You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1294 lines
48KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "dsputil.h"
  29. #include "cabac.h"
  30. #include "mpegvideo.h"
  31. #include "h264pred.h"
  32. #include "rectangle.h"
  33. #define interlaced_dct interlaced_dct_is_a_bad_name
  34. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  35. #define LUMA_DC_BLOCK_INDEX 25
  36. #define CHROMA_DC_BLOCK_INDEX 26
  37. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  38. #define COEFF_TOKEN_VLC_BITS 8
  39. #define TOTAL_ZEROS_VLC_BITS 9
  40. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  41. #define RUN_VLC_BITS 3
  42. #define RUN7_VLC_BITS 6
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define ALLOW_NOCHROMA
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 16
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF h->mb_mbaff
  58. #define MB_FIELD h->mb_field_decoding_flag
  59. #define FRAME_MBAFF h->mb_aff_frame
  60. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  61. #else
  62. #define MB_MBAFF 0
  63. #define MB_FIELD 0
  64. #define FRAME_MBAFF 0
  65. #define FIELD_PICTURE 0
  66. #undef IS_INTERLACED
  67. #define IS_INTERLACED(mb_type) 0
  68. #endif
  69. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  70. #ifdef ALLOW_NOCHROMA
  71. #define CHROMA h->sps.chroma_format_idc
  72. #else
  73. #define CHROMA 1
  74. #endif
  75. #define EXTENDED_SAR 255
  76. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  77. #define MB_TYPE_8x8DCT 0x01000000
  78. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  79. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  80. /**
  81. * Value of Picture.reference when Picture is not a reference picture, but
  82. * is held for delayed output.
  83. */
  84. #define DELAYED_PIC_REF 4
  85. /* NAL unit types */
  86. enum {
  87. NAL_SLICE=1,
  88. NAL_DPA,
  89. NAL_DPB,
  90. NAL_DPC,
  91. NAL_IDR_SLICE,
  92. NAL_SEI,
  93. NAL_SPS,
  94. NAL_PPS,
  95. NAL_AUD,
  96. NAL_END_SEQUENCE,
  97. NAL_END_STREAM,
  98. NAL_FILLER_DATA,
  99. NAL_SPS_EXT,
  100. NAL_AUXILIARY_SLICE=19
  101. };
  102. /**
  103. * SEI message types
  104. */
  105. typedef enum {
  106. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  107. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  108. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  109. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  110. } SEI_Type;
  111. /**
  112. * pic_struct in picture timing SEI message
  113. */
  114. typedef enum {
  115. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  116. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  117. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  118. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  119. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  120. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  121. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  122. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  123. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  124. } SEI_PicStructType;
  125. /**
  126. * Sequence parameter set
  127. */
  128. typedef struct SPS{
  129. int profile_idc;
  130. int level_idc;
  131. int chroma_format_idc;
  132. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  133. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  134. int poc_type; ///< pic_order_cnt_type
  135. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  136. int delta_pic_order_always_zero_flag;
  137. int offset_for_non_ref_pic;
  138. int offset_for_top_to_bottom_field;
  139. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  140. int ref_frame_count; ///< num_ref_frames
  141. int gaps_in_frame_num_allowed_flag;
  142. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  143. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  144. int frame_mbs_only_flag;
  145. int mb_aff; ///<mb_adaptive_frame_field_flag
  146. int direct_8x8_inference_flag;
  147. int crop; ///< frame_cropping_flag
  148. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  149. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  150. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  151. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  152. int vui_parameters_present_flag;
  153. AVRational sar;
  154. int video_signal_type_present_flag;
  155. int full_range;
  156. int colour_description_present_flag;
  157. enum AVColorPrimaries color_primaries;
  158. enum AVColorTransferCharacteristic color_trc;
  159. enum AVColorSpace colorspace;
  160. int timing_info_present_flag;
  161. uint32_t num_units_in_tick;
  162. uint32_t time_scale;
  163. int fixed_frame_rate_flag;
  164. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  165. int bitstream_restriction_flag;
  166. int num_reorder_frames;
  167. int scaling_matrix_present;
  168. uint8_t scaling_matrix4[6][16];
  169. uint8_t scaling_matrix8[2][64];
  170. int nal_hrd_parameters_present_flag;
  171. int vcl_hrd_parameters_present_flag;
  172. int pic_struct_present_flag;
  173. int time_offset_length;
  174. int cpb_cnt; ///< See H.264 E.1.2
  175. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  176. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  177. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  178. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  179. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  180. int residual_color_transform_flag; ///< residual_colour_transform_flag
  181. }SPS;
  182. /**
  183. * Picture parameter set
  184. */
  185. typedef struct PPS{
  186. unsigned int sps_id;
  187. int cabac; ///< entropy_coding_mode_flag
  188. int pic_order_present; ///< pic_order_present_flag
  189. int slice_group_count; ///< num_slice_groups_minus1 + 1
  190. int mb_slice_group_map_type;
  191. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  192. int weighted_pred; ///< weighted_pred_flag
  193. int weighted_bipred_idc;
  194. int init_qp; ///< pic_init_qp_minus26 + 26
  195. int init_qs; ///< pic_init_qs_minus26 + 26
  196. int chroma_qp_index_offset[2];
  197. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  198. int constrained_intra_pred; ///< constrained_intra_pred_flag
  199. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  200. int transform_8x8_mode; ///< transform_8x8_mode_flag
  201. uint8_t scaling_matrix4[6][16];
  202. uint8_t scaling_matrix8[2][64];
  203. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  204. int chroma_qp_diff;
  205. }PPS;
  206. /**
  207. * Memory management control operation opcode.
  208. */
  209. typedef enum MMCOOpcode{
  210. MMCO_END=0,
  211. MMCO_SHORT2UNUSED,
  212. MMCO_LONG2UNUSED,
  213. MMCO_SHORT2LONG,
  214. MMCO_SET_MAX_LONG,
  215. MMCO_RESET,
  216. MMCO_LONG,
  217. } MMCOOpcode;
  218. /**
  219. * Memory management control operation.
  220. */
  221. typedef struct MMCO{
  222. MMCOOpcode opcode;
  223. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  224. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  225. } MMCO;
  226. /**
  227. * H264Context
  228. */
  229. typedef struct H264Context{
  230. MpegEncContext s;
  231. int nal_ref_idc;
  232. int nal_unit_type;
  233. uint8_t *rbsp_buffer[2];
  234. unsigned int rbsp_buffer_size[2];
  235. /**
  236. * Used to parse AVC variant of h264
  237. */
  238. int is_avc; ///< this flag is != 0 if codec is avc1
  239. int got_avcC; ///< flag used to parse avcC data only once
  240. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  241. int chroma_qp[2]; //QPc
  242. int prev_mb_skipped;
  243. int next_mb_skipped;
  244. //prediction stuff
  245. int chroma_pred_mode;
  246. int intra16x16_pred_mode;
  247. int top_mb_xy;
  248. int left_mb_xy[2];
  249. int8_t intra4x4_pred_mode_cache[5*8];
  250. int8_t (*intra4x4_pred_mode)[8];
  251. H264PredContext hpc;
  252. unsigned int topleft_samples_available;
  253. unsigned int top_samples_available;
  254. unsigned int topright_samples_available;
  255. unsigned int left_samples_available;
  256. uint8_t (*top_borders[2])[16+2*8];
  257. uint8_t left_border[2*(17+2*9)];
  258. /**
  259. * non zero coeff count cache.
  260. * is 64 if not available.
  261. */
  262. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
  263. uint8_t (*non_zero_count)[16];
  264. /**
  265. * Motion vector cache.
  266. */
  267. DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
  268. DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
  269. #define LIST_NOT_USED -1 //FIXME rename?
  270. #define PART_NOT_AVAILABLE -2
  271. /**
  272. * is 1 if the specific list MV&references are set to 0,0,-2.
  273. */
  274. int mv_cache_clean[2];
  275. /**
  276. * number of neighbors (top and/or left) that used 8x8 dct
  277. */
  278. int neighbor_transform_size;
  279. /**
  280. * block_offset[ 0..23] for frame macroblocks
  281. * block_offset[24..47] for field macroblocks
  282. */
  283. int block_offset[2*(16+8)];
  284. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  285. uint32_t *mb2b8_xy;
  286. int b_stride; //FIXME use s->b4_stride
  287. int b8_stride;
  288. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  289. int mb_uvlinesize;
  290. int emu_edge_width;
  291. int emu_edge_height;
  292. int halfpel_flag;
  293. int thirdpel_flag;
  294. int unknown_svq3_flag;
  295. int next_slice_index;
  296. SPS *sps_buffers[MAX_SPS_COUNT];
  297. SPS sps; ///< current sps
  298. PPS *pps_buffers[MAX_PPS_COUNT];
  299. /**
  300. * current pps
  301. */
  302. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  303. uint32_t dequant4_buffer[6][52][16];
  304. uint32_t dequant8_buffer[2][52][64];
  305. uint32_t (*dequant4_coeff[6])[16];
  306. uint32_t (*dequant8_coeff[2])[64];
  307. int dequant_coeff_pps; ///< reinit tables when pps changes
  308. int slice_num;
  309. uint16_t *slice_table_base;
  310. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  311. int slice_type;
  312. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  313. int slice_type_fixed;
  314. //interlacing specific flags
  315. int mb_aff_frame;
  316. int mb_field_decoding_flag;
  317. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  318. DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
  319. //POC stuff
  320. int poc_lsb;
  321. int poc_msb;
  322. int delta_poc_bottom;
  323. int delta_poc[2];
  324. int frame_num;
  325. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  326. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  327. int frame_num_offset; ///< for POC type 2
  328. int prev_frame_num_offset; ///< for POC type 2
  329. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  330. /**
  331. * frame_num for frames or 2*frame_num+1 for field pics.
  332. */
  333. int curr_pic_num;
  334. /**
  335. * max_frame_num or 2*max_frame_num for field pics.
  336. */
  337. int max_pic_num;
  338. //Weighted pred stuff
  339. int use_weight;
  340. int use_weight_chroma;
  341. int luma_log2_weight_denom;
  342. int chroma_log2_weight_denom;
  343. int luma_weight[2][48];
  344. int luma_offset[2][48];
  345. int chroma_weight[2][48][2];
  346. int chroma_offset[2][48][2];
  347. int implicit_weight[48][48];
  348. //deblock
  349. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  350. int slice_alpha_c0_offset;
  351. int slice_beta_offset;
  352. int redundant_pic_count;
  353. int direct_spatial_mv_pred;
  354. int dist_scale_factor[16];
  355. int dist_scale_factor_field[2][32];
  356. int map_col_to_list0[2][16+32];
  357. int map_col_to_list0_field[2][2][16+32];
  358. /**
  359. * num_ref_idx_l0/1_active_minus1 + 1
  360. */
  361. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  362. unsigned int list_count;
  363. Picture *short_ref[32];
  364. Picture *long_ref[32];
  365. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  366. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  367. Reordered version of default_ref_list
  368. according to picture reordering in slice header */
  369. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  370. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  371. int outputed_poc;
  372. /**
  373. * memory management control operations buffer.
  374. */
  375. MMCO mmco[MAX_MMCO_COUNT];
  376. int mmco_index;
  377. int long_ref_count; ///< number of actual long term references
  378. int short_ref_count; ///< number of actual short term references
  379. //data partitioning
  380. GetBitContext intra_gb;
  381. GetBitContext inter_gb;
  382. GetBitContext *intra_gb_ptr;
  383. GetBitContext *inter_gb_ptr;
  384. DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
  385. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  386. /**
  387. * Cabac
  388. */
  389. CABACContext cabac;
  390. uint8_t cabac_state[460];
  391. int cabac_init_idc;
  392. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  393. uint16_t *cbp_table;
  394. int cbp;
  395. int top_cbp;
  396. int left_cbp;
  397. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  398. uint8_t *chroma_pred_mode_table;
  399. int last_qscale_diff;
  400. int16_t (*mvd_table[2])[2];
  401. DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
  402. uint8_t *direct_table;
  403. uint8_t direct_cache[5*8];
  404. uint8_t zigzag_scan[16];
  405. uint8_t zigzag_scan8x8[64];
  406. uint8_t zigzag_scan8x8_cavlc[64];
  407. uint8_t field_scan[16];
  408. uint8_t field_scan8x8[64];
  409. uint8_t field_scan8x8_cavlc[64];
  410. const uint8_t *zigzag_scan_q0;
  411. const uint8_t *zigzag_scan8x8_q0;
  412. const uint8_t *zigzag_scan8x8_cavlc_q0;
  413. const uint8_t *field_scan_q0;
  414. const uint8_t *field_scan8x8_q0;
  415. const uint8_t *field_scan8x8_cavlc_q0;
  416. int x264_build;
  417. /**
  418. * @defgroup multithreading Members for slice based multithreading
  419. * @{
  420. */
  421. struct H264Context *thread_context[MAX_THREADS];
  422. /**
  423. * current slice number, used to initalize slice_num of each thread/context
  424. */
  425. int current_slice;
  426. /**
  427. * Max number of threads / contexts.
  428. * This is equal to AVCodecContext.thread_count unless
  429. * multithreaded decoding is impossible, in which case it is
  430. * reduced to 1.
  431. */
  432. int max_contexts;
  433. /**
  434. * 1 if the single thread fallback warning has already been
  435. * displayed, 0 otherwise.
  436. */
  437. int single_decode_warning;
  438. int last_slice_type;
  439. /** @} */
  440. int mb_xy;
  441. uint32_t svq3_watermark_key;
  442. /**
  443. * pic_struct in picture timing SEI message
  444. */
  445. SEI_PicStructType sei_pic_struct;
  446. /**
  447. * Complement sei_pic_struct
  448. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  449. * However, soft telecined frames may have these values.
  450. * This is used in an attempt to flag soft telecine progressive.
  451. */
  452. int prev_interlaced_frame;
  453. /**
  454. * Bit set of clock types for fields/frames in picture timing SEI message.
  455. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  456. * interlaced).
  457. */
  458. int sei_ct_type;
  459. /**
  460. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  461. */
  462. int sei_dpb_output_delay;
  463. /**
  464. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  465. */
  466. int sei_cpb_removal_delay;
  467. /**
  468. * recovery_frame_cnt from SEI message
  469. *
  470. * Set to -1 if no recovery point SEI message found or to number of frames
  471. * before playback synchronizes. Frames having recovery point are key
  472. * frames.
  473. */
  474. int sei_recovery_frame_cnt;
  475. int is_complex;
  476. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  477. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  478. // Timestamp stuff
  479. int sei_buffering_period_present; ///< Buffering period SEI flag
  480. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  481. }H264Context;
  482. extern const uint8_t ff_h264_chroma_qp[52];
  483. /**
  484. * Decode SEI
  485. */
  486. int ff_h264_decode_sei(H264Context *h);
  487. /**
  488. * Decode SPS
  489. */
  490. int ff_h264_decode_seq_parameter_set(H264Context *h);
  491. /**
  492. * Decode PPS
  493. */
  494. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  495. /**
  496. * Decodes a network abstraction layer unit.
  497. * @param consumed is the number of bytes used as input
  498. * @param length is the length of the array
  499. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  500. * @returns decoded bytes, might be src+1 if no escapes
  501. */
  502. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  503. /**
  504. * identifies the exact end of the bitstream
  505. * @return the length of the trailing, or 0 if damaged
  506. */
  507. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  508. /**
  509. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  510. */
  511. av_cold void ff_h264_free_context(H264Context *h);
  512. /**
  513. * reconstructs bitstream slice_type.
  514. */
  515. int ff_h264_get_slice_type(H264Context *h);
  516. /**
  517. * allocates tables.
  518. * needs width/height
  519. */
  520. int ff_h264_alloc_tables(H264Context *h);
  521. /**
  522. * fills the default_ref_list.
  523. */
  524. int ff_h264_fill_default_ref_list(H264Context *h);
  525. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  526. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  527. void ff_h264_remove_all_refs(H264Context *h);
  528. /**
  529. * Executes the reference picture marking (memory management control operations).
  530. */
  531. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  532. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  533. /**
  534. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  535. */
  536. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  537. /**
  538. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  539. */
  540. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  541. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  542. void ff_h264_hl_decode_mb(H264Context *h);
  543. int ff_h264_frame_start(H264Context *h);
  544. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  545. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  546. av_cold void ff_h264_decode_init_vlc(void);
  547. /**
  548. * decodes a macroblock
  549. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  550. */
  551. int ff_h264_decode_mb_cavlc(H264Context *h);
  552. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  553. void ff_h264_direct_ref_list_init(H264Context * const h);
  554. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  555. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  556. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  557. /**
  558. * Reset SEI values at the beginning of the frame.
  559. *
  560. * @param h H.264 context.
  561. */
  562. void ff_h264_reset_sei(H264Context *h);
  563. /*
  564. o-o o-o
  565. / / /
  566. o-o o-o
  567. ,---'
  568. o-o o-o
  569. / / /
  570. o-o o-o
  571. */
  572. //This table must be here because scan8[constant] must be known at compiletime
  573. static const uint8_t scan8[16 + 2*4]={
  574. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  575. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  576. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  577. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  578. 1+1*8, 2+1*8,
  579. 1+2*8, 2+2*8,
  580. 1+4*8, 2+4*8,
  581. 1+5*8, 2+5*8,
  582. };
  583. static av_always_inline uint32_t pack16to32(int a, int b){
  584. #if HAVE_BIGENDIAN
  585. return (b&0xFFFF) + (a<<16);
  586. #else
  587. return (a&0xFFFF) + (b<<16);
  588. #endif
  589. }
  590. /**
  591. * gets the chroma qp.
  592. */
  593. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  594. return h->pps.chroma_qp_table[t][qscale];
  595. }
  596. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  597. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  598. MpegEncContext * const s = &h->s;
  599. const int mb_xy= h->mb_xy;
  600. int topleft_xy, top_xy, topright_xy, left_xy[2];
  601. int topleft_type, top_type, topright_type, left_type[2];
  602. const uint8_t * left_block;
  603. int topleft_partition= -1;
  604. int i;
  605. static const uint8_t left_block_options[4][8]={
  606. {0,1,2,3,7,10,8,11},
  607. {2,2,3,3,8,11,8,11},
  608. {0,0,1,1,7,10,7,10},
  609. {0,2,0,2,7,10,7,10}
  610. };
  611. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  612. //FIXME deblocking could skip the intra and nnz parts.
  613. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  614. return;
  615. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  616. * stuff, I can't imagine that these complex rules are worth it. */
  617. topleft_xy = top_xy - 1;
  618. topright_xy= top_xy + 1;
  619. left_xy[1] = left_xy[0] = mb_xy-1;
  620. left_block = left_block_options[0];
  621. if(FRAME_MBAFF){
  622. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  623. const int top_pair_xy = pair_xy - s->mb_stride;
  624. const int topleft_pair_xy = top_pair_xy - 1;
  625. const int topright_pair_xy = top_pair_xy + 1;
  626. const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  627. const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  628. const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  629. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  630. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  631. const int bottom = (s->mb_y & 1);
  632. tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
  633. if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
  634. top_xy -= s->mb_stride;
  635. }
  636. if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
  637. topleft_xy -= s->mb_stride;
  638. } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
  639. topleft_xy += s->mb_stride;
  640. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  641. topleft_partition = 0;
  642. }
  643. if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
  644. topright_xy -= s->mb_stride;
  645. }
  646. if (left_mb_field_flag != curr_mb_field_flag) {
  647. left_xy[1] = left_xy[0] = pair_xy - 1;
  648. if (curr_mb_field_flag) {
  649. left_xy[1] += s->mb_stride;
  650. left_block = left_block_options[3];
  651. } else {
  652. left_block= left_block_options[2 - bottom];
  653. }
  654. }
  655. }
  656. h->top_mb_xy = top_xy;
  657. h->left_mb_xy[0] = left_xy[0];
  658. h->left_mb_xy[1] = left_xy[1];
  659. if(for_deblock){
  660. topleft_type = 0;
  661. topright_type = 0;
  662. top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  663. left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  664. left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  665. if(MB_MBAFF && !IS_INTRA(mb_type)){
  666. int list;
  667. for(list=0; list<h->list_count; list++){
  668. //These values where changed for ease of performing MC, we need to change them back
  669. //FIXME maybe we can make MC and loop filter use the same values or prevent
  670. //the MC code from changing ref_cache and rather use a temporary array.
  671. if(USES_LIST(mb_type,list)){
  672. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  673. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  674. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  675. ref += h->b8_stride;
  676. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  677. *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  678. }
  679. }
  680. }
  681. }else{
  682. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  683. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  684. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  685. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  686. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  687. if(IS_INTRA(mb_type)){
  688. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  689. h->topleft_samples_available=
  690. h->top_samples_available=
  691. h->left_samples_available= 0xFFFF;
  692. h->topright_samples_available= 0xEEEA;
  693. if(!(top_type & type_mask)){
  694. h->topleft_samples_available= 0xB3FF;
  695. h->top_samples_available= 0x33FF;
  696. h->topright_samples_available= 0x26EA;
  697. }
  698. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  699. if(IS_INTERLACED(mb_type)){
  700. if(!(left_type[0] & type_mask)){
  701. h->topleft_samples_available&= 0xDFFF;
  702. h->left_samples_available&= 0x5FFF;
  703. }
  704. if(!(left_type[1] & type_mask)){
  705. h->topleft_samples_available&= 0xFF5F;
  706. h->left_samples_available&= 0xFF5F;
  707. }
  708. }else{
  709. int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
  710. ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
  711. assert(left_xy[0] == left_xy[1]);
  712. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  713. h->topleft_samples_available&= 0xDF5F;
  714. h->left_samples_available&= 0x5F5F;
  715. }
  716. }
  717. }else{
  718. if(!(left_type[0] & type_mask)){
  719. h->topleft_samples_available&= 0xDF5F;
  720. h->left_samples_available&= 0x5F5F;
  721. }
  722. }
  723. if(!(topleft_type & type_mask))
  724. h->topleft_samples_available&= 0x7FFF;
  725. if(!(topright_type & type_mask))
  726. h->topright_samples_available&= 0xFBFF;
  727. if(IS_INTRA4x4(mb_type)){
  728. if(IS_INTRA4x4(top_type)){
  729. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  730. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  731. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  732. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  733. }else{
  734. int pred;
  735. if(!(top_type & type_mask))
  736. pred= -1;
  737. else{
  738. pred= 2;
  739. }
  740. h->intra4x4_pred_mode_cache[4+8*0]=
  741. h->intra4x4_pred_mode_cache[5+8*0]=
  742. h->intra4x4_pred_mode_cache[6+8*0]=
  743. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  744. }
  745. for(i=0; i<2; i++){
  746. if(IS_INTRA4x4(left_type[i])){
  747. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  748. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  749. }else{
  750. int pred;
  751. if(!(left_type[i] & type_mask))
  752. pred= -1;
  753. else{
  754. pred= 2;
  755. }
  756. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  757. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  758. }
  759. }
  760. }
  761. }
  762. }
  763. /*
  764. 0 . T T. T T T T
  765. 1 L . .L . . . .
  766. 2 L . .L . . . .
  767. 3 . T TL . . . .
  768. 4 L . .L . . . .
  769. 5 L . .. . . . .
  770. */
  771. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  772. if(top_type){
  773. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  774. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  775. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  776. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  777. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  778. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  779. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  780. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  781. }else{
  782. h->non_zero_count_cache[4+8*0]=
  783. h->non_zero_count_cache[5+8*0]=
  784. h->non_zero_count_cache[6+8*0]=
  785. h->non_zero_count_cache[7+8*0]=
  786. h->non_zero_count_cache[1+8*0]=
  787. h->non_zero_count_cache[2+8*0]=
  788. h->non_zero_count_cache[1+8*3]=
  789. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  790. }
  791. for (i=0; i<2; i++) {
  792. if(left_type[i]){
  793. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  794. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  795. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  796. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  797. }else{
  798. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  799. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  800. h->non_zero_count_cache[0+8*1 + 8*i]=
  801. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  802. }
  803. }
  804. if( h->pps.cabac ) {
  805. // top_cbp
  806. if(top_type) {
  807. h->top_cbp = h->cbp_table[top_xy];
  808. } else if(IS_INTRA(mb_type)) {
  809. h->top_cbp = 0x1C0;
  810. } else {
  811. h->top_cbp = 0;
  812. }
  813. // left_cbp
  814. if (left_type[0]) {
  815. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  816. } else if(IS_INTRA(mb_type)) {
  817. h->left_cbp = 0x1C0;
  818. } else {
  819. h->left_cbp = 0;
  820. }
  821. if (left_type[0]) {
  822. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  823. }
  824. if (left_type[1]) {
  825. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  826. }
  827. }
  828. #if 1
  829. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  830. int list;
  831. for(list=0; list<h->list_count; list++){
  832. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  833. /*if(!h->mv_cache_clean[list]){
  834. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  835. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  836. h->mv_cache_clean[list]= 1;
  837. }*/
  838. continue;
  839. }
  840. h->mv_cache_clean[list]= 0;
  841. if(USES_LIST(top_type, list)){
  842. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  843. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  844. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  845. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  846. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  847. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  848. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  849. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  850. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  851. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  852. }else{
  853. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  854. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  855. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  856. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  857. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  858. }
  859. for(i=0; i<2; i++){
  860. int cache_idx = scan8[0] - 1 + i*2*8;
  861. if(USES_LIST(left_type[i], list)){
  862. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  863. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  864. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  865. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  866. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  867. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  868. }else{
  869. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  870. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  871. h->ref_cache[list][cache_idx ]=
  872. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  873. }
  874. }
  875. if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
  876. continue;
  877. if(USES_LIST(topleft_type, list)){
  878. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  879. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  880. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  881. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  882. }else{
  883. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  884. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  885. }
  886. if(USES_LIST(topright_type, list)){
  887. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  888. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  889. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  890. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  891. }else{
  892. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  893. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  894. }
  895. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  896. continue;
  897. h->ref_cache[list][scan8[5 ]+1] =
  898. h->ref_cache[list][scan8[7 ]+1] =
  899. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  900. h->ref_cache[list][scan8[4 ]] =
  901. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  902. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  903. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  904. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  905. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  906. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  907. if( h->pps.cabac ) {
  908. /* XXX beurk, Load mvd */
  909. if(USES_LIST(top_type, list)){
  910. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  911. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  912. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  913. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  914. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  915. }else{
  916. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  917. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  918. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  919. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  920. }
  921. if(USES_LIST(left_type[0], list)){
  922. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  923. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  924. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  925. }else{
  926. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  927. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  928. }
  929. if(USES_LIST(left_type[1], list)){
  930. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  931. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  932. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  933. }else{
  934. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  935. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  936. }
  937. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  938. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  939. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  940. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  941. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  942. if(h->slice_type_nos == FF_B_TYPE){
  943. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  944. if(IS_DIRECT(top_type)){
  945. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  946. }else if(IS_8X8(top_type)){
  947. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  948. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  949. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  950. }else{
  951. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  952. }
  953. if(IS_DIRECT(left_type[0]))
  954. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  955. else if(IS_8X8(left_type[0]))
  956. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  957. else
  958. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  959. if(IS_DIRECT(left_type[1]))
  960. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  961. else if(IS_8X8(left_type[1]))
  962. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  963. else
  964. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  965. }
  966. }
  967. if(FRAME_MBAFF){
  968. #define MAP_MVS\
  969. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  970. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  971. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  972. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  973. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  974. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  975. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  976. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  977. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  978. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  979. if(MB_FIELD){
  980. #define MAP_F2F(idx, mb_type)\
  981. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  982. h->ref_cache[list][idx] <<= 1;\
  983. h->mv_cache[list][idx][1] /= 2;\
  984. h->mvd_cache[list][idx][1] /= 2;\
  985. }
  986. MAP_MVS
  987. #undef MAP_F2F
  988. }else{
  989. #define MAP_F2F(idx, mb_type)\
  990. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  991. h->ref_cache[list][idx] >>= 1;\
  992. h->mv_cache[list][idx][1] <<= 1;\
  993. h->mvd_cache[list][idx][1] <<= 1;\
  994. }
  995. MAP_MVS
  996. #undef MAP_F2F
  997. }
  998. }
  999. }
  1000. }
  1001. #endif
  1002. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1003. }
  1004. /**
  1005. * gets the predicted intra4x4 prediction mode.
  1006. */
  1007. static inline int pred_intra_mode(H264Context *h, int n){
  1008. const int index8= scan8[n];
  1009. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1010. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1011. const int min= FFMIN(left, top);
  1012. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1013. if(min<0) return DC_PRED;
  1014. else return min;
  1015. }
  1016. static inline void write_back_non_zero_count(H264Context *h){
  1017. const int mb_xy= h->mb_xy;
  1018. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  1019. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  1020. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  1021. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  1022. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  1023. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  1024. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  1025. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  1026. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  1027. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  1028. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  1029. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  1030. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  1031. }
  1032. static inline void write_back_motion(H264Context *h, int mb_type){
  1033. MpegEncContext * const s = &h->s;
  1034. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1035. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1036. int list;
  1037. if(!USES_LIST(mb_type, 0))
  1038. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1039. for(list=0; list<h->list_count; list++){
  1040. int y;
  1041. if(!USES_LIST(mb_type, list))
  1042. continue;
  1043. for(y=0; y<4; y++){
  1044. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1045. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1046. }
  1047. if( h->pps.cabac ) {
  1048. if(IS_SKIP(mb_type))
  1049. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1050. else
  1051. for(y=0; y<4; y++){
  1052. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1053. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1054. }
  1055. }
  1056. {
  1057. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1058. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1059. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1060. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1061. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1062. }
  1063. }
  1064. if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
  1065. if(IS_8X8(mb_type)){
  1066. uint8_t *direct_table = &h->direct_table[b8_xy];
  1067. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1068. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1069. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1070. }
  1071. }
  1072. }
  1073. static inline int get_dct8x8_allowed(H264Context *h){
  1074. if(h->sps.direct_8x8_inference_flag)
  1075. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1076. else
  1077. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1078. }
  1079. static void predict_field_decoding_flag(H264Context *h){
  1080. MpegEncContext * const s = &h->s;
  1081. const int mb_xy= h->mb_xy;
  1082. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  1083. ? s->current_picture.mb_type[mb_xy-1]
  1084. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  1085. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  1086. : 0;
  1087. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1088. }
  1089. /**
  1090. * decodes a P_SKIP or B_SKIP macroblock
  1091. */
  1092. static void decode_mb_skip(H264Context *h){
  1093. MpegEncContext * const s = &h->s;
  1094. const int mb_xy= h->mb_xy;
  1095. int mb_type=0;
  1096. memset(h->non_zero_count[mb_xy], 0, 16);
  1097. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1098. if(MB_FIELD)
  1099. mb_type|= MB_TYPE_INTERLACED;
  1100. if( h->slice_type_nos == FF_B_TYPE )
  1101. {
  1102. // just for fill_caches. pred_direct_motion will set the real mb_type
  1103. mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1104. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  1105. ff_h264_pred_direct_motion(h, &mb_type);
  1106. mb_type|= MB_TYPE_SKIP;
  1107. }
  1108. else
  1109. {
  1110. int mx, my;
  1111. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1112. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  1113. pred_pskip_motion(h, &mx, &my);
  1114. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1115. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1116. }
  1117. write_back_motion(h, mb_type);
  1118. s->current_picture.mb_type[mb_xy]= mb_type;
  1119. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1120. h->slice_table[ mb_xy ]= h->slice_num;
  1121. h->prev_mb_skipped= 1;
  1122. }
  1123. #endif /* AVCODEC_H264_H */