum extent of movement in x and y directions in the
  1290. range 0-64 pixels. Default 16.
  1291. @item edge
  1292. Specify how to generate pixels to fill blanks at the edge of the
  1293. frame. An integer from 0 to 3 as follows:
  1294. @table @option
  1295. @item 0
  1296. Fill zeroes at blank locations
  1297. @item 1
  1298. Original image at blank locations
  1299. @item 2
  1300. Extruded edge value at blank locations
  1301. @item 3
  1302. Mirrored edge at blank locations
  1303. @end table
  1304. The default setting is mirror edge at blank locations.
  1305. @item blocksize
  1306. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1307. default 8.
  1308. @item contrast
  1309. Specify the contrast threshold for blocks. Only blocks with more than
  1310. the specified contrast (difference between darkest and lightest
  1311. pixels) will be considered. Range 1-255, default 125.
  1312. @item search
  1313. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1314. search. Default - exhaustive search.
  1315. @item filename
  1316. If set then a detailed log of the motion search is written to the
  1317. specified file.
  1318. @end table
  1319. @section drawbox
  1320. Draw a colored box on the input image.
  1321. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1322. separated by ":".
  1323. The description of the accepted parameters follows.
  1324. @table @option
  1325. @item x, y
  1326. Specify the top left corner coordinates of the box. Default to 0.
  1327. @item width, w
  1328. @item height, h
  1329. Specify the width and height of the box, if 0 they are interpreted as
  1330. the input width and height. Default to 0.
  1331. @item color, c
  1332. Specify the color of the box to write, it can be the name of a color
  1333. (case insensitive match) or a 0xRRGGBB[AA] sequence. If the special
  1334. value @code{invert} is used, the box edge color is the same as the
  1335. video with inverted luma.
  1336. @item thickness, t
  1337. Set the thickness of the box edge. Default value is @code{4}.
  1338. @end table
  1339. If the key of the first options is omitted, the arguments are
  1340. interpreted according to the following syntax:
  1341. @example
  1342. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}:@var{thickness}
  1343. @end example
  1344. Some examples follow:
  1345. @itemize
  1346. @item
  1347. Draw a black box around the edge of the input image:
  1348. @example
  1349. drawbox
  1350. @end example
  1351. @item
  1352. Draw a box with color red and an opacity of 50%:
  1353. @example
  1354. drawbox=10:20:200:60:red@@0.5
  1355. @end example
  1356. The previous example can be specified as:
  1357. @example
  1358. drawbox=x=10:y=20:w=200:h=60:color=red@@0.5
  1359. @end example
  1360. @item
  1361. Fill the box with pink color:
  1362. @example
  1363. drawbox=x=10:y=10:w=100:h=100:color=pink@@0.5:t=max
  1364. @end example
  1365. @end itemize
  1366. @anchor{drawtext}
  1367. @section drawtext
  1368. Draw text string or text from specified file on top of video using the
  1369. libfreetype library.
  1370. To enable compilation of this filter you need to configure FFmpeg with
  1371. @code{--enable-libfreetype}.
  1372. The filter also recognizes strftime() sequences in the provided text
  1373. and expands them accordingly. Check the documentation of strftime().
  1374. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1375. separated by ":".
  1376. The description of the accepted parameters follows.
  1377. @table @option
  1378. @item box
  1379. Used to draw a box around text using background color.
  1380. Value should be either 1 (enable) or 0 (disable).
  1381. The default value of @var{box} is 0.
  1382. @item boxcolor
  1383. The color to be used for drawing box around text.
  1384. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1385. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1386. The default value of @var{boxcolor} is "white".
  1387. @item draw
  1388. Set an expression which specifies if the text should be drawn. If the
  1389. expression evaluates to 0, the text is not drawn. This is useful for
  1390. specifying that the text should be drawn only when specific conditions
  1391. are met.
  1392. Default value is "1".
  1393. See below for the list of accepted constants and functions.
  1394. @item fix_bounds
  1395. If true, check and fix text coords to avoid clipping.
  1396. @item fontcolor
  1397. The color to be used for drawing fonts.
  1398. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1399. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1400. The default value of @var{fontcolor} is "black".
  1401. @item fontfile
  1402. The font file to be used for drawing text. Path must be included.
  1403. This parameter is mandatory.
  1404. @item fontsize
  1405. The font size to be used for drawing text.
  1406. The default value of @var{fontsize} is 16.
  1407. @item ft_load_flags
  1408. Flags to be used for loading the fonts.
  1409. The flags map the corresponding flags supported by libfreetype, and are
  1410. a combination of the following values:
  1411. @table @var
  1412. @item default
  1413. @item no_scale
  1414. @item no_hinting
  1415. @item render
  1416. @item no_bitmap
  1417. @item vertical_layout
  1418. @item force_autohint
  1419. @item crop_bitmap
  1420. @item pedantic
  1421. @item ignore_global_advance_width
  1422. @item no_recurse
  1423. @item ignore_transform
  1424. @item monochrome
  1425. @item linear_design
  1426. @item no_autohint
  1427. @item end table
  1428. @end table
  1429. Default value is "render".
  1430. For more information consult the documentation for the FT_LOAD_*
  1431. libfreetype flags.
  1432. @item shadowcolor
  1433. The color to be used for drawing a shadow behind the drawn text. It
  1434. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1435. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1436. The default value of @var{shadowcolor} is "black".
  1437. @item shadowx, shadowy
  1438. The x and y offsets for the text shadow position with respect to the
  1439. position of the text. They can be either positive or negative
  1440. values. Default value for both is "0".
  1441. @item tabsize
  1442. The size in number of spaces to use for rendering the tab.
  1443. Default value is 4.
  1444. @item timecode
  1445. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1446. format. It can be used with or without text parameter. @var{timecode_rate}
  1447. option must be specified.
  1448. @item timecode_rate, rate, r
  1449. Set the timecode frame rate (timecode only).
  1450. @item text
  1451. The text string to be drawn. The text must be a sequence of UTF-8
  1452. encoded characters.
  1453. This parameter is mandatory if no file is specified with the parameter
  1454. @var{textfile}.
  1455. @item textfile
  1456. A text file containing text to be drawn. The text must be a sequence
  1457. of UTF-8 encoded characters.
  1458. This parameter is mandatory if no text string is specified with the
  1459. parameter @var{text}.
  1460. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1461. @item x, y
  1462. The expressions which specify the offsets where text will be drawn
  1463. within the video frame. They are relative to the top/left border of the
  1464. output image.
  1465. The default value of @var{x} and @var{y} is "0".
  1466. See below for the list of accepted constants and functions.
  1467. @end table
  1468. The parameters for @var{x} and @var{y} are expressions containing the
  1469. following constants and functions:
  1470. @table @option
  1471. @item dar
  1472. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1473. @item hsub, vsub
  1474. horizontal and vertical chroma subsample values. For example for the
  1475. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1476. @item line_h, lh
  1477. the height of each text line
  1478. @item main_h, h, H
  1479. the input height
  1480. @item main_w, w, W
  1481. the input width
  1482. @item max_glyph_a, ascent
  1483. the maximum distance from the baseline to the highest/upper grid
  1484. coordinate used to place a glyph outline point, for all the rendered
  1485. glyphs.
  1486. It is a positive value, due to the grid's orientation with the Y axis
  1487. upwards.
  1488. @item max_glyph_d, descent
  1489. the maximum distance from the baseline to the lowest grid coordinate
  1490. used to place a glyph outline point, for all the rendered glyphs.
  1491. This is a negative value, due to the grid's orientation, with the Y axis
  1492. upwards.
  1493. @item max_glyph_h
  1494. maximum glyph height, that is the maximum height for all the glyphs
  1495. contained in the rendered text, it is equivalent to @var{ascent} -
  1496. @var{descent}.
  1497. @item max_glyph_w
  1498. maximum glyph width, that is the maximum width for all the glyphs
  1499. contained in the rendered text
  1500. @item n
  1501. the number of input frame, starting from 0
  1502. @item rand(min, max)
  1503. return a random number included between @var{min} and @var{max}
  1504. @item sar
  1505. input sample aspect ratio
  1506. @item t
  1507. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1508. @item text_h, th
  1509. the height of the rendered text
  1510. @item text_w, tw
  1511. the width of the rendered text
  1512. @item x, y
  1513. the x and y offset coordinates where the text is drawn.
  1514. These parameters allow the @var{x} and @var{y} expressions to refer
  1515. each other, so you can for example specify @code{y=x/dar}.
  1516. @end table
  1517. If libavfilter was built with @code{--enable-fontconfig}, then
  1518. @option{fontfile} can be a fontconfig pattern or omitted.
  1519. Some examples follow.
  1520. @itemize
  1521. @item
  1522. Draw "Test Text" with font FreeSerif, using the default values for the
  1523. optional parameters.
  1524. @example
  1525. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1526. @end example
  1527. @item
  1528. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1529. and y=50 (counting from the top-left corner of the screen), text is
  1530. yellow with a red box around it. Both the text and the box have an
  1531. opacity of 20%.
  1532. @example
  1533. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1534. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1535. @end example
  1536. Note that the double quotes are not necessary if spaces are not used
  1537. within the parameter list.
  1538. @item
  1539. Show the text at the center of the video frame:
  1540. @example
  1541. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1542. @end example
  1543. @item
  1544. Show a text line sliding from right to left in the last row of the video
  1545. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1546. with no newlines.
  1547. @example
  1548. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1549. @end example
  1550. @item
  1551. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1552. @example
  1553. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1554. @end example
  1555. @item
  1556. Draw a single green letter "g", at the center of the input video.
  1557. The glyph baseline is placed at half screen height.
  1558. @example
  1559. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1560. @end example
  1561. @item
  1562. Show text for 1 second every 3 seconds:
  1563. @example
  1564. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\,3)\,1):text='blink'"
  1565. @end example
  1566. @item
  1567. Use fontconfig to set the font. Note that the colons need to be escaped.
  1568. @example
  1569. drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'
  1570. @end example
  1571. @end itemize
  1572. For more information about libfreetype, check:
  1573. @url{http://www.freetype.org/}.
  1574. For more information about fontconfig, check:
  1575. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1576. @section edgedetect
  1577. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1578. This filter accepts the following optional named parameters:
  1579. @table @option
  1580. @item low, high
  1581. Set low and high threshold values used by the Canny thresholding
  1582. algorithm.
  1583. The high threshold selects the "strong" edge pixels, which are then
  1584. connected through 8-connectivity with the "weak" edge pixels selected
  1585. by the low threshold.
  1586. @var{low} and @var{high} threshold values must be choosen in the range
  1587. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1588. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1589. is @code{50/255}.
  1590. @end table
  1591. Example:
  1592. @example
  1593. edgedetect=low=0.1:high=0.4
  1594. @end example
  1595. @section fade
  1596. Apply fade-in/out effect to input video.
  1597. It accepts the parameters:
  1598. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1599. @var{type} specifies if the effect type, can be either "in" for
  1600. fade-in, or "out" for a fade-out effect.
  1601. @var{start_frame} specifies the number of the start frame for starting
  1602. to apply the fade effect.
  1603. @var{nb_frames} specifies the number of frames for which the fade
  1604. effect has to last. At the end of the fade-in effect the output video
  1605. will have the same intensity as the input video, at the end of the
  1606. fade-out transition the output video will be completely black.
  1607. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1608. separated by ":". The description of the accepted options follows.
  1609. @table @option
  1610. @item type, t
  1611. See @var{type}.
  1612. @item start_frame, s
  1613. See @var{start_frame}.
  1614. @item nb_frames, n
  1615. See @var{nb_frames}.
  1616. @item alpha
  1617. If set to 1, fade only alpha channel, if one exists on the input.
  1618. Default value is 0.
  1619. @end table
  1620. A few usage examples follow, usable too as test scenarios.
  1621. @example
  1622. # fade in first 30 frames of video
  1623. fade=in:0:30
  1624. # fade out last 45 frames of a 200-frame video
  1625. fade=out:155:45
  1626. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1627. fade=in:0:25, fade=out:975:25
  1628. # make first 5 frames black, then fade in from frame 5-24
  1629. fade=in:5:20
  1630. # fade in alpha over first 25 frames of video
  1631. fade=in:0:25:alpha=1
  1632. @end example
  1633. @section field
  1634. Extract a single field from an interlaced image using stride
  1635. arithmetic to avoid wasting CPU time. The output frames are marked as
  1636. non-interlaced.
  1637. This filter accepts the following named options:
  1638. @table @option
  1639. @item type
  1640. Specify whether to extract the top (if the value is @code{0} or
  1641. @code{top}) or the bottom field (if the value is @code{1} or
  1642. @code{bottom}).
  1643. @end table
  1644. If the option key is not specified, the first value sets the @var{type}
  1645. option. For example:
  1646. @example
  1647. field=bottom
  1648. @end example
  1649. is equivalent to:
  1650. @example
  1651. field=type=bottom
  1652. @end example
  1653. @section fieldorder
  1654. Transform the field order of the input video.
  1655. It accepts one parameter which specifies the required field order that
  1656. the input interlaced video will be transformed to. The parameter can
  1657. assume one of the following values:
  1658. @table @option
  1659. @item 0 or bff
  1660. output bottom field first
  1661. @item 1 or tff
  1662. output top field first
  1663. @end table
  1664. Default value is "tff".
  1665. Transformation is achieved by shifting the picture content up or down
  1666. by one line, and filling the remaining line with appropriate picture content.
  1667. This method is consistent with most broadcast field order converters.
  1668. If the input video is not flagged as being interlaced, or it is already
  1669. flagged as being of the required output field order then this filter does
  1670. not alter the incoming video.
  1671. This filter is very useful when converting to or from PAL DV material,
  1672. which is bottom field first.
  1673. For example:
  1674. @example
  1675. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1676. @end example
  1677. @section fifo
  1678. Buffer input images and send them when they are requested.
  1679. This filter is mainly useful when auto-inserted by the libavfilter
  1680. framework.
  1681. The filter does not take parameters.
  1682. @section format
  1683. Convert the input video to one of the specified pixel formats.
  1684. Libavfilter will try to pick one that is supported for the input to
  1685. the next filter.
  1686. The filter accepts a list of pixel format names, separated by ":",
  1687. for example "yuv420p:monow:rgb24".
  1688. Some examples follow:
  1689. @example
  1690. # convert the input video to the format "yuv420p"
  1691. format=yuv420p
  1692. # convert the input video to any of the formats in the list
  1693. format=yuv420p:yuv444p:yuv410p
  1694. @end example
  1695. @section fps
  1696. Convert the video to specified constant framerate by duplicating or dropping
  1697. frames as necessary.
  1698. This filter accepts the following named parameters:
  1699. @table @option
  1700. @item fps
  1701. Desired output framerate.
  1702. @item round
  1703. Rounding method. The default is @code{near}.
  1704. @end table
  1705. @section framestep
  1706. Select one frame every N.
  1707. This filter accepts in input a string representing a positive
  1708. integer. Default argument is @code{1}.
  1709. @anchor{frei0r}
  1710. @section frei0r
  1711. Apply a frei0r effect to the input video.
  1712. To enable compilation of this filter you need to install the frei0r
  1713. header and configure FFmpeg with @code{--enable-frei0r}.
  1714. The filter supports the syntax:
  1715. @example
  1716. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1717. @end example
  1718. @var{filter_name} is the name to the frei0r effect to load. If the
  1719. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1720. is searched in each one of the directories specified by the colon (or
  1721. semicolon on Windows platforms) separated list in @env{FREIOR_PATH},
  1722. otherwise in the standard frei0r paths, which are in this order:
  1723. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1724. @file{/usr/lib/frei0r-1/}.
  1725. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1726. for the frei0r effect.
  1727. A frei0r effect parameter can be a boolean (whose values are specified
  1728. with "y" and "n"), a double, a color (specified by the syntax
  1729. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1730. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1731. description), a position (specified by the syntax @var{X}/@var{Y},
  1732. @var{X} and @var{Y} being float numbers) and a string.
  1733. The number and kind of parameters depend on the loaded effect. If an
  1734. effect parameter is not specified the default value is set.
  1735. Some examples follow:
  1736. @itemize
  1737. @item
  1738. Apply the distort0r effect, set the first two double parameters:
  1739. @example
  1740. frei0r=distort0r:0.5:0.01
  1741. @end example
  1742. @item
  1743. Apply the colordistance effect, takes a color as first parameter:
  1744. @example
  1745. frei0r=colordistance:0.2/0.3/0.4
  1746. frei0r=colordistance:violet
  1747. frei0r=colordistance:0x112233
  1748. @end example
  1749. @item
  1750. Apply the perspective effect, specify the top left and top right image
  1751. positions:
  1752. @example
  1753. frei0r=perspective:0.2/0.2:0.8/0.2
  1754. @end example
  1755. @end itemize
  1756. For more information see:
  1757. @url{http://frei0r.dyne.org}
  1758. @section geq
  1759. The filter takes one, two or three equations as parameter, separated by ':'.
  1760. The first equation is mandatory and applies to the luma plane. The two
  1761. following are respectively for chroma blue and chroma red planes.
  1762. The filter syntax allows named parameters:
  1763. @table @option
  1764. @item lum_expr
  1765. the luminance expression
  1766. @item cb_expr
  1767. the chrominance blue expression
  1768. @item cr_expr
  1769. the chrominance red expression
  1770. @end table
  1771. If one of the chrominance expression is not defined, it falls back on the other
  1772. one. If none of them are specified, they will evaluate the luminance
  1773. expression.
  1774. The expressions can use the following variables and functions:
  1775. @table @option
  1776. @item N
  1777. The sequential number of the filtered frame, starting from @code{0}.
  1778. @item X, Y
  1779. The coordinates of the current sample.
  1780. @item W, H
  1781. The width and height of the image.
  1782. @item SW, SH
  1783. Width and height scale depending on the currently filtered plane. It is the
  1784. ratio between the corresponding luma plane number of pixels and the current
  1785. plane ones. E.g. for YUV4:2:0 the values are @code{1,1} for the luma plane, and
  1786. @code{0.5,0.5} for chroma planes.
  1787. @item p(x, y)
  1788. Return the value of the pixel at location (@var{x},@var{y}) of the current
  1789. plane.
  1790. @item lum(x, y)
  1791. Return the value of the pixel at location (@var{x},@var{y}) of the luminance
  1792. plane.
  1793. @item cb(x, y)
  1794. Return the value of the pixel at location (@var{x},@var{y}) of the
  1795. blue-difference chroma plane.
  1796. @item cr(x, y)
  1797. Return the value of the pixel at location (@var{x},@var{y}) of the
  1798. red-difference chroma plane.
  1799. @end table
  1800. For functions, if @var{x} and @var{y} are outside the area, the value will be
  1801. automatically clipped to the closer edge.
  1802. Some examples follow:
  1803. @itemize
  1804. @item
  1805. Flip the image horizontally:
  1806. @example
  1807. geq=p(W-X\,Y)
  1808. @end example
  1809. @item
  1810. Generate a fancy enigmatic moving light:
  1811. @example
  1812. nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128
  1813. @end example
  1814. @end itemize
  1815. @section gradfun
  1816. Fix the banding artifacts that are sometimes introduced into nearly flat
  1817. regions by truncation to 8bit color depth.
  1818. Interpolate the gradients that should go where the bands are, and
  1819. dither them.
  1820. This filter is designed for playback only. Do not use it prior to
  1821. lossy compression, because compression tends to lose the dither and
  1822. bring back the bands.
  1823. The filter takes two optional parameters, separated by ':':
  1824. @var{strength}:@var{radius}
  1825. @var{strength} is the maximum amount by which the filter will change
  1826. any one pixel. Also the threshold for detecting nearly flat
  1827. regions. Acceptable values range from .51 to 255, default value is
  1828. 1.2, out-of-range values will be clipped to the valid range.
  1829. @var{radius} is the neighborhood to fit the gradient to. A larger
  1830. radius makes for smoother gradients, but also prevents the filter from
  1831. modifying the pixels near detailed regions. Acceptable values are
  1832. 8-32, default value is 16, out-of-range values will be clipped to the
  1833. valid range.
  1834. @example
  1835. # default parameters
  1836. gradfun=1.2:16
  1837. # omitting radius
  1838. gradfun=1.2
  1839. @end example
  1840. @section hflip
  1841. Flip the input video horizontally.
  1842. For example to horizontally flip the input video with @command{ffmpeg}:
  1843. @example
  1844. ffmpeg -i in.avi -vf "hflip" out.avi
  1845. @end example
  1846. @section hqdn3d
  1847. High precision/quality 3d denoise filter. This filter aims to reduce
  1848. image noise producing smooth images and making still images really
  1849. still. It should enhance compressibility.
  1850. It accepts the following optional parameters:
  1851. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1852. @table @option
  1853. @item luma_spatial
  1854. a non-negative float number which specifies spatial luma strength,
  1855. defaults to 4.0
  1856. @item chroma_spatial
  1857. a non-negative float number which specifies spatial chroma strength,
  1858. defaults to 3.0*@var{luma_spatial}/4.0
  1859. @item luma_tmp
  1860. a float number which specifies luma temporal strength, defaults to
  1861. 6.0*@var{luma_spatial}/4.0
  1862. @item chroma_tmp
  1863. a float number which specifies chroma temporal strength, defaults to
  1864. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1865. @end table
  1866. @section hue
  1867. Modify the hue and/or the saturation of the input.
  1868. This filter accepts the following optional named options:
  1869. @table @option
  1870. @item h
  1871. Specify the hue angle as a number of degrees. It accepts a float
  1872. number or an expression, and defaults to 0.0.
  1873. @item H
  1874. Specify the hue angle as a number of degrees. It accepts a float
  1875. number or an expression, and defaults to 0.0.
  1876. @item s
  1877. Specify the saturation in the [-10,10] range. It accepts a float number and
  1878. defaults to 1.0.
  1879. @end table
  1880. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1881. following constants:
  1882. @table @option
  1883. @item n
  1884. frame count of the input frame starting from 0
  1885. @item pts
  1886. presentation timestamp of the input frame expressed in time base units
  1887. @item r
  1888. frame rate of the input video, NAN if the input frame rate is unknown
  1889. @item t
  1890. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1891. @item tb
  1892. time base of the input video
  1893. @end table
  1894. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1895. In this case @var{hue} is expressed in degrees.
  1896. Some examples follow:
  1897. @itemize
  1898. @item
  1899. Set the hue to 90 degrees and the saturation to 1.0:
  1900. @example
  1901. hue=h=90:s=1
  1902. @end example
  1903. @item
  1904. Same command but expressing the hue in radians:
  1905. @example
  1906. hue=H=PI/2:s=1
  1907. @end example
  1908. @item
  1909. Same command without named options, hue must be expressed in degrees:
  1910. @example
  1911. hue=90:1
  1912. @end example
  1913. @item
  1914. Note that "h:s" syntax does not support expressions for the values of
  1915. h and s, so the following example will issue an error:
  1916. @example
  1917. hue=PI/2:1
  1918. @end example
  1919. @item
  1920. Rotate hue and make the saturation swing between 0
  1921. and 2 over a period of 1 second:
  1922. @example
  1923. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1924. @end example
  1925. @item
  1926. Apply a 3 seconds saturation fade-in effect starting at 0:
  1927. @example
  1928. hue="s=min(t/3\,1)"
  1929. @end example
  1930. The general fade-in expression can be written as:
  1931. @example
  1932. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1933. @end example
  1934. @item
  1935. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1936. @example
  1937. hue="s=max(0\, min(1\, (8-t)/3))"
  1938. @end example
  1939. The general fade-out expression can be written as:
  1940. @example
  1941. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1942. @end example
  1943. @end itemize
  1944. @subsection Commands
  1945. This filter supports the following command:
  1946. @table @option
  1947. @item reinit
  1948. Modify the hue and/or the saturation of the input video.
  1949. The command accepts the same named options and syntax than when calling the
  1950. filter from the command-line.
  1951. If a parameter is omitted, it is kept at its current value.
  1952. @end table
  1953. @section idet
  1954. Interlaceing detect filter. This filter tries to detect if the input is
  1955. interlaced or progressive. Top or bottom field first.
  1956. @section lut, lutrgb, lutyuv
  1957. Compute a look-up table for binding each pixel component input value
  1958. to an output value, and apply it to input video.
  1959. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1960. to an RGB input video.
  1961. These filters accept in input a ":"-separated list of options, which
  1962. specify the expressions used for computing the lookup table for the
  1963. corresponding pixel component values.
  1964. The @var{lut} filter requires either YUV or RGB pixel formats in
  1965. input, and accepts the options:
  1966. @table @option
  1967. @item @var{c0} (first pixel component)
  1968. @item @var{c1} (second pixel component)
  1969. @item @var{c2} (third pixel component)
  1970. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1971. @end table
  1972. The exact component associated to each option depends on the format in
  1973. input.
  1974. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1975. accepts the options:
  1976. @table @option
  1977. @item @var{r} (red component)
  1978. @item @var{g} (green component)
  1979. @item @var{b} (blue component)
  1980. @item @var{a} (alpha component)
  1981. @end table
  1982. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1983. accepts the options:
  1984. @table @option
  1985. @item @var{y} (Y/luminance component)
  1986. @item @var{u} (U/Cb component)
  1987. @item @var{v} (V/Cr component)
  1988. @item @var{a} (alpha component)
  1989. @end table
  1990. The expressions can contain the following constants and functions:
  1991. @table @option
  1992. @item w, h
  1993. the input width and height
  1994. @item val
  1995. input value for the pixel component
  1996. @item clipval
  1997. the input value clipped in the @var{minval}-@var{maxval} range
  1998. @item maxval
  1999. maximum value for the pixel component
  2000. @item minval
  2001. minimum value for the pixel component
  2002. @item negval
  2003. the negated value for the pixel component value clipped in the
  2004. @var{minval}-@var{maxval} range , it corresponds to the expression
  2005. "maxval-clipval+minval"
  2006. @item clip(val)
  2007. the computed value in @var{val} clipped in the
  2008. @var{minval}-@var{maxval} range
  2009. @item gammaval(gamma)
  2010. the computed gamma correction value of the pixel component value
  2011. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  2012. expression
  2013. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  2014. @end table
  2015. All expressions default to "val".
  2016. Some examples follow:
  2017. @example
  2018. # negate input video
  2019. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  2020. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  2021. # the above is the same as
  2022. lutrgb="r=negval:g=negval:b=negval"
  2023. lutyuv="y=negval:u=negval:v=negval"
  2024. # negate luminance
  2025. lutyuv=y=negval
  2026. # remove chroma components, turns the video into a graytone image
  2027. lutyuv="u=128:v=128"
  2028. # apply a luma burning effect
  2029. lutyuv="y=2*val"
  2030. # remove green and blue components
  2031. lutrgb="g=0:b=0"
  2032. # set a constant alpha channel value on input
  2033. format=rgba,lutrgb=a="maxval-minval/2"
  2034. # correct luminance gamma by a 0.5 factor
  2035. lutyuv=y=gammaval(0.5)
  2036. @end example
  2037. @section mp
  2038. Apply an MPlayer filter to the input video.
  2039. This filter provides a wrapper around most of the filters of
  2040. MPlayer/MEncoder.
  2041. This wrapper is considered experimental. Some of the wrapped filters
  2042. may not work properly and we may drop support for them, as they will
  2043. be implemented natively into FFmpeg. Thus you should avoid
  2044. depending on them when writing portable scripts.
  2045. The filters accepts the parameters:
  2046. @var{filter_name}[:=]@var{filter_params}
  2047. @var{filter_name} is the name of a supported MPlayer filter,
  2048. @var{filter_params} is a string containing the parameters accepted by
  2049. the named filter.
  2050. The list of the currently supported filters follows:
  2051. @table @var
  2052. @item denoise3d
  2053. @item detc
  2054. @item dint
  2055. @item divtc
  2056. @item down3dright
  2057. @item dsize
  2058. @item eq2
  2059. @item eq
  2060. @item fil
  2061. @item fspp
  2062. @item geq
  2063. @item harddup
  2064. @item il
  2065. @item ilpack
  2066. @item ivtc
  2067. @item kerndeint
  2068. @item mcdeint
  2069. @item noise
  2070. @item ow
  2071. @item perspective
  2072. @item phase
  2073. @item pp7
  2074. @item pullup
  2075. @item qp
  2076. @item sab
  2077. @item softpulldown
  2078. @item softskip
  2079. @item spp
  2080. @item telecine
  2081. @item tinterlace
  2082. @item unsharp
  2083. @item uspp
  2084. @end table
  2085. The parameter syntax and behavior for the listed filters are the same
  2086. of the corresponding MPlayer filters. For detailed instructions check
  2087. the "VIDEO FILTERS" section in the MPlayer manual.
  2088. Some examples follow:
  2089. @itemize
  2090. @item
  2091. Adjust gamma, brightness, contrast:
  2092. @example
  2093. mp=eq2=1.0:2:0.5
  2094. @end example
  2095. @item
  2096. Add temporal noise to input video:
  2097. @example
  2098. mp=noise=20t
  2099. @end example
  2100. @end itemize
  2101. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  2102. @section negate
  2103. Negate input video.
  2104. This filter accepts an integer in input, if non-zero it negates the
  2105. alpha component (if available). The default value in input is 0.
  2106. @section noformat
  2107. Force libavfilter not to use any of the specified pixel formats for the
  2108. input to the next filter.
  2109. The filter accepts a list of pixel format names, separated by ":",
  2110. for example "yuv420p:monow:rgb24".
  2111. Some examples follow:
  2112. @example
  2113. # force libavfilter to use a format different from "yuv420p" for the
  2114. # input to the vflip filter
  2115. noformat=yuv420p,vflip
  2116. # convert the input video to any of the formats not contained in the list
  2117. noformat=yuv420p:yuv444p:yuv410p
  2118. @end example
  2119. @section null
  2120. Pass the video source unchanged to the output.
  2121. @section ocv
  2122. Apply video transform using libopencv.
  2123. To enable this filter install libopencv library and headers and
  2124. configure FFmpeg with @code{--enable-libopencv}.
  2125. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  2126. @var{filter_name} is the name of the libopencv filter to apply.
  2127. @var{filter_params} specifies the parameters to pass to the libopencv
  2128. filter. If not specified the default values are assumed.
  2129. Refer to the official libopencv documentation for more precise
  2130. information:
  2131. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  2132. Follows the list of supported libopencv filters.
  2133. @anchor{dilate}
  2134. @subsection dilate
  2135. Dilate an image by using a specific structuring element.
  2136. This filter corresponds to the libopencv function @code{cvDilate}.
  2137. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  2138. @var{struct_el} represents a structuring element, and has the syntax:
  2139. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  2140. @var{cols} and @var{rows} represent the number of columns and rows of
  2141. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  2142. point, and @var{shape} the shape for the structuring element, and
  2143. can be one of the values "rect", "cross", "ellipse", "custom".
  2144. If the value for @var{shape} is "custom", it must be followed by a
  2145. string of the form "=@var{filename}". The file with name
  2146. @var{filename} is assumed to represent a binary image, with each
  2147. printable character corresponding to a bright pixel. When a custom
  2148. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2149. or columns and rows of the read file are assumed instead.
  2150. The default value for @var{struct_el} is "3x3+0x0/rect".
  2151. @var{nb_iterations} specifies the number of times the transform is
  2152. applied to the image, and defaults to 1.
  2153. Follow some example:
  2154. @example
  2155. # use the default values
  2156. ocv=dilate
  2157. # dilate using a structuring element with a 5x5 cross, iterate two times
  2158. ocv=dilate=5x5+2x2/cross:2
  2159. # read the shape from the file diamond.shape, iterate two times
  2160. # the file diamond.shape may contain a pattern of characters like this:
  2161. # *
  2162. # ***
  2163. # *****
  2164. # ***
  2165. # *
  2166. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2167. ocv=0x0+2x2/custom=diamond.shape:2
  2168. @end example
  2169. @subsection erode
  2170. Erode an image by using a specific structuring element.
  2171. This filter corresponds to the libopencv function @code{cvErode}.
  2172. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2173. with the same syntax and semantics as the @ref{dilate} filter.
  2174. @subsection smooth
  2175. Smooth the input video.
  2176. The filter takes the following parameters:
  2177. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2178. @var{type} is the type of smooth filter to apply, and can be one of
  2179. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2180. "bilateral". The default value is "gaussian".
  2181. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2182. parameters whose meanings depend on smooth type. @var{param1} and
  2183. @var{param2} accept integer positive values or 0, @var{param3} and
  2184. @var{param4} accept float values.
  2185. The default value for @var{param1} is 3, the default value for the
  2186. other parameters is 0.
  2187. These parameters correspond to the parameters assigned to the
  2188. libopencv function @code{cvSmooth}.
  2189. @anchor{overlay}
  2190. @section overlay
  2191. Overlay one video on top of another.
  2192. It takes two inputs and one output, the first input is the "main"
  2193. video on which the second input is overlayed.
  2194. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2195. @var{x} is the x coordinate of the overlayed video on the main video,
  2196. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2197. the following parameters:
  2198. @table @option
  2199. @item main_w, main_h
  2200. main input width and height
  2201. @item W, H
  2202. same as @var{main_w} and @var{main_h}
  2203. @item overlay_w, overlay_h
  2204. overlay input width and height
  2205. @item w, h
  2206. same as @var{overlay_w} and @var{overlay_h}
  2207. @end table
  2208. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2209. separated by ":".
  2210. The description of the accepted options follows.
  2211. @table @option
  2212. @item rgb
  2213. If set to 1, force the filter to accept inputs in the RGB
  2214. color space. Default value is 0.
  2215. @end table
  2216. Be aware that frames are taken from each input video in timestamp
  2217. order, hence, if their initial timestamps differ, it is a a good idea
  2218. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2219. have them begin in the same zero timestamp, as it does the example for
  2220. the @var{movie} filter.
  2221. Follow some examples:
  2222. @example
  2223. # draw the overlay at 10 pixels from the bottom right
  2224. # corner of the main video.
  2225. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2226. # insert a transparent PNG logo in the bottom left corner of the input
  2227. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2228. # insert 2 different transparent PNG logos (second logo on bottom
  2229. # right corner):
  2230. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2231. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2232. # add a transparent color layer on top of the main video,
  2233. # WxH specifies the size of the main input to the overlay filter
  2234. color=red@@.3:WxH [over]; [in][over] overlay [out]
  2235. # play an original video and a filtered version (here with the deshake filter)
  2236. # side by side
  2237. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2238. # the previous example is the same as:
  2239. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2240. @end example
  2241. You can chain together more overlays but the efficiency of such
  2242. approach is yet to be tested.
  2243. @section pad
  2244. Add paddings to the input image, and places the original input at the
  2245. given coordinates @var{x}, @var{y}.
  2246. It accepts the following parameters:
  2247. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2248. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2249. expressions containing the following constants:
  2250. @table @option
  2251. @item in_w, in_h
  2252. the input video width and height
  2253. @item iw, ih
  2254. same as @var{in_w} and @var{in_h}
  2255. @item out_w, out_h
  2256. the output width and height, that is the size of the padded area as
  2257. specified by the @var{width} and @var{height} expressions
  2258. @item ow, oh
  2259. same as @var{out_w} and @var{out_h}
  2260. @item x, y
  2261. x and y offsets as specified by the @var{x} and @var{y}
  2262. expressions, or NAN if not yet specified
  2263. @item a
  2264. same as @var{iw} / @var{ih}
  2265. @item sar
  2266. input sample aspect ratio
  2267. @item dar
  2268. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2269. @item hsub, vsub
  2270. horizontal and vertical chroma subsample values. For example for the
  2271. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2272. @end table
  2273. Follows the description of the accepted parameters.
  2274. @table @option
  2275. @item width, height
  2276. Specify the size of the output image with the paddings added. If the
  2277. value for @var{width} or @var{height} is 0, the corresponding input size
  2278. is used for the output.
  2279. The @var{width} expression can reference the value set by the
  2280. @var{height} expression, and vice versa.
  2281. The default value of @var{width} and @var{height} is 0.
  2282. @item x, y
  2283. Specify the offsets where to place the input image in the padded area
  2284. with respect to the top/left border of the output image.
  2285. The @var{x} expression can reference the value set by the @var{y}
  2286. expression, and vice versa.
  2287. The default value of @var{x} and @var{y} is 0.
  2288. @item color
  2289. Specify the color of the padded area, it can be the name of a color
  2290. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2291. The default value of @var{color} is "black".
  2292. @end table
  2293. @subsection Examples
  2294. @itemize
  2295. @item
  2296. Add paddings with color "violet" to the input video. Output video
  2297. size is 640x480, the top-left corner of the input video is placed at
  2298. column 0, row 40:
  2299. @example
  2300. pad=640:480:0:40:violet
  2301. @end example
  2302. @item
  2303. Pad the input to get an output with dimensions increased by 3/2,
  2304. and put the input video at the center of the padded area:
  2305. @example
  2306. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2307. @end example
  2308. @item
  2309. Pad the input to get a squared output with size equal to the maximum
  2310. value between the input width and height, and put the input video at
  2311. the center of the padded area:
  2312. @example
  2313. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2314. @end example
  2315. @item
  2316. Pad the input to get a final w/h ratio of 16:9:
  2317. @example
  2318. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2319. @end example
  2320. @item
  2321. In case of anamorphic video, in order to set the output display aspect
  2322. correctly, it is necessary to use @var{sar} in the expression,
  2323. according to the relation:
  2324. @example
  2325. (ih * X / ih) * sar = output_dar
  2326. X = output_dar / sar
  2327. @end example
  2328. Thus the previous example needs to be modified to:
  2329. @example
  2330. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2331. @end example
  2332. @item
  2333. Double output size and put the input video in the bottom-right
  2334. corner of the output padded area:
  2335. @example
  2336. pad="2*iw:2*ih:ow-iw:oh-ih"
  2337. @end example
  2338. @end itemize
  2339. @section pixdesctest
  2340. Pixel format descriptor test filter, mainly useful for internal
  2341. testing. The output video should be equal to the input video.
  2342. For example:
  2343. @example
  2344. format=monow, pixdesctest
  2345. @end example
  2346. can be used to test the monowhite pixel format descriptor definition.
  2347. @section removelogo
  2348. Suppress a TV station logo, using an image file to determine which
  2349. pixels comprise the logo. It works by filling in the pixels that
  2350. comprise the logo with neighboring pixels.
  2351. This filter requires one argument which specifies the filter bitmap
  2352. file, which can be any image format supported by libavformat. The
  2353. width and height of the image file must match those of the video
  2354. stream being processed.
  2355. Pixels in the provided bitmap image with a value of zero are not
  2356. considered part of the logo, non-zero pixels are considered part of
  2357. the logo. If you use white (255) for the logo and black (0) for the
  2358. rest, you will be safe. For making the filter bitmap, it is
  2359. recommended to take a screen capture of a black frame with the logo
  2360. visible, and then using a threshold filter followed by the erode
  2361. filter once or twice.
  2362. If needed, little splotches can be fixed manually. Remember that if
  2363. logo pixels are not covered, the filter quality will be much
  2364. reduced. Marking too many pixels as part of the logo does not hurt as
  2365. much, but it will increase the amount of blurring needed to cover over
  2366. the image and will destroy more information than necessary, and extra
  2367. pixels will slow things down on a large logo.
  2368. @section scale
  2369. Scale (resize) the input video, using the libswscale library.
  2370. The scale filter forces the output display aspect ratio to be the same
  2371. of the input, by changing the output sample aspect ratio.
  2372. This filter accepts a list of named options in the form of
  2373. @var{key}=@var{value} pairs separated by ":". If the key for the first
  2374. two options is not specified, the assumed keys for the first two
  2375. values are @code{w} and @code{h}. If the first option has no key and
  2376. can be interpreted like a video size specification, it will be used
  2377. to set the video size.
  2378. A description of the accepted options follows.
  2379. @table @option
  2380. @item width, w
  2381. Set the video width expression, default value is @code{iw}. See below
  2382. for the list of accepted constants.
  2383. @item height, h
  2384. Set the video heiht expression, default value is @code{ih}.
  2385. See below for the list of accepted constants.
  2386. @item interl
  2387. Set the interlacing. It accepts the following values:
  2388. @table @option
  2389. @item 1
  2390. force interlaced aware scaling
  2391. @item 0
  2392. do not apply interlaced scaling
  2393. @item -1
  2394. select interlaced aware scaling depending on whether the source frames
  2395. are flagged as interlaced or not
  2396. @end table
  2397. Default value is @code{0}.
  2398. @item flags
  2399. Set libswscale scaling flags. If not explictly specified the filter
  2400. applies a bilinear scaling algorithm.
  2401. @item size, s
  2402. Set the video size, the value must be a valid abbreviation or in the
  2403. form @var{width}x@var{height}.
  2404. @end table
  2405. The values of the @var{w} and @var{h} options are expressions
  2406. containing the following constants:
  2407. @table @option
  2408. @item in_w, in_h
  2409. the input width and height
  2410. @item iw, ih
  2411. same as @var{in_w} and @var{in_h}
  2412. @item out_w, out_h
  2413. the output (cropped) width and height
  2414. @item ow, oh
  2415. same as @var{out_w} and @var{out_h}
  2416. @item a
  2417. same as @var{iw} / @var{ih}
  2418. @item sar
  2419. input sample aspect ratio
  2420. @item dar
  2421. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2422. @item hsub, vsub
  2423. horizontal and vertical chroma subsample values. For example for the
  2424. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2425. @end table
  2426. If the input image format is different from the format requested by
  2427. the next filter, the scale filter will convert the input to the
  2428. requested format.
  2429. If the value for @var{width} or @var{height} is 0, the respective input
  2430. size is used for the output.
  2431. If the value for @var{width} or @var{height} is -1, the scale filter will
  2432. use, for the respective output size, a value that maintains the aspect
  2433. ratio of the input image.
  2434. @subsection Examples
  2435. @itemize
  2436. @item
  2437. Scale the input video to a size of 200x100:
  2438. @example
  2439. scale=200:100
  2440. @end example
  2441. This is equivalent to:
  2442. @example
  2443. scale=w=200:h=100
  2444. @end example
  2445. or:
  2446. @example
  2447. scale=200x100
  2448. @end example
  2449. @item
  2450. Specify a size abbreviation for the output size:
  2451. @example
  2452. scale=qcif
  2453. @end example
  2454. which can also be written as:
  2455. @example
  2456. scale=size=qcif
  2457. @end example
  2458. @item
  2459. Scale the input to 2x:
  2460. @example
  2461. scale=2*iw:2*ih
  2462. @end example
  2463. @item
  2464. The above is the same as:
  2465. @example
  2466. scale=2*in_w:2*in_h
  2467. @end example
  2468. @item
  2469. Scale the input to 2x with forced interlaced scaling:
  2470. @example
  2471. scale=2*iw:2*ih:interl=1
  2472. @end example
  2473. @item
  2474. Scale the input to half size:
  2475. @example
  2476. scale=iw/2:ih/2
  2477. @end example
  2478. @item
  2479. Increase the width, and set the height to the same size:
  2480. @example
  2481. scale=3/2*iw:ow
  2482. @end example
  2483. @item
  2484. Seek for Greek harmony:
  2485. @example
  2486. scale=iw:1/PHI*iw
  2487. scale=ih*PHI:ih
  2488. @end example
  2489. @item
  2490. Increase the height, and set the width to 3/2 of the height:
  2491. @example
  2492. scale=3/2*oh:3/5*ih
  2493. @end example
  2494. @item
  2495. Increase the size, but make the size a multiple of the chroma:
  2496. @example
  2497. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2498. @end example
  2499. @item
  2500. Increase the width to a maximum of 500 pixels, keep the same input
  2501. aspect ratio:
  2502. @example
  2503. scale='min(500\, iw*3/2):-1'
  2504. @end example
  2505. @end itemize
  2506. @section select
  2507. Select frames to pass in output.
  2508. It accepts in input an expression, which is evaluated for each input
  2509. frame. If the expression is evaluated to a non-zero value, the frame
  2510. is selected and passed to the output, otherwise it is discarded.
  2511. The expression can contain the following constants:
  2512. @table @option
  2513. @item n
  2514. the sequential number of the filtered frame, starting from 0
  2515. @item selected_n
  2516. the sequential number of the selected frame, starting from 0
  2517. @item prev_selected_n
  2518. the sequential number of the last selected frame, NAN if undefined
  2519. @item TB
  2520. timebase of the input timestamps
  2521. @item pts
  2522. the PTS (Presentation TimeStamp) of the filtered video frame,
  2523. expressed in @var{TB} units, NAN if undefined
  2524. @item t
  2525. the PTS (Presentation TimeStamp) of the filtered video frame,
  2526. expressed in seconds, NAN if undefined
  2527. @item prev_pts
  2528. the PTS of the previously filtered video frame, NAN if undefined
  2529. @item prev_selected_pts
  2530. the PTS of the last previously filtered video frame, NAN if undefined
  2531. @item prev_selected_t
  2532. the PTS of the last previously selected video frame, NAN if undefined
  2533. @item start_pts
  2534. the PTS of the first video frame in the video, NAN if undefined
  2535. @item start_t
  2536. the time of the first video frame in the video, NAN if undefined
  2537. @item pict_type
  2538. the type of the filtered frame, can assume one of the following
  2539. values:
  2540. @table @option
  2541. @item I
  2542. @item P
  2543. @item B
  2544. @item S
  2545. @item SI
  2546. @item SP
  2547. @item BI
  2548. @end table
  2549. @item interlace_type
  2550. the frame interlace type, can assume one of the following values:
  2551. @table @option
  2552. @item PROGRESSIVE
  2553. the frame is progressive (not interlaced)
  2554. @item TOPFIRST
  2555. the frame is top-field-first
  2556. @item BOTTOMFIRST
  2557. the frame is bottom-field-first
  2558. @end table
  2559. @item key
  2560. 1 if the filtered frame is a key-frame, 0 otherwise
  2561. @item pos
  2562. the position in the file of the filtered frame, -1 if the information
  2563. is not available (e.g. for synthetic video)
  2564. @item scene
  2565. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2566. probability for the current frame to introduce a new scene, while a higher
  2567. value means the current frame is more likely to be one (see the example below)
  2568. @end table
  2569. The default value of the select expression is "1".
  2570. Some examples follow:
  2571. @example
  2572. # select all frames in input
  2573. select
  2574. # the above is the same as:
  2575. select=1
  2576. # skip all frames:
  2577. select=0
  2578. # select only I-frames
  2579. select='eq(pict_type\,I)'
  2580. # select one frame every 100
  2581. select='not(mod(n\,100))'
  2582. # select only frames contained in the 10-20 time interval
  2583. select='gte(t\,10)*lte(t\,20)'
  2584. # select only I frames contained in the 10-20 time interval
  2585. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2586. # select frames with a minimum distance of 10 seconds
  2587. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2588. @end example
  2589. Complete example to create a mosaic of the first scenes:
  2590. @example
  2591. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2592. @end example
  2593. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2594. choice.
  2595. @section setdar, setsar
  2596. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2597. output video.
  2598. This is done by changing the specified Sample (aka Pixel) Aspect
  2599. Ratio, according to the following equation:
  2600. @example
  2601. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2602. @end example
  2603. Keep in mind that the @code{setdar} filter does not modify the pixel
  2604. dimensions of the video frame. Also the display aspect ratio set by
  2605. this filter may be changed by later filters in the filterchain,
  2606. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2607. applied.
  2608. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2609. the filter output video.
  2610. Note that as a consequence of the application of this filter, the
  2611. output display aspect ratio will change according to the equation
  2612. above.
  2613. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2614. filter may be changed by later filters in the filterchain, e.g. if
  2615. another "setsar" or a "setdar" filter is applied.
  2616. The @code{setdar} and @code{setsar} filters accept a string in the
  2617. form @var{num}:@var{den} expressing an aspect ratio, or the following
  2618. named options, expressed as a sequence of @var{key}=@var{value} pairs,
  2619. separated by ":".
  2620. @table @option
  2621. @item max
  2622. Set the maximum integer value to use for expressing numerator and
  2623. denominator when reducing the expressed aspect ratio to a rational.
  2624. Default value is @code{100}.
  2625. @item r, ratio:
  2626. Set the aspect ratio used by the filter.
  2627. The parameter can be a floating point number string, an expression, or
  2628. a string of the form @var{num}:@var{den}, where @var{num} and
  2629. @var{den} are the numerator and denominator of the aspect ratio. If
  2630. the parameter is not specified, it is assumed the value "0".
  2631. In case the form "@var{num}:@var{den}" the @code{:} character should
  2632. be escaped.
  2633. @end table
  2634. If the keys are omitted in the named options list, the specifed values
  2635. are assumed to be @var{ratio} and @var{max} in that order.
  2636. For example to change the display aspect ratio to 16:9, specify:
  2637. @example
  2638. setdar='16:9'
  2639. @end example
  2640. The example above is equivalent to:
  2641. @example
  2642. setdar=1.77777
  2643. @end example
  2644. To change the sample aspect ratio to 10:11, specify:
  2645. @example
  2646. setsar='10:11'
  2647. @end example
  2648. To set a display aspect ratio of 16:9, and specify a maximum integer value of
  2649. 1000 in the aspect ratio reduction, use the command:
  2650. @example
  2651. setdar=ratio='16:9':max=1000
  2652. @end example
  2653. @section setfield
  2654. Force field for the output video frame.
  2655. The @code{setfield} filter marks the interlace type field for the
  2656. output frames. It does not change the input frame, but only sets the
  2657. corresponding property, which affects how the frame is treated by
  2658. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2659. It accepts a string parameter, which can assume the following values:
  2660. @table @samp
  2661. @item auto
  2662. Keep the same field property.
  2663. @item bff
  2664. Mark the frame as bottom-field-first.
  2665. @item tff
  2666. Mark the frame as top-field-first.
  2667. @item prog
  2668. Mark the frame as progressive.
  2669. @end table
  2670. @section showinfo
  2671. Show a line containing various information for each input video frame.
  2672. The input video is not modified.
  2673. The shown line contains a sequence of key/value pairs of the form
  2674. @var{key}:@var{value}.
  2675. A description of each shown parameter follows:
  2676. @table @option
  2677. @item n
  2678. sequential number of the input frame, starting from 0
  2679. @item pts
  2680. Presentation TimeStamp of the input frame, expressed as a number of
  2681. time base units. The time base unit depends on the filter input pad.
  2682. @item pts_time
  2683. Presentation TimeStamp of the input frame, expressed as a number of
  2684. seconds
  2685. @item pos
  2686. position of the frame in the input stream, -1 if this information in
  2687. unavailable and/or meaningless (for example in case of synthetic video)
  2688. @item fmt
  2689. pixel format name
  2690. @item sar
  2691. sample aspect ratio of the input frame, expressed in the form
  2692. @var{num}/@var{den}
  2693. @item s
  2694. size of the input frame, expressed in the form
  2695. @var{width}x@var{height}
  2696. @item i
  2697. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2698. for bottom field first)
  2699. @item iskey
  2700. 1 if the frame is a key frame, 0 otherwise
  2701. @item type
  2702. picture type of the input frame ("I" for an I-frame, "P" for a
  2703. P-frame, "B" for a B-frame, "?" for unknown type).
  2704. Check also the documentation of the @code{AVPictureType} enum and of
  2705. the @code{av_get_picture_type_char} function defined in
  2706. @file{libavutil/avutil.h}.
  2707. @item checksum
  2708. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2709. @item plane_checksum
  2710. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2711. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2712. @end table
  2713. @section slicify
  2714. Pass the images of input video on to next video filter as multiple
  2715. slices.
  2716. @example
  2717. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2718. @end example
  2719. The filter accepts the slice height as parameter. If the parameter is
  2720. not specified it will use the default value of 16.
  2721. Adding this in the beginning of filter chains should make filtering
  2722. faster due to better use of the memory cache.
  2723. @section smartblur
  2724. Blur the input video without impacting the outlines.
  2725. The filter accepts the following parameters:
  2726. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2727. Parameters prefixed by @var{luma} indicate that they work on the
  2728. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2729. refer to the chrominance of the pixels.
  2730. If the chroma parameters are not set, the luma parameters are used for
  2731. either the luminance and the chrominance of the pixels.
  2732. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2733. range [0.1,5.0] that specifies the variance of the gaussian filter
  2734. used to blur the image (slower if larger).
  2735. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2736. the range [-1.0,1.0] that configures the blurring. A value included in
  2737. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2738. will sharpen the image.
  2739. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2740. the range [-30,30] that is used as a coefficient to determine whether
  2741. a pixel should be blurred or not. A value of 0 will filter all the
  2742. image, a value included in [0,30] will filter flat areas and a value
  2743. included in [-30,0] will filter edges.
  2744. @section split
  2745. Split input video into several identical outputs.
  2746. The filter accepts a single parameter which specifies the number of outputs. If
  2747. unspecified, it defaults to 2.
  2748. For example
  2749. @example
  2750. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2751. @end example
  2752. will create 5 copies of the input video.
  2753. For example:
  2754. @example
  2755. [in] split [splitout1][splitout2];
  2756. [splitout1] crop=100:100:0:0 [cropout];
  2757. [splitout2] pad=200:200:100:100 [padout];
  2758. @end example
  2759. will create two separate outputs from the same input, one cropped and
  2760. one padded.
  2761. @section super2xsai
  2762. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2763. Interpolate) pixel art scaling algorithm.
  2764. Useful for enlarging pixel art images without reducing sharpness.
  2765. @section swapuv
  2766. Swap U & V plane.
  2767. @section thumbnail
  2768. Select the most representative frame in a given sequence of consecutive frames.
  2769. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2770. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2771. the next batch of @var{N} frames until the end.
  2772. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2773. value will result in a higher memory usage, so a high value is not recommended.
  2774. The following example extract one picture each 50 frames:
  2775. @example
  2776. thumbnail=50
  2777. @end example
  2778. Complete example of a thumbnail creation with @command{ffmpeg}:
  2779. @example
  2780. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2781. @end example
  2782. @section tile
  2783. Tile several successive frames together.
  2784. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2785. separated by ":". A description of the accepted options follows.
  2786. @table @option
  2787. @item layout
  2788. Set the grid size (i.e. the number of lines and columns) in the form
  2789. "@var{w}x@var{h}".
  2790. @item margin
  2791. Set the outer border margin in pixels.
  2792. @item padding
  2793. Set the inner border thickness (i.e. the number of pixels between frames). For
  2794. more advanced padding options (such as having different values for the edges),
  2795. refer to the pad video filter.
  2796. @item nb_frames
  2797. Set the maximum number of frames to render in the given area. It must be less
  2798. than or equal to @var{w}x@var{h}. The default value is @code{0}, meaning all
  2799. the area will be used.
  2800. @end table
  2801. Alternatively, the options can be specified as a flat string:
  2802. @var{layout}[:@var{nb_frames}[:@var{margin}[:@var{padding}]]]
  2803. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2804. nokey}) in a movie:
  2805. @example
  2806. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2807. @end example
  2808. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2809. duplicating each output frame to accomodate the originally detected frame
  2810. rate.
  2811. Another example to display @code{5} pictures in an area of @code{3x2} frames,
  2812. with @code{7} pixels between them, and @code{2} pixels of initial margin, using
  2813. mixed flat and named options:
  2814. @example
  2815. tile=3x2:nb_frames=5:padding=7:margin=2
  2816. @end example
  2817. @section tinterlace
  2818. Perform various types of temporal field interlacing.
  2819. Frames are counted starting from 1, so the first input frame is
  2820. considered odd.
  2821. This filter accepts a single parameter specifying the mode. Available
  2822. modes are:
  2823. @table @samp
  2824. @item merge, 0
  2825. Move odd frames into the upper field, even into the lower field,
  2826. generating a double height frame at half framerate.
  2827. @item drop_odd, 1
  2828. Only output even frames, odd frames are dropped, generating a frame with
  2829. unchanged height at half framerate.
  2830. @item drop_even, 2
  2831. Only output odd frames, even frames are dropped, generating a frame with
  2832. unchanged height at half framerate.
  2833. @item pad, 3
  2834. Expand each frame to full height, but pad alternate lines with black,
  2835. generating a frame with double height at the same input framerate.
  2836. @item interleave_top, 4
  2837. Interleave the upper field from odd frames with the lower field from
  2838. even frames, generating a frame with unchanged height at half framerate.
  2839. @item interleave_bottom, 5
  2840. Interleave the lower field from odd frames with the upper field from
  2841. even frames, generating a frame with unchanged height at half framerate.
  2842. @item interlacex2, 6
  2843. Double frame rate with unchanged height. Frames are inserted each
  2844. containing the second temporal field from the previous input frame and
  2845. the first temporal field from the next input frame. This mode relies on
  2846. the top_field_first flag. Useful for interlaced video displays with no
  2847. field synchronisation.
  2848. @end table
  2849. Numeric values are deprecated but are accepted for backward
  2850. compatibility reasons.
  2851. Default mode is @code{merge}.
  2852. @section transpose
  2853. Transpose rows with columns in the input video and optionally flip it.
  2854. This filter accepts the following named parameters:
  2855. @table @option
  2856. @item dir
  2857. Specify the transposition direction. Can assume the following values:
  2858. @table @samp
  2859. @item 0, 4
  2860. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2861. @example
  2862. L.R L.l
  2863. . . -> . .
  2864. l.r R.r
  2865. @end example
  2866. @item 1, 5
  2867. Rotate by 90 degrees clockwise, that is:
  2868. @example
  2869. L.R l.L
  2870. . . -> . .
  2871. l.r r.R
  2872. @end example
  2873. @item 2, 6
  2874. Rotate by 90 degrees counterclockwise, that is:
  2875. @example
  2876. L.R R.r
  2877. . . -> . .
  2878. l.r L.l
  2879. @end example
  2880. @item 3, 7
  2881. Rotate by 90 degrees clockwise and vertically flip, that is:
  2882. @example
  2883. L.R r.R
  2884. . . -> . .
  2885. l.r l.L
  2886. @end example
  2887. @end table
  2888. For values between 4-7, the transposition is only done if the input
  2889. video geometry is portrait and not landscape. These values are
  2890. deprecated, the @code{passthrough} option should be used instead.
  2891. @item passthrough
  2892. Do not apply the transposition if the input geometry matches the one
  2893. specified by the specified value. It accepts the following values:
  2894. @table @samp
  2895. @item none
  2896. Always apply transposition.
  2897. @item portrait
  2898. Preserve portrait geometry (when @var{height} >= @var{width}).
  2899. @item landscape
  2900. Preserve landscape geometry (when @var{width} >= @var{height}).
  2901. @end table
  2902. Default value is @code{none}.
  2903. @end table
  2904. @section unsharp
  2905. Sharpen or blur the input video.
  2906. It accepts the following parameters:
  2907. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2908. Negative values for the amount will blur the input video, while positive
  2909. values will sharpen. All parameters are optional and default to the
  2910. equivalent of the string '5:5:1.0:5:5:0.0'.
  2911. @table @option
  2912. @item luma_msize_x
  2913. Set the luma matrix horizontal size. It can be an integer between 3
  2914. and 13, default value is 5.
  2915. @item luma_msize_y
  2916. Set the luma matrix vertical size. It can be an integer between 3
  2917. and 13, default value is 5.
  2918. @item luma_amount
  2919. Set the luma effect strength. It can be a float number between -2.0
  2920. and 5.0, default value is 1.0.
  2921. @item chroma_msize_x
  2922. Set the chroma matrix horizontal size. It can be an integer between 3
  2923. and 13, default value is 5.
  2924. @item chroma_msize_y
  2925. Set the chroma matrix vertical size. It can be an integer between 3
  2926. and 13, default value is 5.
  2927. @item chroma_amount
  2928. Set the chroma effect strength. It can be a float number between -2.0
  2929. and 5.0, default value is 0.0.
  2930. @end table
  2931. @example
  2932. # Strong luma sharpen effect parameters
  2933. unsharp=7:7:2.5
  2934. # Strong blur of both luma and chroma parameters
  2935. unsharp=7:7:-2:7:7:-2
  2936. # Use the default values with @command{ffmpeg}
  2937. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2938. @end example
  2939. @section vflip
  2940. Flip the input video vertically.
  2941. @example
  2942. ffmpeg -i in.avi -vf "vflip" out.avi
  2943. @end example
  2944. @section yadif
  2945. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2946. filter").
  2947. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2948. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2949. following values:
  2950. @table @option
  2951. @item 0
  2952. output 1 frame for each frame
  2953. @item 1
  2954. output 1 frame for each field
  2955. @item 2
  2956. like 0 but skips spatial interlacing check
  2957. @item 3
  2958. like 1 but skips spatial interlacing check
  2959. @end table
  2960. Default value is 0.
  2961. @var{parity} specifies the picture field parity assumed for the input
  2962. interlaced video, accepts one of the following values:
  2963. @table @option
  2964. @item 0
  2965. assume top field first
  2966. @item 1
  2967. assume bottom field first
  2968. @item -1
  2969. enable automatic detection
  2970. @end table
  2971. Default value is -1.
  2972. If interlacing is unknown or decoder does not export this information,
  2973. top field first will be assumed.
  2974. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2975. and only deinterlace frames marked as interlaced
  2976. @table @option
  2977. @item 0
  2978. deinterlace all frames
  2979. @item 1
  2980. only deinterlace frames marked as interlaced
  2981. @end table
  2982. Default value is 0.
  2983. @c man end VIDEO FILTERS
  2984. @chapter Video Sources
  2985. @c man begin VIDEO SOURCES
  2986. Below is a description of the currently available video sources.
  2987. @section buffer
  2988. Buffer video frames, and make them available to the filter chain.
  2989. This source is mainly intended for a programmatic use, in particular
  2990. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2991. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2992. separated by ":". A description of the accepted options follows.
  2993. @table @option
  2994. @item video_size
  2995. Specify the size (width and height) of the buffered video frames.
  2996. @item pix_fmt
  2997. A string representing the pixel format of the buffered video frames.
  2998. It may be a number corresponding to a pixel format, or a pixel format
  2999. name.
  3000. @item time_base
  3001. Specify the timebase assumed by the timestamps of the buffered frames.
  3002. @item time_base
  3003. Specify the frame rate expected for the video stream.
  3004. @item pixel_aspect
  3005. Specify the sample aspect ratio assumed by the video frames.
  3006. @item sws_param
  3007. Specify the optional parameters to be used for the scale filter which
  3008. is automatically inserted when an input change is detected in the
  3009. input size or format.
  3010. @end table
  3011. For example:
  3012. @example
  3013. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  3014. @end example
  3015. will instruct the source to accept video frames with size 320x240 and
  3016. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  3017. square pixels (1:1 sample aspect ratio).
  3018. Since the pixel format with name "yuv410p" corresponds to the number 6
  3019. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  3020. this example corresponds to:
  3021. @example
  3022. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  3023. @end example
  3024. Alternatively, the options can be specified as a flat string, but this
  3025. syntax is deprecated:
  3026. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  3027. @section cellauto
  3028. Create a pattern generated by an elementary cellular automaton.
  3029. The initial state of the cellular automaton can be defined through the
  3030. @option{filename}, and @option{pattern} options. If such options are
  3031. not specified an initial state is created randomly.
  3032. At each new frame a new row in the video is filled with the result of
  3033. the cellular automaton next generation. The behavior when the whole
  3034. frame is filled is defined by the @option{scroll} option.
  3035. This source accepts a list of options in the form of
  3036. @var{key}=@var{value} pairs separated by ":". A description of the
  3037. accepted options follows.
  3038. @table @option
  3039. @item filename, f
  3040. Read the initial cellular automaton state, i.e. the starting row, from
  3041. the specified file.
  3042. In the file, each non-whitespace character is considered an alive
  3043. cell, a newline will terminate the row, and further characters in the
  3044. file will be ignored.
  3045. @item pattern, p
  3046. Read the initial cellular automaton state, i.e. the starting row, from
  3047. the specified string.
  3048. Each non-whitespace character in the string is considered an alive
  3049. cell, a newline will terminate the row, and further characters in the
  3050. string will be ignored.
  3051. @item rate, r
  3052. Set the video rate, that is the number of frames generated per second.
  3053. Default is 25.
  3054. @item random_fill_ratio, ratio
  3055. Set the random fill ratio for the initial cellular automaton row. It
  3056. is a floating point number value ranging from 0 to 1, defaults to
  3057. 1/PHI.
  3058. This option is ignored when a file or a pattern is specified.
  3059. @item random_seed, seed
  3060. Set the seed for filling randomly the initial row, must be an integer
  3061. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3062. set to -1, the filter will try to use a good random seed on a best
  3063. effort basis.
  3064. @item rule
  3065. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  3066. Default value is 110.
  3067. @item size, s
  3068. Set the size of the output video.
  3069. If @option{filename} or @option{pattern} is specified, the size is set
  3070. by default to the width of the specified initial state row, and the
  3071. height is set to @var{width} * PHI.
  3072. If @option{size} is set, it must contain the width of the specified
  3073. pattern string, and the specified pattern will be centered in the
  3074. larger row.
  3075. If a filename or a pattern string is not specified, the size value
  3076. defaults to "320x518" (used for a randomly generated initial state).
  3077. @item scroll
  3078. If set to 1, scroll the output upward when all the rows in the output
  3079. have been already filled. If set to 0, the new generated row will be
  3080. written over the top row just after the bottom row is filled.
  3081. Defaults to 1.
  3082. @item start_full, full
  3083. If set to 1, completely fill the output with generated rows before
  3084. outputting the first frame.
  3085. This is the default behavior, for disabling set the value to 0.
  3086. @item stitch
  3087. If set to 1, stitch the left and right row edges together.
  3088. This is the default behavior, for disabling set the value to 0.
  3089. @end table
  3090. @subsection Examples
  3091. @itemize
  3092. @item
  3093. Read the initial state from @file{pattern}, and specify an output of
  3094. size 200x400.
  3095. @example
  3096. cellauto=f=pattern:s=200x400
  3097. @end example
  3098. @item
  3099. Generate a random initial row with a width of 200 cells, with a fill
  3100. ratio of 2/3:
  3101. @example
  3102. cellauto=ratio=2/3:s=200x200
  3103. @end example
  3104. @item
  3105. Create a pattern generated by rule 18 starting by a single alive cell
  3106. centered on an initial row with width 100:
  3107. @example
  3108. cellauto=p=@@:s=100x400:full=0:rule=18
  3109. @end example
  3110. @item
  3111. Specify a more elaborated initial pattern:
  3112. @example
  3113. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  3114. @end example
  3115. @end itemize
  3116. @section mandelbrot
  3117. Generate a Mandelbrot set fractal, and progressively zoom towards the
  3118. point specified with @var{start_x} and @var{start_y}.
  3119. This source accepts a list of options in the form of
  3120. @var{key}=@var{value} pairs separated by ":". A description of the
  3121. accepted options follows.
  3122. @table @option
  3123. @item end_pts
  3124. Set the terminal pts value. Default value is 400.
  3125. @item end_scale
  3126. Set the terminal scale value.
  3127. Must be a floating point value. Default value is 0.3.
  3128. @item inner
  3129. Set the inner coloring mode, that is the algorithm used to draw the
  3130. Mandelbrot fractal internal region.
  3131. It shall assume one of the following values:
  3132. @table @option
  3133. @item black
  3134. Set black mode.
  3135. @item convergence
  3136. Show time until convergence.
  3137. @item mincol
  3138. Set color based on point closest to the origin of the iterations.
  3139. @item period
  3140. Set period mode.
  3141. @end table
  3142. Default value is @var{mincol}.
  3143. @item bailout
  3144. Set the bailout value. Default value is 10.0.
  3145. @item maxiter
  3146. Set the maximum of iterations performed by the rendering
  3147. algorithm. Default value is 7189.
  3148. @item outer
  3149. Set outer coloring mode.
  3150. It shall assume one of following values:
  3151. @table @option
  3152. @item iteration_count
  3153. Set iteration cound mode.
  3154. @item normalized_iteration_count
  3155. set normalized iteration count mode.
  3156. @end table
  3157. Default value is @var{normalized_iteration_count}.
  3158. @item rate, r
  3159. Set frame rate, expressed as number of frames per second. Default
  3160. value is "25".
  3161. @item size, s
  3162. Set frame size. Default value is "640x480".
  3163. @item start_scale
  3164. Set the initial scale value. Default value is 3.0.
  3165. @item start_x
  3166. Set the initial x position. Must be a floating point value between
  3167. -100 and 100. Default value is -0.743643887037158704752191506114774.
  3168. @item start_y
  3169. Set the initial y position. Must be a floating point value between
  3170. -100 and 100. Default value is -0.131825904205311970493132056385139.
  3171. @end table
  3172. @section mptestsrc
  3173. Generate various test patterns, as generated by the MPlayer test filter.
  3174. The size of the generated video is fixed, and is 256x256.
  3175. This source is useful in particular for testing encoding features.
  3176. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  3177. separated by ":". The description of the accepted options follows.
  3178. @table @option
  3179. @item rate, r
  3180. Specify the frame rate of the sourced video, as the number of frames
  3181. generated per second. It has to be a string in the format
  3182. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3183. number or a valid video frame rate abbreviation. The default value is
  3184. "25".
  3185. @item duration, d
  3186. Set the video duration of the sourced video. The accepted syntax is:
  3187. @example
  3188. [-]HH:MM:SS[.m...]
  3189. [-]S+[.m...]
  3190. @end example
  3191. See also the function @code{av_parse_time()}.
  3192. If not specified, or the expressed duration is negative, the video is
  3193. supposed to be generated forever.
  3194. @item test, t
  3195. Set the number or the name of the test to perform. Supported tests are:
  3196. @table @option
  3197. @item dc_luma
  3198. @item dc_chroma
  3199. @item freq_luma
  3200. @item freq_chroma
  3201. @item amp_luma
  3202. @item amp_chroma
  3203. @item cbp
  3204. @item mv
  3205. @item ring1
  3206. @item ring2
  3207. @item all
  3208. @end table
  3209. Default value is "all", which will cycle through the list of all tests.
  3210. @end table
  3211. For example the following:
  3212. @example
  3213. testsrc=t=dc_luma
  3214. @end example
  3215. will generate a "dc_luma" test pattern.
  3216. @section frei0r_src
  3217. Provide a frei0r source.
  3218. To enable compilation of this filter you need to install the frei0r
  3219. header and configure FFmpeg with @code{--enable-frei0r}.
  3220. The source supports the syntax:
  3221. @example
  3222. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  3223. @end example
  3224. @var{size} is the size of the video to generate, may be a string of the
  3225. form @var{width}x@var{height} or a frame size abbreviation.
  3226. @var{rate} is the rate of the video to generate, may be a string of
  3227. the form @var{num}/@var{den} or a frame rate abbreviation.
  3228. @var{src_name} is the name to the frei0r source to load. For more
  3229. information regarding frei0r and how to set the parameters read the
  3230. section @ref{frei0r} in the description of the video filters.
  3231. For example, to generate a frei0r partik0l source with size 200x200
  3232. and frame rate 10 which is overlayed on the overlay filter main input:
  3233. @example
  3234. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  3235. @end example
  3236. @section life
  3237. Generate a life pattern.
  3238. This source is based on a generalization of John Conway's life game.
  3239. The sourced input represents a life grid, each pixel represents a cell
  3240. which can be in one of two possible states, alive or dead. Every cell
  3241. interacts with its eight neighbours, which are the cells that are
  3242. horizontally, vertically, or diagonally adjacent.
  3243. At each interaction the grid evolves according to the adopted rule,
  3244. which specifies the number of neighbor alive cells which will make a
  3245. cell stay alive or born. The @option{rule} option allows to specify
  3246. the rule to adopt.
  3247. This source accepts a list of options in the form of
  3248. @var{key}=@var{value} pairs separated by ":". A description of the
  3249. accepted options follows.
  3250. @table @option
  3251. @item filename, f
  3252. Set the file from which to read the initial grid state. In the file,
  3253. each non-whitespace character is considered an alive cell, and newline
  3254. is used to delimit the end of each row.
  3255. If this option is not specified, the initial grid is generated
  3256. randomly.
  3257. @item rate, r
  3258. Set the video rate, that is the number of frames generated per second.
  3259. Default is 25.
  3260. @item random_fill_ratio, ratio
  3261. Set the random fill ratio for the initial random grid. It is a
  3262. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3263. It is ignored when a file is specified.
  3264. @item random_seed, seed
  3265. Set the seed for filling the initial random grid, must be an integer
  3266. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3267. set to -1, the filter will try to use a good random seed on a best
  3268. effort basis.
  3269. @item rule
  3270. Set the life rule.
  3271. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3272. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3273. @var{NS} specifies the number of alive neighbor cells which make a
  3274. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3275. which make a dead cell to become alive (i.e. to "born").
  3276. "s" and "b" can be used in place of "S" and "B", respectively.
  3277. Alternatively a rule can be specified by an 18-bits integer. The 9
  3278. high order bits are used to encode the next cell state if it is alive
  3279. for each number of neighbor alive cells, the low order bits specify
  3280. the rule for "borning" new cells. Higher order bits encode for an
  3281. higher number of neighbor cells.
  3282. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3283. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3284. Default value is "S23/B3", which is the original Conway's game of life
  3285. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3286. cells, and will born a new cell if there are three alive cells around
  3287. a dead cell.
  3288. @item size, s
  3289. Set the size of the output video.
  3290. If @option{filename} is specified, the size is set by default to the
  3291. same size of the input file. If @option{size} is set, it must contain
  3292. the size specified in the input file, and the initial grid defined in
  3293. that file is centered in the larger resulting area.
  3294. If a filename is not specified, the size value defaults to "320x240"
  3295. (used for a randomly generated initial grid).
  3296. @item stitch
  3297. If set to 1, stitch the left and right grid edges together, and the
  3298. top and bottom edges also. Defaults to 1.
  3299. @item mold
  3300. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3301. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3302. value from 0 to 255.
  3303. @item life_color
  3304. Set the color of living (or new born) cells.
  3305. @item death_color
  3306. Set the color of dead cells. If @option{mold} is set, this is the first color
  3307. used to represent a dead cell.
  3308. @item mold_color
  3309. Set mold color, for definitely dead and moldy cells.
  3310. @end table
  3311. @subsection Examples
  3312. @itemize
  3313. @item
  3314. Read a grid from @file{pattern}, and center it on a grid of size
  3315. 300x300 pixels:
  3316. @example
  3317. life=f=pattern:s=300x300
  3318. @end example
  3319. @item
  3320. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3321. @example
  3322. life=ratio=2/3:s=200x200
  3323. @end example
  3324. @item
  3325. Specify a custom rule for evolving a randomly generated grid:
  3326. @example
  3327. life=rule=S14/B34
  3328. @end example
  3329. @item
  3330. Full example with slow death effect (mold) using @command{ffplay}:
  3331. @example
  3332. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3333. @end example
  3334. @end itemize
  3335. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3336. The @code{color} source provides an uniformly colored input.
  3337. The @code{nullsrc} source returns unprocessed video frames. It is
  3338. mainly useful to be employed in analysis / debugging tools, or as the
  3339. source for filters which ignore the input data.
  3340. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3341. detecting RGB vs BGR issues. You should see a red, green and blue
  3342. stripe from top to bottom.
  3343. The @code{smptebars} source generates a color bars pattern, based on
  3344. the SMPTE Engineering Guideline EG 1-1990.
  3345. The @code{testsrc} source generates a test video pattern, showing a
  3346. color pattern, a scrolling gradient and a timestamp. This is mainly
  3347. intended for testing purposes.
  3348. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3349. separated by ":". The description of the accepted options follows.
  3350. @table @option
  3351. @item color, c
  3352. Specify the color of the source, only used in the @code{color}
  3353. source. It can be the name of a color (case insensitive match) or a
  3354. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3355. default value is "black".
  3356. @item size, s
  3357. Specify the size of the sourced video, it may be a string of the form
  3358. @var{width}x@var{height}, or the name of a size abbreviation. The
  3359. default value is "320x240".
  3360. @item rate, r
  3361. Specify the frame rate of the sourced video, as the number of frames
  3362. generated per second. It has to be a string in the format
  3363. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3364. number or a valid video frame rate abbreviation. The default value is
  3365. "25".
  3366. @item sar
  3367. Set the sample aspect ratio of the sourced video.
  3368. @item duration, d
  3369. Set the video duration of the sourced video. The accepted syntax is:
  3370. @example
  3371. [-]HH[:MM[:SS[.m...]]]
  3372. [-]S+[.m...]
  3373. @end example
  3374. See also the function @code{av_parse_time()}.
  3375. If not specified, or the expressed duration is negative, the video is
  3376. supposed to be generated forever.
  3377. @item decimals, n
  3378. Set the number of decimals to show in the timestamp, only used in the
  3379. @code{testsrc} source.
  3380. The displayed timestamp value will correspond to the original
  3381. timestamp value multiplied by the power of 10 of the specified
  3382. value. Default value is 0.
  3383. @end table
  3384. For example the following:
  3385. @example
  3386. testsrc=duration=5.3:size=qcif:rate=10
  3387. @end example
  3388. will generate a video with a duration of 5.3 seconds, with size
  3389. 176x144 and a frame rate of 10 frames per second.
  3390. The following graph description will generate a red source
  3391. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3392. frames per second.
  3393. @example
  3394. color=c=red@@0.2:s=qcif:r=10
  3395. @end example
  3396. If the input content is to be ignored, @code{nullsrc} can be used. The
  3397. following command generates noise in the luminance plane by employing
  3398. the @code{geq} filter:
  3399. @example
  3400. nullsrc=s=256x256, geq=random(1)*255:128:128
  3401. @end example
  3402. @c man end VIDEO SOURCES
  3403. @chapter Video Sinks
  3404. @c man begin VIDEO SINKS
  3405. Below is a description of the currently available video sinks.
  3406. @section buffersink
  3407. Buffer video frames, and make them available to the end of the filter
  3408. graph.
  3409. This sink is mainly intended for a programmatic use, in particular
  3410. through the interface defined in @file{libavfilter/buffersink.h}.
  3411. It does not require a string parameter in input, but you need to
  3412. specify a pointer to a list of supported pixel formats terminated by
  3413. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3414. when initializing this sink.
  3415. @section nullsink
  3416. Null video sink, do absolutely nothing with the input video. It is
  3417. mainly useful as a template and to be employed in analysis / debugging
  3418. tools.
  3419. @c man end VIDEO SINKS
  3420. @chapter Multimedia Filters
  3421. @c man begin MULTIMEDIA FILTERS
  3422. Below is a description of the currently available multimedia filters.
  3423. @section asendcmd, sendcmd
  3424. Send commands to filters in the filtergraph.
  3425. These filters read commands to be sent to other filters in the
  3426. filtergraph.
  3427. @code{asendcmd} must be inserted between two audio filters,
  3428. @code{sendcmd} must be inserted between two video filters, but apart
  3429. from that they act the same way.
  3430. The specification of commands can be provided in the filter arguments
  3431. with the @var{commands} option, or in a file specified by the
  3432. @var{filename} option.
  3433. These filters accept the following options:
  3434. @table @option
  3435. @item commands, c
  3436. Set the commands to be read and sent to the other filters.
  3437. @item filename, f
  3438. Set the filename of the commands to be read and sent to the other
  3439. filters.
  3440. @end table
  3441. @subsection Commands syntax
  3442. A commands description consists of a sequence of interval
  3443. specifications, comprising a list of commands to be executed when a
  3444. particular event related to that interval occurs. The occurring event
  3445. is typically the current frame time entering or leaving a given time
  3446. interval.
  3447. An interval is specified by the following syntax:
  3448. @example
  3449. @var{START}[-@var{END}] @var{COMMANDS};
  3450. @end example
  3451. The time interval is specified by the @var{START} and @var{END} times.
  3452. @var{END} is optional and defaults to the maximum time.
  3453. The current frame time is considered within the specified interval if
  3454. it is included in the interval [@var{START}, @var{END}), that is when
  3455. the time is greater or equal to @var{START} and is lesser than
  3456. @var{END}.
  3457. @var{COMMANDS} consists of a sequence of one or more command
  3458. specifications, separated by ",", relating to that interval. The
  3459. syntax of a command specification is given by:
  3460. @example
  3461. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3462. @end example
  3463. @var{FLAGS} is optional and specifies the type of events relating to
  3464. the time interval which enable sending the specified command, and must
  3465. be a non-null sequence of identifier flags separated by "+" or "|" and
  3466. enclosed between "[" and "]".
  3467. The following flags are recognized:
  3468. @table @option
  3469. @item enter
  3470. The command is sent when the current frame timestamp enters the
  3471. specified interval. In other words, the command is sent when the
  3472. previous frame timestamp was not in the given interval, and the
  3473. current is.
  3474. @item leave
  3475. The command is sent when the current frame timestamp leaves the
  3476. specified interval. In other words, the command is sent when the
  3477. previous frame timestamp was in the given interval, and the
  3478. current is not.
  3479. @end table
  3480. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3481. assumed.
  3482. @var{TARGET} specifies the target of the command, usually the name of
  3483. the filter class or a specific filter instance name.
  3484. @var{COMMAND} specifies the name of the command for the target filter.
  3485. @var{ARG} is optional and specifies the optional list of argument for
  3486. the given @var{COMMAND}.
  3487. Between one interval specification and another, whitespaces, or
  3488. sequences of characters starting with @code{#} until the end of line,
  3489. are ignored and can be used to annotate comments.
  3490. A simplified BNF description of the commands specification syntax
  3491. follows:
  3492. @example
  3493. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3494. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3495. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3496. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3497. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3498. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3499. @end example
  3500. @subsection Examples
  3501. @itemize
  3502. @item
  3503. Specify audio tempo change at second 4:
  3504. @example
  3505. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3506. @end example
  3507. @item
  3508. Specify a list of drawtext and hue commands in a file.
  3509. @example
  3510. # show text in the interval 5-10
  3511. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3512. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3513. # desaturate the image in the interval 15-20
  3514. 15.0-20.0 [enter] hue reinit s=0,
  3515. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3516. [leave] hue reinit s=1,
  3517. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3518. # apply an exponential saturation fade-out effect, starting from time 25
  3519. 25 [enter] hue s=exp(t-25)
  3520. @end example
  3521. A filtergraph allowing to read and process the above command list
  3522. stored in a file @file{test.cmd}, can be specified with:
  3523. @example
  3524. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3525. @end example
  3526. @end itemize
  3527. @section asetpts, setpts
  3528. Change the PTS (presentation timestamp) of the input frames.
  3529. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3530. Accept in input an expression evaluated through the eval API, which
  3531. can contain the following constants:
  3532. @table @option
  3533. @item FRAME_RATE
  3534. frame rate, only defined for constant frame-rate video
  3535. @item PTS
  3536. the presentation timestamp in input
  3537. @item N
  3538. the count of the input frame, starting from 0.
  3539. @item NB_CONSUMED_SAMPLES
  3540. the number of consumed samples, not including the current frame (only
  3541. audio)
  3542. @item NB_SAMPLES
  3543. the number of samples in the current frame (only audio)
  3544. @item SAMPLE_RATE
  3545. audio sample rate
  3546. @item STARTPTS
  3547. the PTS of the first frame
  3548. @item STARTT
  3549. the time in seconds of the first frame
  3550. @item INTERLACED
  3551. tell if the current frame is interlaced
  3552. @item T
  3553. the time in seconds of the current frame
  3554. @item TB
  3555. the time base
  3556. @item POS
  3557. original position in the file of the frame, or undefined if undefined
  3558. for the current frame
  3559. @item PREV_INPTS
  3560. previous input PTS
  3561. @item PREV_INT
  3562. previous input time in seconds
  3563. @item PREV_OUTPTS
  3564. previous output PTS
  3565. @item PREV_OUTT
  3566. previous output time in seconds
  3567. @end table
  3568. @subsection Examples
  3569. @itemize
  3570. @item
  3571. Start counting PTS from zero
  3572. @example
  3573. setpts=PTS-STARTPTS
  3574. @end example
  3575. @item
  3576. Apply fast motion effect:
  3577. @example
  3578. setpts=0.5*PTS
  3579. @end example
  3580. @item
  3581. Apply slow motion effect:
  3582. @example
  3583. setpts=2.0*PTS
  3584. @end example
  3585. @item
  3586. Set fixed rate of 25 frames per second:
  3587. @example
  3588. setpts=N/(25*TB)
  3589. @end example
  3590. @item
  3591. Set fixed rate 25 fps with some jitter:
  3592. @example
  3593. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3594. @end example
  3595. @item
  3596. Apply an offset of 10 seconds to the input PTS:
  3597. @example
  3598. setpts=PTS+10/TB
  3599. @end example
  3600. @end itemize
  3601. @section ebur128
  3602. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3603. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3604. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3605. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3606. The filter also has a video output (see the @var{video} option) with a real
  3607. time graph to observe the loudness evolution. The graphic contains the logged
  3608. message mentioned above, so it is not printed anymore when this option is set,
  3609. unless the verbose logging is set. The main graphing area contains the
  3610. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3611. the momentary loudness (400 milliseconds).
  3612. More information about the Loudness Recommendation EBU R128 on
  3613. @url{http://tech.ebu.ch/loudness}.
  3614. The filter accepts the following named parameters:
  3615. @table @option
  3616. @item video
  3617. Activate the video output. The audio stream is passed unchanged whether this
  3618. option is set or no. The video stream will be the first output stream if
  3619. activated. Default is @code{0}.
  3620. @item size
  3621. Set the video size. This option is for video only. Default and minimum
  3622. resolution is @code{640x480}.
  3623. @item meter
  3624. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3625. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3626. other integer value between this range is allowed.
  3627. @end table
  3628. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3629. @example
  3630. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3631. @end example
  3632. Run an analysis with @command{ffmpeg}:
  3633. @example
  3634. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3635. @end example
  3636. @section settb, asettb
  3637. Set the timebase to use for the output frames timestamps.
  3638. It is mainly useful for testing timebase configuration.
  3639. It accepts in input an arithmetic expression representing a rational.
  3640. The expression can contain the constants "AVTB" (the
  3641. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3642. audio only).
  3643. The default value for the input is "intb".
  3644. @subsection Examples
  3645. @itemize
  3646. @item
  3647. Set the timebase to 1/25:
  3648. @example
  3649. settb=1/25
  3650. @end example
  3651. @item
  3652. Set the timebase to 1/10:
  3653. @example
  3654. settb=0.1
  3655. @end example
  3656. @item
  3657. Set the timebase to 1001/1000:
  3658. @example
  3659. settb=1+0.001
  3660. @end example
  3661. @item
  3662. Set the timebase to 2*intb:
  3663. @example
  3664. settb=2*intb
  3665. @end example
  3666. @item
  3667. Set the default timebase value:
  3668. @example
  3669. settb=AVTB
  3670. @end example
  3671. @end itemize
  3672. @section concat
  3673. Concatenate audio and video streams, joining them together one after the
  3674. other.
  3675. The filter works on segments of synchronized video and audio streams. All
  3676. segments must have the same number of streams of each type, and that will
  3677. also be the number of streams at output.
  3678. The filter accepts the following named parameters:
  3679. @table @option
  3680. @item n
  3681. Set the number of segments. Default is 2.
  3682. @item v
  3683. Set the number of output video streams, that is also the number of video
  3684. streams in each segment. Default is 1.
  3685. @item a
  3686. Set the number of output audio streams, that is also the number of video
  3687. streams in each segment. Default is 0.
  3688. @item unsafe
  3689. Activate unsafe mode: do not fail if segments have a different format.
  3690. @end table
  3691. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3692. @var{a} audio outputs.
  3693. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3694. segment, in the same order as the outputs, then the inputs for the second
  3695. segment, etc.
  3696. Related streams do not always have exactly the same duration, for various
  3697. reasons including codec frame size or sloppy authoring. For that reason,
  3698. related synchronized streams (e.g. a video and its audio track) should be
  3699. concatenated at once. The concat filter will use the duration of the longest
  3700. stream in each segment (except the last one), and if necessary pad shorter
  3701. audio streams with silence.
  3702. For this filter to work correctly, all segments must start at timestamp 0.
  3703. All corresponding streams must have the same parameters in all segments; the
  3704. filtering system will automatically select a common pixel format for video
  3705. streams, and a common sample format, sample rate and channel layout for
  3706. audio streams, but other settings, such as resolution, must be converted
  3707. explicitly by the user.
  3708. Different frame rates are acceptable but will result in variable frame rate
  3709. at output; be sure to configure the output file to handle it.
  3710. Examples:
  3711. @itemize
  3712. @item
  3713. Concatenate an opening, an episode and an ending, all in bilingual version
  3714. (video in stream 0, audio in streams 1 and 2):
  3715. @example
  3716. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3717. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3718. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3719. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3720. @end example
  3721. @item
  3722. Concatenate two parts, handling audio and video separately, using the
  3723. (a)movie sources, and adjusting the resolution:
  3724. @example
  3725. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3726. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3727. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3728. @end example
  3729. Note that a desync will happen at the stitch if the audio and video streams
  3730. do not have exactly the same duration in the first file.
  3731. @end itemize
  3732. @section showspectrum
  3733. Convert input audio to a video output, representing the audio frequency
  3734. spectrum.
  3735. The filter accepts the following named parameters:
  3736. @table @option
  3737. @item size, s
  3738. Specify the video size for the output. Default value is @code{640x480}.
  3739. @item slide
  3740. Specify if the spectrum should slide along the window. Default value is
  3741. @code{0}.
  3742. @end table
  3743. The usage is very similar to the showwaves filter; see the examples in that
  3744. section.
  3745. @section showwaves
  3746. Convert input audio to a video output, representing the samples waves.
  3747. The filter accepts the following named parameters:
  3748. @table @option
  3749. @item n
  3750. Set the number of samples which are printed on the same column. A
  3751. larger value will decrease the frame rate. Must be a positive
  3752. integer. This option can be set only if the value for @var{rate}
  3753. is not explicitly specified.
  3754. @item rate, r
  3755. Set the (approximate) output frame rate. This is done by setting the
  3756. option @var{n}. Default value is "25".
  3757. @item size, s
  3758. Specify the video size for the output. Default value is "600x240".
  3759. @end table
  3760. Some examples follow.
  3761. @itemize
  3762. @item
  3763. Output the input file audio and the corresponding video representation
  3764. at the same time:
  3765. @example
  3766. amovie=a.mp3,asplit[out0],showwaves[out1]
  3767. @end example
  3768. @item
  3769. Create a synthetic signal and show it with showwaves, forcing a
  3770. framerate of 30 frames per second:
  3771. @example
  3772. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3773. @end example
  3774. @end itemize
  3775. @c man end MULTIMEDIA FILTERS
  3776. @chapter Multimedia Sources
  3777. @c man begin MULTIMEDIA SOURCES
  3778. Below is a description of the currently available multimedia sources.
  3779. @section amovie
  3780. This is the same as @ref{src_movie} source, except it selects an audio
  3781. stream by default.
  3782. @anchor{src_movie}
  3783. @section movie
  3784. Read audio and/or video stream(s) from a movie container.
  3785. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3786. @var{movie_name} is the name of the resource to read (not necessarily
  3787. a file but also a device or a stream accessed through some protocol),
  3788. and @var{options} is an optional sequence of @var{key}=@var{value}
  3789. pairs, separated by ":".
  3790. The description of the accepted options follows.
  3791. @table @option
  3792. @item format_name, f
  3793. Specifies the format assumed for the movie to read, and can be either
  3794. the name of a container or an input device. If not specified the
  3795. format is guessed from @var{movie_name} or by probing.
  3796. @item seek_point, sp
  3797. Specifies the seek point in seconds, the frames will be output
  3798. starting from this seek point, the parameter is evaluated with
  3799. @code{av_strtod} so the numerical value may be suffixed by an IS
  3800. postfix. Default value is "0".
  3801. @item streams, s
  3802. Specifies the streams to read. Several streams can be specified, separated
  3803. by "+". The source will then have as many outputs, in the same order. The
  3804. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3805. names, "dv" and "da" specify respectively the default (best suited) video
  3806. and audio stream. Default is "dv", or "da" if the filter is called as
  3807. "amovie".
  3808. @item stream_index, si
  3809. Specifies the index of the video stream to read. If the value is -1,
  3810. the best suited video stream will be automatically selected. Default
  3811. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3812. audio instead of video.
  3813. @item loop
  3814. Specifies how many times to read the stream in sequence.
  3815. If the value is less than 1, the stream will be read again and again.
  3816. Default value is "1".
  3817. Note that when the movie is looped the source timestamps are not
  3818. changed, so it will generate non monotonically increasing timestamps.
  3819. @end table
  3820. This filter allows to overlay a second video on top of main input of
  3821. a filtergraph as shown in this graph:
  3822. @example
  3823. input -----------> deltapts0 --> overlay --> output
  3824. ^
  3825. |
  3826. movie --> scale--> deltapts1 -------+
  3827. @end example
  3828. Some examples follow.
  3829. @itemize
  3830. @item
  3831. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3832. on top of the input labelled as "in":
  3833. @example
  3834. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3835. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3836. @end example
  3837. @item
  3838. Read from a video4linux2 device, and overlay it on top of the input
  3839. labelled as "in":
  3840. @example
  3841. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3842. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3843. @end example
  3844. @item
  3845. Read the first video stream and the audio stream with id 0x81 from
  3846. dvd.vob; the video is connected to the pad named "video" and the audio is
  3847. connected to the pad named "audio":
  3848. @example
  3849. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3850. @end example
  3851. @end itemize
  3852. @c man end MULTIMEDIA SOURCES