You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3263 lines
110KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #include "swscale.h"
  67. #include "swscale_internal.h"
  68. #include "rgb2rgb.h"
  69. #include "libavutil/x86_cpu.h"
  70. #include "libavutil/bswap.h"
  71. unsigned swscale_version(void)
  72. {
  73. return LIBSWSCALE_VERSION_INT;
  74. }
  75. #undef MOVNTQ
  76. #undef PAVGB
  77. //#undef HAVE_MMX2
  78. //#define HAVE_AMD3DNOW
  79. //#undef HAVE_MMX
  80. //#undef ARCH_X86
  81. //#define WORDS_BIGENDIAN
  82. #define DITHER1XBPP
  83. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  84. #define RET 0xC3 //near return opcode for x86
  85. #ifdef M_PI
  86. #define PI M_PI
  87. #else
  88. #define PI 3.14159265358979323846
  89. #endif
  90. #define isSupportedIn(x) ( \
  91. (x)==PIX_FMT_YUV420P \
  92. || (x)==PIX_FMT_YUVA420P \
  93. || (x)==PIX_FMT_YUYV422 \
  94. || (x)==PIX_FMT_UYVY422 \
  95. || (x)==PIX_FMT_RGB32 \
  96. || (x)==PIX_FMT_RGB32_1 \
  97. || (x)==PIX_FMT_BGR24 \
  98. || (x)==PIX_FMT_BGR565 \
  99. || (x)==PIX_FMT_BGR555 \
  100. || (x)==PIX_FMT_BGR32 \
  101. || (x)==PIX_FMT_BGR32_1 \
  102. || (x)==PIX_FMT_RGB24 \
  103. || (x)==PIX_FMT_RGB565 \
  104. || (x)==PIX_FMT_RGB555 \
  105. || (x)==PIX_FMT_GRAY8 \
  106. || (x)==PIX_FMT_YUV410P \
  107. || (x)==PIX_FMT_YUV440P \
  108. || (x)==PIX_FMT_GRAY16BE \
  109. || (x)==PIX_FMT_GRAY16LE \
  110. || (x)==PIX_FMT_YUV444P \
  111. || (x)==PIX_FMT_YUV422P \
  112. || (x)==PIX_FMT_YUV411P \
  113. || (x)==PIX_FMT_PAL8 \
  114. || (x)==PIX_FMT_BGR8 \
  115. || (x)==PIX_FMT_RGB8 \
  116. || (x)==PIX_FMT_BGR4_BYTE \
  117. || (x)==PIX_FMT_RGB4_BYTE \
  118. || (x)==PIX_FMT_YUV440P \
  119. || (x)==PIX_FMT_MONOWHITE \
  120. || (x)==PIX_FMT_MONOBLACK \
  121. )
  122. #define isSupportedOut(x) ( \
  123. (x)==PIX_FMT_YUV420P \
  124. || (x)==PIX_FMT_YUYV422 \
  125. || (x)==PIX_FMT_UYVY422 \
  126. || (x)==PIX_FMT_YUV444P \
  127. || (x)==PIX_FMT_YUV422P \
  128. || (x)==PIX_FMT_YUV411P \
  129. || isRGB(x) \
  130. || isBGR(x) \
  131. || (x)==PIX_FMT_NV12 \
  132. || (x)==PIX_FMT_NV21 \
  133. || (x)==PIX_FMT_GRAY16BE \
  134. || (x)==PIX_FMT_GRAY16LE \
  135. || (x)==PIX_FMT_GRAY8 \
  136. || (x)==PIX_FMT_YUV410P \
  137. || (x)==PIX_FMT_YUV440P \
  138. )
  139. #define isPacked(x) ( \
  140. (x)==PIX_FMT_PAL8 \
  141. || (x)==PIX_FMT_YUYV422 \
  142. || (x)==PIX_FMT_UYVY422 \
  143. || isRGB(x) \
  144. || isBGR(x) \
  145. )
  146. #define usePal(x) ( \
  147. (x)==PIX_FMT_PAL8 \
  148. || (x)==PIX_FMT_BGR4_BYTE \
  149. || (x)==PIX_FMT_RGB4_BYTE \
  150. || (x)==PIX_FMT_BGR8 \
  151. || (x)==PIX_FMT_RGB8 \
  152. )
  153. #define RGB2YUV_SHIFT 15
  154. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  155. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  156. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  157. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  158. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  159. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  160. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  161. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  162. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  163. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  164. static const double rgb2yuv_table[8][9]={
  165. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  166. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  167. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  168. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  169. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  170. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  171. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  172. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  173. };
  174. /*
  175. NOTES
  176. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  177. TODO
  178. more intelligent misalignment avoidance for the horizontal scaler
  179. write special vertical cubic upscale version
  180. optimize C code (YV12 / minmax)
  181. add support for packed pixel YUV input & output
  182. add support for Y8 output
  183. optimize BGR24 & BGR32
  184. add BGR4 output support
  185. write special BGR->BGR scaler
  186. */
  187. #if ARCH_X86 && CONFIG_GPL
  188. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  189. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  190. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  191. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  192. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  193. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  194. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  195. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  196. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  197. 0x0103010301030103LL,
  198. 0x0200020002000200LL,};
  199. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  200. 0x0602060206020602LL,
  201. 0x0004000400040004LL,};
  202. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  203. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  204. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  205. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  206. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  207. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  208. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  209. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  210. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  211. #ifdef FAST_BGR2YV12
  212. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  213. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  215. #else
  216. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  219. #endif /* FAST_BGR2YV12 */
  220. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  222. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  223. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  224. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  225. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  226. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  227. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  228. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  229. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  230. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  231. };
  232. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  233. #endif /* ARCH_X86 && CONFIG_GPL */
  234. // clipping helper table for C implementations:
  235. static unsigned char clip_table[768];
  236. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  237. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  238. { 1, 3, 1, 3, 1, 3, 1, 3, },
  239. { 2, 0, 2, 0, 2, 0, 2, 0, },
  240. };
  241. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  242. { 6, 2, 6, 2, 6, 2, 6, 2, },
  243. { 0, 4, 0, 4, 0, 4, 0, 4, },
  244. };
  245. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  246. { 17, 9, 23, 15, 16, 8, 22, 14, },
  247. { 5, 29, 3, 27, 4, 28, 2, 26, },
  248. { 21, 13, 19, 11, 20, 12, 18, 10, },
  249. { 0, 24, 6, 30, 1, 25, 7, 31, },
  250. { 16, 8, 22, 14, 17, 9, 23, 15, },
  251. { 4, 28, 2, 26, 5, 29, 3, 27, },
  252. { 20, 12, 18, 10, 21, 13, 19, 11, },
  253. { 1, 25, 7, 31, 0, 24, 6, 30, },
  254. };
  255. #if 0
  256. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  257. { 0, 48, 12, 60, 3, 51, 15, 63, },
  258. { 32, 16, 44, 28, 35, 19, 47, 31, },
  259. { 8, 56, 4, 52, 11, 59, 7, 55, },
  260. { 40, 24, 36, 20, 43, 27, 39, 23, },
  261. { 2, 50, 14, 62, 1, 49, 13, 61, },
  262. { 34, 18, 46, 30, 33, 17, 45, 29, },
  263. { 10, 58, 6, 54, 9, 57, 5, 53, },
  264. { 42, 26, 38, 22, 41, 25, 37, 21, },
  265. };
  266. #endif
  267. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  268. { 0, 55, 14, 68, 3, 58, 17, 72, },
  269. { 37, 18, 50, 32, 40, 22, 54, 35, },
  270. { 9, 64, 5, 59, 13, 67, 8, 63, },
  271. { 46, 27, 41, 23, 49, 31, 44, 26, },
  272. { 2, 57, 16, 71, 1, 56, 15, 70, },
  273. { 39, 21, 52, 34, 38, 19, 51, 33, },
  274. { 11, 66, 7, 62, 10, 65, 6, 60, },
  275. { 48, 30, 43, 25, 47, 29, 42, 24, },
  276. };
  277. #if 0
  278. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  279. { 68, 36, 92, 60, 66, 34, 90, 58, },
  280. { 20, 116, 12, 108, 18, 114, 10, 106, },
  281. { 84, 52, 76, 44, 82, 50, 74, 42, },
  282. { 0, 96, 24, 120, 6, 102, 30, 126, },
  283. { 64, 32, 88, 56, 70, 38, 94, 62, },
  284. { 16, 112, 8, 104, 22, 118, 14, 110, },
  285. { 80, 48, 72, 40, 86, 54, 78, 46, },
  286. { 4, 100, 28, 124, 2, 98, 26, 122, },
  287. };
  288. #endif
  289. #if 1
  290. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  291. {117, 62, 158, 103, 113, 58, 155, 100, },
  292. { 34, 199, 21, 186, 31, 196, 17, 182, },
  293. {144, 89, 131, 76, 141, 86, 127, 72, },
  294. { 0, 165, 41, 206, 10, 175, 52, 217, },
  295. {110, 55, 151, 96, 120, 65, 162, 107, },
  296. { 28, 193, 14, 179, 38, 203, 24, 189, },
  297. {138, 83, 124, 69, 148, 93, 134, 79, },
  298. { 7, 172, 48, 213, 3, 168, 45, 210, },
  299. };
  300. #elif 1
  301. // tries to correct a gamma of 1.5
  302. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  303. { 0, 143, 18, 200, 2, 156, 25, 215, },
  304. { 78, 28, 125, 64, 89, 36, 138, 74, },
  305. { 10, 180, 3, 161, 16, 195, 8, 175, },
  306. {109, 51, 93, 38, 121, 60, 105, 47, },
  307. { 1, 152, 23, 210, 0, 147, 20, 205, },
  308. { 85, 33, 134, 71, 81, 30, 130, 67, },
  309. { 14, 190, 6, 171, 12, 185, 5, 166, },
  310. {117, 57, 101, 44, 113, 54, 97, 41, },
  311. };
  312. #elif 1
  313. // tries to correct a gamma of 2.0
  314. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  315. { 0, 124, 8, 193, 0, 140, 12, 213, },
  316. { 55, 14, 104, 42, 66, 19, 119, 52, },
  317. { 3, 168, 1, 145, 6, 187, 3, 162, },
  318. { 86, 31, 70, 21, 99, 39, 82, 28, },
  319. { 0, 134, 11, 206, 0, 129, 9, 200, },
  320. { 62, 17, 114, 48, 58, 16, 109, 45, },
  321. { 5, 181, 2, 157, 4, 175, 1, 151, },
  322. { 95, 36, 78, 26, 90, 34, 74, 24, },
  323. };
  324. #else
  325. // tries to correct a gamma of 2.5
  326. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  327. { 0, 107, 3, 187, 0, 125, 6, 212, },
  328. { 39, 7, 86, 28, 49, 11, 102, 36, },
  329. { 1, 158, 0, 131, 3, 180, 1, 151, },
  330. { 68, 19, 52, 12, 81, 25, 64, 17, },
  331. { 0, 119, 5, 203, 0, 113, 4, 195, },
  332. { 45, 9, 96, 33, 42, 8, 91, 30, },
  333. { 2, 172, 1, 144, 2, 165, 0, 137, },
  334. { 77, 23, 60, 15, 72, 21, 56, 14, },
  335. };
  336. #endif
  337. const char *sws_format_name(enum PixelFormat format)
  338. {
  339. switch (format) {
  340. case PIX_FMT_YUV420P:
  341. return "yuv420p";
  342. case PIX_FMT_YUVA420P:
  343. return "yuva420p";
  344. case PIX_FMT_YUYV422:
  345. return "yuyv422";
  346. case PIX_FMT_RGB24:
  347. return "rgb24";
  348. case PIX_FMT_BGR24:
  349. return "bgr24";
  350. case PIX_FMT_YUV422P:
  351. return "yuv422p";
  352. case PIX_FMT_YUV444P:
  353. return "yuv444p";
  354. case PIX_FMT_RGB32:
  355. return "rgb32";
  356. case PIX_FMT_YUV410P:
  357. return "yuv410p";
  358. case PIX_FMT_YUV411P:
  359. return "yuv411p";
  360. case PIX_FMT_RGB565:
  361. return "rgb565";
  362. case PIX_FMT_RGB555:
  363. return "rgb555";
  364. case PIX_FMT_GRAY16BE:
  365. return "gray16be";
  366. case PIX_FMT_GRAY16LE:
  367. return "gray16le";
  368. case PIX_FMT_GRAY8:
  369. return "gray8";
  370. case PIX_FMT_MONOWHITE:
  371. return "mono white";
  372. case PIX_FMT_MONOBLACK:
  373. return "mono black";
  374. case PIX_FMT_PAL8:
  375. return "Palette";
  376. case PIX_FMT_YUVJ420P:
  377. return "yuvj420p";
  378. case PIX_FMT_YUVJ422P:
  379. return "yuvj422p";
  380. case PIX_FMT_YUVJ444P:
  381. return "yuvj444p";
  382. case PIX_FMT_XVMC_MPEG2_MC:
  383. return "xvmc_mpeg2_mc";
  384. case PIX_FMT_XVMC_MPEG2_IDCT:
  385. return "xvmc_mpeg2_idct";
  386. case PIX_FMT_UYVY422:
  387. return "uyvy422";
  388. case PIX_FMT_UYYVYY411:
  389. return "uyyvyy411";
  390. case PIX_FMT_RGB32_1:
  391. return "rgb32x";
  392. case PIX_FMT_BGR32_1:
  393. return "bgr32x";
  394. case PIX_FMT_BGR32:
  395. return "bgr32";
  396. case PIX_FMT_BGR565:
  397. return "bgr565";
  398. case PIX_FMT_BGR555:
  399. return "bgr555";
  400. case PIX_FMT_BGR8:
  401. return "bgr8";
  402. case PIX_FMT_BGR4:
  403. return "bgr4";
  404. case PIX_FMT_BGR4_BYTE:
  405. return "bgr4 byte";
  406. case PIX_FMT_RGB8:
  407. return "rgb8";
  408. case PIX_FMT_RGB4:
  409. return "rgb4";
  410. case PIX_FMT_RGB4_BYTE:
  411. return "rgb4 byte";
  412. case PIX_FMT_NV12:
  413. return "nv12";
  414. case PIX_FMT_NV21:
  415. return "nv21";
  416. case PIX_FMT_YUV440P:
  417. return "yuv440p";
  418. case PIX_FMT_VDPAU_H264:
  419. return "vdpau_h264";
  420. case PIX_FMT_VDPAU_MPEG1:
  421. return "vdpau_mpeg1";
  422. case PIX_FMT_VDPAU_MPEG2:
  423. return "vdpau_mpeg2";
  424. case PIX_FMT_VDPAU_WMV3:
  425. return "vdpau_wmv3";
  426. case PIX_FMT_VDPAU_VC1:
  427. return "vdpau_vc1";
  428. default:
  429. return "Unknown format";
  430. }
  431. }
  432. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  433. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  434. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  435. {
  436. //FIXME Optimize (just quickly written not optimized..)
  437. int i;
  438. for (i=0; i<dstW; i++)
  439. {
  440. int val=1<<18;
  441. int j;
  442. for (j=0; j<lumFilterSize; j++)
  443. val += lumSrc[j][i] * lumFilter[j];
  444. dest[i]= av_clip_uint8(val>>19);
  445. }
  446. if (uDest)
  447. for (i=0; i<chrDstW; i++)
  448. {
  449. int u=1<<18;
  450. int v=1<<18;
  451. int j;
  452. for (j=0; j<chrFilterSize; j++)
  453. {
  454. u += chrSrc[j][i] * chrFilter[j];
  455. v += chrSrc[j][i + VOFW] * chrFilter[j];
  456. }
  457. uDest[i]= av_clip_uint8(u>>19);
  458. vDest[i]= av_clip_uint8(v>>19);
  459. }
  460. }
  461. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  462. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  463. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  464. {
  465. //FIXME Optimize (just quickly written not optimized..)
  466. int i;
  467. for (i=0; i<dstW; i++)
  468. {
  469. int val=1<<18;
  470. int j;
  471. for (j=0; j<lumFilterSize; j++)
  472. val += lumSrc[j][i] * lumFilter[j];
  473. dest[i]= av_clip_uint8(val>>19);
  474. }
  475. if (!uDest)
  476. return;
  477. if (dstFormat == PIX_FMT_NV12)
  478. for (i=0; i<chrDstW; i++)
  479. {
  480. int u=1<<18;
  481. int v=1<<18;
  482. int j;
  483. for (j=0; j<chrFilterSize; j++)
  484. {
  485. u += chrSrc[j][i] * chrFilter[j];
  486. v += chrSrc[j][i + VOFW] * chrFilter[j];
  487. }
  488. uDest[2*i]= av_clip_uint8(u>>19);
  489. uDest[2*i+1]= av_clip_uint8(v>>19);
  490. }
  491. else
  492. for (i=0; i<chrDstW; i++)
  493. {
  494. int u=1<<18;
  495. int v=1<<18;
  496. int j;
  497. for (j=0; j<chrFilterSize; j++)
  498. {
  499. u += chrSrc[j][i] * chrFilter[j];
  500. v += chrSrc[j][i + VOFW] * chrFilter[j];
  501. }
  502. uDest[2*i]= av_clip_uint8(v>>19);
  503. uDest[2*i+1]= av_clip_uint8(u>>19);
  504. }
  505. }
  506. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
  507. for (i=0; i<(dstW>>1); i++){\
  508. int j;\
  509. int Y1 = 1<<18;\
  510. int Y2 = 1<<18;\
  511. int U = 1<<18;\
  512. int V = 1<<18;\
  513. type av_unused *r, *b, *g;\
  514. const int i2= 2*i;\
  515. \
  516. for (j=0; j<lumFilterSize; j++)\
  517. {\
  518. Y1 += lumSrc[j][i2] * lumFilter[j];\
  519. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  520. }\
  521. for (j=0; j<chrFilterSize; j++)\
  522. {\
  523. U += chrSrc[j][i] * chrFilter[j];\
  524. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  525. }\
  526. Y1>>=19;\
  527. Y2>>=19;\
  528. U >>=19;\
  529. V >>=19;\
  530. #define YSCALE_YUV_2_PACKEDX_C(type) \
  531. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
  532. if ((Y1|Y2|U|V)&256)\
  533. {\
  534. if (Y1>255) Y1=255; \
  535. else if (Y1<0)Y1=0; \
  536. if (Y2>255) Y2=255; \
  537. else if (Y2<0)Y2=0; \
  538. if (U>255) U=255; \
  539. else if (U<0) U=0; \
  540. if (V>255) V=255; \
  541. else if (V<0) V=0; \
  542. }
  543. #define YSCALE_YUV_2_PACKEDX_FULL_C \
  544. for (i=0; i<dstW; i++){\
  545. int j;\
  546. int Y = 0;\
  547. int U = -128<<19;\
  548. int V = -128<<19;\
  549. int R,G,B;\
  550. \
  551. for (j=0; j<lumFilterSize; j++){\
  552. Y += lumSrc[j][i ] * lumFilter[j];\
  553. }\
  554. for (j=0; j<chrFilterSize; j++){\
  555. U += chrSrc[j][i ] * chrFilter[j];\
  556. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  557. }\
  558. Y >>=10;\
  559. U >>=10;\
  560. V >>=10;\
  561. #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
  562. YSCALE_YUV_2_PACKEDX_FULL_C\
  563. Y-= c->yuv2rgb_y_offset;\
  564. Y*= c->yuv2rgb_y_coeff;\
  565. Y+= rnd;\
  566. R= Y + V*c->yuv2rgb_v2r_coeff;\
  567. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  568. B= Y + U*c->yuv2rgb_u2b_coeff;\
  569. if ((R|G|B)&(0xC0000000)){\
  570. if (R>=(256<<22)) R=(256<<22)-1; \
  571. else if (R<0)R=0; \
  572. if (G>=(256<<22)) G=(256<<22)-1; \
  573. else if (G<0)G=0; \
  574. if (B>=(256<<22)) B=(256<<22)-1; \
  575. else if (B<0)B=0; \
  576. }\
  577. #define YSCALE_YUV_2_GRAY16_C \
  578. for (i=0; i<(dstW>>1); i++){\
  579. int j;\
  580. int Y1 = 1<<18;\
  581. int Y2 = 1<<18;\
  582. int U = 1<<18;\
  583. int V = 1<<18;\
  584. \
  585. const int i2= 2*i;\
  586. \
  587. for (j=0; j<lumFilterSize; j++)\
  588. {\
  589. Y1 += lumSrc[j][i2] * lumFilter[j];\
  590. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  591. }\
  592. Y1>>=11;\
  593. Y2>>=11;\
  594. if ((Y1|Y2|U|V)&65536)\
  595. {\
  596. if (Y1>65535) Y1=65535; \
  597. else if (Y1<0)Y1=0; \
  598. if (Y2>65535) Y2=65535; \
  599. else if (Y2<0)Y2=0; \
  600. }
  601. #define YSCALE_YUV_2_RGBX_C(type) \
  602. YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  603. r = (type *)c->table_rV[V]; \
  604. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  605. b = (type *)c->table_bU[U]; \
  606. #define YSCALE_YUV_2_PACKED2_C \
  607. for (i=0; i<(dstW>>1); i++){ \
  608. const int i2= 2*i; \
  609. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  610. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  611. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  612. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  613. #define YSCALE_YUV_2_GRAY16_2_C \
  614. for (i=0; i<(dstW>>1); i++){ \
  615. const int i2= 2*i; \
  616. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  617. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  618. #define YSCALE_YUV_2_RGB2_C(type) \
  619. YSCALE_YUV_2_PACKED2_C\
  620. type *r, *b, *g;\
  621. r = (type *)c->table_rV[V];\
  622. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  623. b = (type *)c->table_bU[U];\
  624. #define YSCALE_YUV_2_PACKED1_C \
  625. for (i=0; i<(dstW>>1); i++){\
  626. const int i2= 2*i;\
  627. int Y1= buf0[i2 ]>>7;\
  628. int Y2= buf0[i2+1]>>7;\
  629. int U= (uvbuf1[i ])>>7;\
  630. int V= (uvbuf1[i+VOFW])>>7;\
  631. #define YSCALE_YUV_2_GRAY16_1_C \
  632. for (i=0; i<(dstW>>1); i++){\
  633. const int i2= 2*i;\
  634. int Y1= buf0[i2 ]<<1;\
  635. int Y2= buf0[i2+1]<<1;\
  636. #define YSCALE_YUV_2_RGB1_C(type) \
  637. YSCALE_YUV_2_PACKED1_C\
  638. type *r, *b, *g;\
  639. r = (type *)c->table_rV[V];\
  640. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  641. b = (type *)c->table_bU[U];\
  642. #define YSCALE_YUV_2_PACKED1B_C \
  643. for (i=0; i<(dstW>>1); i++){\
  644. const int i2= 2*i;\
  645. int Y1= buf0[i2 ]>>7;\
  646. int Y2= buf0[i2+1]>>7;\
  647. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  648. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  649. #define YSCALE_YUV_2_RGB1B_C(type) \
  650. YSCALE_YUV_2_PACKED1B_C\
  651. type *r, *b, *g;\
  652. r = (type *)c->table_rV[V];\
  653. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  654. b = (type *)c->table_bU[U];\
  655. #define YSCALE_YUV_2_MONO2_C \
  656. const uint8_t * const d128=dither_8x8_220[y&7];\
  657. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  658. for (i=0; i<dstW-7; i+=8){\
  659. int acc;\
  660. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  661. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  662. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  663. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  664. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  665. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  666. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  667. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  668. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  669. dest++;\
  670. }\
  671. #define YSCALE_YUV_2_MONOX_C \
  672. const uint8_t * const d128=dither_8x8_220[y&7];\
  673. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  674. int acc=0;\
  675. for (i=0; i<dstW-1; i+=2){\
  676. int j;\
  677. int Y1=1<<18;\
  678. int Y2=1<<18;\
  679. \
  680. for (j=0; j<lumFilterSize; j++)\
  681. {\
  682. Y1 += lumSrc[j][i] * lumFilter[j];\
  683. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  684. }\
  685. Y1>>=19;\
  686. Y2>>=19;\
  687. if ((Y1|Y2)&256)\
  688. {\
  689. if (Y1>255) Y1=255;\
  690. else if (Y1<0)Y1=0;\
  691. if (Y2>255) Y2=255;\
  692. else if (Y2<0)Y2=0;\
  693. }\
  694. acc+= acc + g[Y1+d128[(i+0)&7]];\
  695. acc+= acc + g[Y2+d128[(i+1)&7]];\
  696. if ((i&7)==6){\
  697. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  698. dest++;\
  699. }\
  700. }
  701. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  702. switch(c->dstFormat)\
  703. {\
  704. case PIX_FMT_RGB32:\
  705. case PIX_FMT_BGR32:\
  706. case PIX_FMT_RGB32_1:\
  707. case PIX_FMT_BGR32_1:\
  708. func(uint32_t)\
  709. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  710. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  711. } \
  712. break;\
  713. case PIX_FMT_RGB24:\
  714. func(uint8_t)\
  715. ((uint8_t*)dest)[0]= r[Y1];\
  716. ((uint8_t*)dest)[1]= g[Y1];\
  717. ((uint8_t*)dest)[2]= b[Y1];\
  718. ((uint8_t*)dest)[3]= r[Y2];\
  719. ((uint8_t*)dest)[4]= g[Y2];\
  720. ((uint8_t*)dest)[5]= b[Y2];\
  721. dest+=6;\
  722. }\
  723. break;\
  724. case PIX_FMT_BGR24:\
  725. func(uint8_t)\
  726. ((uint8_t*)dest)[0]= b[Y1];\
  727. ((uint8_t*)dest)[1]= g[Y1];\
  728. ((uint8_t*)dest)[2]= r[Y1];\
  729. ((uint8_t*)dest)[3]= b[Y2];\
  730. ((uint8_t*)dest)[4]= g[Y2];\
  731. ((uint8_t*)dest)[5]= r[Y2];\
  732. dest+=6;\
  733. }\
  734. break;\
  735. case PIX_FMT_RGB565:\
  736. case PIX_FMT_BGR565:\
  737. {\
  738. const int dr1= dither_2x2_8[y&1 ][0];\
  739. const int dg1= dither_2x2_4[y&1 ][0];\
  740. const int db1= dither_2x2_8[(y&1)^1][0];\
  741. const int dr2= dither_2x2_8[y&1 ][1];\
  742. const int dg2= dither_2x2_4[y&1 ][1];\
  743. const int db2= dither_2x2_8[(y&1)^1][1];\
  744. func(uint16_t)\
  745. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  746. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  747. }\
  748. }\
  749. break;\
  750. case PIX_FMT_RGB555:\
  751. case PIX_FMT_BGR555:\
  752. {\
  753. const int dr1= dither_2x2_8[y&1 ][0];\
  754. const int dg1= dither_2x2_8[y&1 ][1];\
  755. const int db1= dither_2x2_8[(y&1)^1][0];\
  756. const int dr2= dither_2x2_8[y&1 ][1];\
  757. const int dg2= dither_2x2_8[y&1 ][0];\
  758. const int db2= dither_2x2_8[(y&1)^1][1];\
  759. func(uint16_t)\
  760. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  761. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  762. }\
  763. }\
  764. break;\
  765. case PIX_FMT_RGB8:\
  766. case PIX_FMT_BGR8:\
  767. {\
  768. const uint8_t * const d64= dither_8x8_73[y&7];\
  769. const uint8_t * const d32= dither_8x8_32[y&7];\
  770. func(uint8_t)\
  771. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  772. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  773. }\
  774. }\
  775. break;\
  776. case PIX_FMT_RGB4:\
  777. case PIX_FMT_BGR4:\
  778. {\
  779. const uint8_t * const d64= dither_8x8_73 [y&7];\
  780. const uint8_t * const d128=dither_8x8_220[y&7];\
  781. func(uint8_t)\
  782. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  783. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  784. }\
  785. }\
  786. break;\
  787. case PIX_FMT_RGB4_BYTE:\
  788. case PIX_FMT_BGR4_BYTE:\
  789. {\
  790. const uint8_t * const d64= dither_8x8_73 [y&7];\
  791. const uint8_t * const d128=dither_8x8_220[y&7];\
  792. func(uint8_t)\
  793. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  794. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  795. }\
  796. }\
  797. break;\
  798. case PIX_FMT_MONOBLACK:\
  799. case PIX_FMT_MONOWHITE:\
  800. {\
  801. func_monoblack\
  802. }\
  803. break;\
  804. case PIX_FMT_YUYV422:\
  805. func2\
  806. ((uint8_t*)dest)[2*i2+0]= Y1;\
  807. ((uint8_t*)dest)[2*i2+1]= U;\
  808. ((uint8_t*)dest)[2*i2+2]= Y2;\
  809. ((uint8_t*)dest)[2*i2+3]= V;\
  810. } \
  811. break;\
  812. case PIX_FMT_UYVY422:\
  813. func2\
  814. ((uint8_t*)dest)[2*i2+0]= U;\
  815. ((uint8_t*)dest)[2*i2+1]= Y1;\
  816. ((uint8_t*)dest)[2*i2+2]= V;\
  817. ((uint8_t*)dest)[2*i2+3]= Y2;\
  818. } \
  819. break;\
  820. case PIX_FMT_GRAY16BE:\
  821. func_g16\
  822. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  823. ((uint8_t*)dest)[2*i2+1]= Y1;\
  824. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  825. ((uint8_t*)dest)[2*i2+3]= Y2;\
  826. } \
  827. break;\
  828. case PIX_FMT_GRAY16LE:\
  829. func_g16\
  830. ((uint8_t*)dest)[2*i2+0]= Y1;\
  831. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  832. ((uint8_t*)dest)[2*i2+2]= Y2;\
  833. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  834. } \
  835. break;\
  836. }\
  837. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  838. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  839. uint8_t *dest, int dstW, int y)
  840. {
  841. int i;
  842. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  843. }
  844. static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  845. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  846. uint8_t *dest, int dstW, int y)
  847. {
  848. int i;
  849. int step= fmt_depth(c->dstFormat)/8;
  850. int aidx= 3;
  851. switch(c->dstFormat){
  852. case PIX_FMT_ARGB:
  853. dest++;
  854. aidx= 0;
  855. case PIX_FMT_RGB24:
  856. aidx--;
  857. case PIX_FMT_RGBA:
  858. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  859. dest[aidx]= 255;
  860. dest[0]= R>>22;
  861. dest[1]= G>>22;
  862. dest[2]= B>>22;
  863. dest+= step;
  864. }
  865. break;
  866. case PIX_FMT_ABGR:
  867. dest++;
  868. aidx= 0;
  869. case PIX_FMT_BGR24:
  870. aidx--;
  871. case PIX_FMT_BGRA:
  872. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  873. dest[aidx]= 255;
  874. dest[0]= B>>22;
  875. dest[1]= G>>22;
  876. dest[2]= R>>22;
  877. dest+= step;
  878. }
  879. break;
  880. default:
  881. assert(0);
  882. }
  883. }
  884. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  885. int i;
  886. uint8_t *ptr = plane + stride*y;
  887. for (i=0; i<height; i++){
  888. memset(ptr, val, width);
  889. ptr += stride;
  890. }
  891. }
  892. //Note: we have C, X86, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  893. //Plain C versions
  894. #if !HAVE_MMX || defined (RUNTIME_CPUDETECT) || !CONFIG_GPL
  895. #define COMPILE_C
  896. #endif
  897. #if ARCH_PPC
  898. #if (HAVE_ALTIVEC || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  899. #undef COMPILE_C
  900. #define COMPILE_ALTIVEC
  901. #endif
  902. #endif //ARCH_PPC
  903. #if ARCH_X86
  904. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  905. #define COMPILE_MMX
  906. #endif
  907. #if (HAVE_MMX2 || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  908. #define COMPILE_MMX2
  909. #endif
  910. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  911. #define COMPILE_3DNOW
  912. #endif
  913. #endif //ARCH_X86
  914. #undef HAVE_MMX
  915. #undef HAVE_MMX2
  916. #undef HAVE_AMD3DNOW
  917. #undef HAVE_ALTIVEC
  918. #define HAVE_MMX 0
  919. #define HAVE_MMX2 0
  920. #define HAVE_AMD3DNOW 0
  921. #define HAVE_ALTIVEC 0
  922. #ifdef COMPILE_C
  923. #define RENAME(a) a ## _C
  924. #include "swscale_template.c"
  925. #endif
  926. #ifdef COMPILE_ALTIVEC
  927. #undef RENAME
  928. #undef HAVE_ALTIVEC
  929. #define HAVE_ALTIVEC 1
  930. #define RENAME(a) a ## _altivec
  931. #include "swscale_template.c"
  932. #endif
  933. #if ARCH_X86
  934. //x86 versions
  935. /*
  936. #undef RENAME
  937. #undef HAVE_MMX
  938. #undef HAVE_MMX2
  939. #undef HAVE_AMD3DNOW
  940. #define ARCH_X86
  941. #define RENAME(a) a ## _X86
  942. #include "swscale_template.c"
  943. */
  944. //MMX versions
  945. #ifdef COMPILE_MMX
  946. #undef RENAME
  947. #undef HAVE_MMX
  948. #undef HAVE_MMX2
  949. #undef HAVE_AMD3DNOW
  950. #define HAVE_MMX 1
  951. #define HAVE_MMX2 0
  952. #define HAVE_AMD3DNOW 0
  953. #define RENAME(a) a ## _MMX
  954. #include "swscale_template.c"
  955. #endif
  956. //MMX2 versions
  957. #ifdef COMPILE_MMX2
  958. #undef RENAME
  959. #undef HAVE_MMX
  960. #undef HAVE_MMX2
  961. #undef HAVE_AMD3DNOW
  962. #define HAVE_MMX 1
  963. #define HAVE_MMX2 1
  964. #define HAVE_AMD3DNOW 0
  965. #define RENAME(a) a ## _MMX2
  966. #include "swscale_template.c"
  967. #endif
  968. //3DNOW versions
  969. #ifdef COMPILE_3DNOW
  970. #undef RENAME
  971. #undef HAVE_MMX
  972. #undef HAVE_MMX2
  973. #undef HAVE_AMD3DNOW
  974. #define HAVE_MMX 1
  975. #define HAVE_MMX2 0
  976. #define HAVE_AMD3DNOW 1
  977. #define RENAME(a) a ## _3DNow
  978. #include "swscale_template.c"
  979. #endif
  980. #endif //ARCH_X86
  981. // minor note: the HAVE_xyz are messed up after this line so don't use them
  982. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  983. {
  984. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  985. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  986. else return getSplineCoeff( 0.0,
  987. b+ 2.0*c + 3.0*d,
  988. c + 3.0*d,
  989. -b- 3.0*c - 6.0*d,
  990. dist-1.0);
  991. }
  992. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  993. int srcW, int dstW, int filterAlign, int one, int flags,
  994. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  995. {
  996. int i;
  997. int filterSize;
  998. int filter2Size;
  999. int minFilterSize;
  1000. int64_t *filter=NULL;
  1001. int64_t *filter2=NULL;
  1002. const int64_t fone= 1LL<<54;
  1003. int ret= -1;
  1004. #if ARCH_X86
  1005. if (flags & SWS_CPU_CAPS_MMX)
  1006. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1007. #endif
  1008. // NOTE: the +1 is for the MMX scaler which reads over the end
  1009. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1010. if (FFABS(xInc - 0x10000) <10) // unscaled
  1011. {
  1012. int i;
  1013. filterSize= 1;
  1014. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1015. for (i=0; i<dstW; i++)
  1016. {
  1017. filter[i*filterSize]= fone;
  1018. (*filterPos)[i]=i;
  1019. }
  1020. }
  1021. else if (flags&SWS_POINT) // lame looking point sampling mode
  1022. {
  1023. int i;
  1024. int xDstInSrc;
  1025. filterSize= 1;
  1026. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1027. xDstInSrc= xInc/2 - 0x8000;
  1028. for (i=0; i<dstW; i++)
  1029. {
  1030. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1031. (*filterPos)[i]= xx;
  1032. filter[i]= fone;
  1033. xDstInSrc+= xInc;
  1034. }
  1035. }
  1036. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1037. {
  1038. int i;
  1039. int xDstInSrc;
  1040. if (flags&SWS_BICUBIC) filterSize= 4;
  1041. else if (flags&SWS_X ) filterSize= 4;
  1042. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1043. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1044. xDstInSrc= xInc/2 - 0x8000;
  1045. for (i=0; i<dstW; i++)
  1046. {
  1047. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1048. int j;
  1049. (*filterPos)[i]= xx;
  1050. //bilinear upscale / linear interpolate / area averaging
  1051. for (j=0; j<filterSize; j++)
  1052. {
  1053. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1054. if (coeff<0) coeff=0;
  1055. filter[i*filterSize + j]= coeff;
  1056. xx++;
  1057. }
  1058. xDstInSrc+= xInc;
  1059. }
  1060. }
  1061. else
  1062. {
  1063. int xDstInSrc;
  1064. int sizeFactor;
  1065. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1066. else if (flags&SWS_X) sizeFactor= 8;
  1067. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1068. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1069. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1070. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1071. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1072. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1073. else {
  1074. sizeFactor= 0; //GCC warning killer
  1075. assert(0);
  1076. }
  1077. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1078. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1079. if (filterSize > srcW-2) filterSize=srcW-2;
  1080. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1081. xDstInSrc= xInc - 0x10000;
  1082. for (i=0; i<dstW; i++)
  1083. {
  1084. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1085. int j;
  1086. (*filterPos)[i]= xx;
  1087. for (j=0; j<filterSize; j++)
  1088. {
  1089. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1090. double floatd;
  1091. int64_t coeff;
  1092. if (xInc > 1<<16)
  1093. d= d*dstW/srcW;
  1094. floatd= d * (1.0/(1<<30));
  1095. if (flags & SWS_BICUBIC)
  1096. {
  1097. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1098. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1099. int64_t dd = ( d*d)>>30;
  1100. int64_t ddd= (dd*d)>>30;
  1101. if (d < 1LL<<30)
  1102. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1103. else if (d < 1LL<<31)
  1104. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1105. else
  1106. coeff=0.0;
  1107. coeff *= fone>>(30+24);
  1108. }
  1109. /* else if (flags & SWS_X)
  1110. {
  1111. double p= param ? param*0.01 : 0.3;
  1112. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1113. coeff*= pow(2.0, - p*d*d);
  1114. }*/
  1115. else if (flags & SWS_X)
  1116. {
  1117. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1118. double c;
  1119. if (floatd<1.0)
  1120. c = cos(floatd*PI);
  1121. else
  1122. c=-1.0;
  1123. if (c<0.0) c= -pow(-c, A);
  1124. else c= pow( c, A);
  1125. coeff= (c*0.5 + 0.5)*fone;
  1126. }
  1127. else if (flags & SWS_AREA)
  1128. {
  1129. int64_t d2= d - (1<<29);
  1130. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1131. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1132. else coeff=0.0;
  1133. coeff *= fone>>(30+16);
  1134. }
  1135. else if (flags & SWS_GAUSS)
  1136. {
  1137. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1138. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1139. }
  1140. else if (flags & SWS_SINC)
  1141. {
  1142. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1143. }
  1144. else if (flags & SWS_LANCZOS)
  1145. {
  1146. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1147. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1148. if (floatd>p) coeff=0;
  1149. }
  1150. else if (flags & SWS_BILINEAR)
  1151. {
  1152. coeff= (1<<30) - d;
  1153. if (coeff<0) coeff=0;
  1154. coeff *= fone >> 30;
  1155. }
  1156. else if (flags & SWS_SPLINE)
  1157. {
  1158. double p=-2.196152422706632;
  1159. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1160. }
  1161. else {
  1162. coeff= 0.0; //GCC warning killer
  1163. assert(0);
  1164. }
  1165. filter[i*filterSize + j]= coeff;
  1166. xx++;
  1167. }
  1168. xDstInSrc+= 2*xInc;
  1169. }
  1170. }
  1171. /* apply src & dst Filter to filter -> filter2
  1172. av_free(filter);
  1173. */
  1174. assert(filterSize>0);
  1175. filter2Size= filterSize;
  1176. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1177. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1178. assert(filter2Size>0);
  1179. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1180. for (i=0; i<dstW; i++)
  1181. {
  1182. int j, k;
  1183. if(srcFilter){
  1184. for (k=0; k<srcFilter->length; k++){
  1185. for (j=0; j<filterSize; j++)
  1186. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1187. }
  1188. }else{
  1189. for (j=0; j<filterSize; j++)
  1190. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1191. }
  1192. //FIXME dstFilter
  1193. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1194. }
  1195. av_freep(&filter);
  1196. /* try to reduce the filter-size (step1 find size and shift left) */
  1197. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1198. minFilterSize= 0;
  1199. for (i=dstW-1; i>=0; i--)
  1200. {
  1201. int min= filter2Size;
  1202. int j;
  1203. int64_t cutOff=0.0;
  1204. /* get rid off near zero elements on the left by shifting left */
  1205. for (j=0; j<filter2Size; j++)
  1206. {
  1207. int k;
  1208. cutOff += FFABS(filter2[i*filter2Size]);
  1209. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1210. /* preserve monotonicity because the core can't handle the filter otherwise */
  1211. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1212. // move filter coefficients left
  1213. for (k=1; k<filter2Size; k++)
  1214. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1215. filter2[i*filter2Size + k - 1]= 0;
  1216. (*filterPos)[i]++;
  1217. }
  1218. cutOff=0;
  1219. /* count near zeros on the right */
  1220. for (j=filter2Size-1; j>0; j--)
  1221. {
  1222. cutOff += FFABS(filter2[i*filter2Size + j]);
  1223. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1224. min--;
  1225. }
  1226. if (min>minFilterSize) minFilterSize= min;
  1227. }
  1228. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1229. // we can handle the special case 4,
  1230. // so we don't want to go to the full 8
  1231. if (minFilterSize < 5)
  1232. filterAlign = 4;
  1233. // We really don't want to waste our time
  1234. // doing useless computation, so fall back on
  1235. // the scalar C code for very small filters.
  1236. // Vectorizing is worth it only if you have a
  1237. // decent-sized vector.
  1238. if (minFilterSize < 3)
  1239. filterAlign = 1;
  1240. }
  1241. if (flags & SWS_CPU_CAPS_MMX) {
  1242. // special case for unscaled vertical filtering
  1243. if (minFilterSize == 1 && filterAlign == 2)
  1244. filterAlign= 1;
  1245. }
  1246. assert(minFilterSize > 0);
  1247. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1248. assert(filterSize > 0);
  1249. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1250. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1251. goto error;
  1252. *outFilterSize= filterSize;
  1253. if (flags&SWS_PRINT_INFO)
  1254. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1255. /* try to reduce the filter-size (step2 reduce it) */
  1256. for (i=0; i<dstW; i++)
  1257. {
  1258. int j;
  1259. for (j=0; j<filterSize; j++)
  1260. {
  1261. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1262. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1263. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1264. filter[i*filterSize + j]= 0;
  1265. }
  1266. }
  1267. //FIXME try to align filterPos if possible
  1268. //fix borders
  1269. for (i=0; i<dstW; i++)
  1270. {
  1271. int j;
  1272. if ((*filterPos)[i] < 0)
  1273. {
  1274. // move filter coefficients left to compensate for filterPos
  1275. for (j=1; j<filterSize; j++)
  1276. {
  1277. int left= FFMAX(j + (*filterPos)[i], 0);
  1278. filter[i*filterSize + left] += filter[i*filterSize + j];
  1279. filter[i*filterSize + j]=0;
  1280. }
  1281. (*filterPos)[i]= 0;
  1282. }
  1283. if ((*filterPos)[i] + filterSize > srcW)
  1284. {
  1285. int shift= (*filterPos)[i] + filterSize - srcW;
  1286. // move filter coefficients right to compensate for filterPos
  1287. for (j=filterSize-2; j>=0; j--)
  1288. {
  1289. int right= FFMIN(j + shift, filterSize-1);
  1290. filter[i*filterSize +right] += filter[i*filterSize +j];
  1291. filter[i*filterSize +j]=0;
  1292. }
  1293. (*filterPos)[i]= srcW - filterSize;
  1294. }
  1295. }
  1296. // Note the +1 is for the MMX scaler which reads over the end
  1297. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1298. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1299. /* normalize & store in outFilter */
  1300. for (i=0; i<dstW; i++)
  1301. {
  1302. int j;
  1303. int64_t error=0;
  1304. int64_t sum=0;
  1305. for (j=0; j<filterSize; j++)
  1306. {
  1307. sum+= filter[i*filterSize + j];
  1308. }
  1309. sum= (sum + one/2)/ one;
  1310. for (j=0; j<*outFilterSize; j++)
  1311. {
  1312. int64_t v= filter[i*filterSize + j] + error;
  1313. int intV= ROUNDED_DIV(v, sum);
  1314. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1315. error= v - intV*sum;
  1316. }
  1317. }
  1318. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1319. for (i=0; i<*outFilterSize; i++)
  1320. {
  1321. int j= dstW*(*outFilterSize);
  1322. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1323. }
  1324. ret=0;
  1325. error:
  1326. av_free(filter);
  1327. av_free(filter2);
  1328. return ret;
  1329. }
  1330. #ifdef COMPILE_MMX2
  1331. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1332. {
  1333. uint8_t *fragmentA;
  1334. x86_reg imm8OfPShufW1A;
  1335. x86_reg imm8OfPShufW2A;
  1336. x86_reg fragmentLengthA;
  1337. uint8_t *fragmentB;
  1338. x86_reg imm8OfPShufW1B;
  1339. x86_reg imm8OfPShufW2B;
  1340. x86_reg fragmentLengthB;
  1341. int fragmentPos;
  1342. int xpos, i;
  1343. // create an optimized horizontal scaling routine
  1344. //code fragment
  1345. __asm__ volatile(
  1346. "jmp 9f \n\t"
  1347. // Begin
  1348. "0: \n\t"
  1349. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1350. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1351. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1352. "punpcklbw %%mm7, %%mm1 \n\t"
  1353. "punpcklbw %%mm7, %%mm0 \n\t"
  1354. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1355. "1: \n\t"
  1356. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1357. "2: \n\t"
  1358. "psubw %%mm1, %%mm0 \n\t"
  1359. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1360. "pmullw %%mm3, %%mm0 \n\t"
  1361. "psllw $7, %%mm1 \n\t"
  1362. "paddw %%mm1, %%mm0 \n\t"
  1363. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1364. "add $8, %%"REG_a" \n\t"
  1365. // End
  1366. "9: \n\t"
  1367. // "int $3 \n\t"
  1368. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1369. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1370. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1371. "dec %1 \n\t"
  1372. "dec %2 \n\t"
  1373. "sub %0, %1 \n\t"
  1374. "sub %0, %2 \n\t"
  1375. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1376. "sub %0, %3 \n\t"
  1377. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1378. "=r" (fragmentLengthA)
  1379. );
  1380. __asm__ volatile(
  1381. "jmp 9f \n\t"
  1382. // Begin
  1383. "0: \n\t"
  1384. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1385. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1386. "punpcklbw %%mm7, %%mm0 \n\t"
  1387. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1388. "1: \n\t"
  1389. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1390. "2: \n\t"
  1391. "psubw %%mm1, %%mm0 \n\t"
  1392. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1393. "pmullw %%mm3, %%mm0 \n\t"
  1394. "psllw $7, %%mm1 \n\t"
  1395. "paddw %%mm1, %%mm0 \n\t"
  1396. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1397. "add $8, %%"REG_a" \n\t"
  1398. // End
  1399. "9: \n\t"
  1400. // "int $3 \n\t"
  1401. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1402. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1403. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1404. "dec %1 \n\t"
  1405. "dec %2 \n\t"
  1406. "sub %0, %1 \n\t"
  1407. "sub %0, %2 \n\t"
  1408. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1409. "sub %0, %3 \n\t"
  1410. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1411. "=r" (fragmentLengthB)
  1412. );
  1413. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1414. fragmentPos=0;
  1415. for (i=0; i<dstW/numSplits; i++)
  1416. {
  1417. int xx=xpos>>16;
  1418. if ((i&3) == 0)
  1419. {
  1420. int a=0;
  1421. int b=((xpos+xInc)>>16) - xx;
  1422. int c=((xpos+xInc*2)>>16) - xx;
  1423. int d=((xpos+xInc*3)>>16) - xx;
  1424. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1425. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1426. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1427. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1428. filterPos[i/2]= xx;
  1429. if (d+1<4)
  1430. {
  1431. int maxShift= 3-(d+1);
  1432. int shift=0;
  1433. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1434. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1435. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1436. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1437. a | (b<<2) | (c<<4) | (d<<6);
  1438. if (i+3>=dstW) shift=maxShift; //avoid overread
  1439. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1440. if (shift && i>=shift)
  1441. {
  1442. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1443. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1444. filterPos[i/2]-=shift;
  1445. }
  1446. fragmentPos+= fragmentLengthB;
  1447. }
  1448. else
  1449. {
  1450. int maxShift= 3-d;
  1451. int shift=0;
  1452. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1453. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1454. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1455. a | (b<<2) | (c<<4) | (d<<6);
  1456. if (i+4>=dstW) shift=maxShift; //avoid overread
  1457. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1458. if (shift && i>=shift)
  1459. {
  1460. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1461. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1462. filterPos[i/2]-=shift;
  1463. }
  1464. fragmentPos+= fragmentLengthA;
  1465. }
  1466. funnyCode[fragmentPos]= RET;
  1467. }
  1468. xpos+=xInc;
  1469. }
  1470. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1471. }
  1472. #endif /* COMPILE_MMX2 */
  1473. static void globalInit(void){
  1474. // generating tables:
  1475. int i;
  1476. for (i=0; i<768; i++){
  1477. int c= av_clip_uint8(i-256);
  1478. clip_table[i]=c;
  1479. }
  1480. }
  1481. static SwsFunc getSwsFunc(int flags){
  1482. #if defined(RUNTIME_CPUDETECT) && CONFIG_GPL
  1483. #if ARCH_X86
  1484. // ordered per speed fastest first
  1485. if (flags & SWS_CPU_CAPS_MMX2)
  1486. return swScale_MMX2;
  1487. else if (flags & SWS_CPU_CAPS_3DNOW)
  1488. return swScale_3DNow;
  1489. else if (flags & SWS_CPU_CAPS_MMX)
  1490. return swScale_MMX;
  1491. else
  1492. return swScale_C;
  1493. #else
  1494. #if ARCH_PPC
  1495. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1496. return swScale_altivec;
  1497. else
  1498. return swScale_C;
  1499. #endif
  1500. return swScale_C;
  1501. #endif /* ARCH_X86 */
  1502. #else //RUNTIME_CPUDETECT
  1503. #if HAVE_MMX2
  1504. return swScale_MMX2;
  1505. #elif HAVE_AMD3DNOW
  1506. return swScale_3DNow;
  1507. #elif HAVE_MMX
  1508. return swScale_MMX;
  1509. #elif HAVE_ALTIVEC
  1510. return swScale_altivec;
  1511. #else
  1512. return swScale_C;
  1513. #endif
  1514. #endif //!RUNTIME_CPUDETECT
  1515. }
  1516. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1517. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1518. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1519. /* Copy Y plane */
  1520. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1521. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1522. else
  1523. {
  1524. int i;
  1525. uint8_t *srcPtr= src[0];
  1526. uint8_t *dstPtr= dst;
  1527. for (i=0; i<srcSliceH; i++)
  1528. {
  1529. memcpy(dstPtr, srcPtr, c->srcW);
  1530. srcPtr+= srcStride[0];
  1531. dstPtr+= dstStride[0];
  1532. }
  1533. }
  1534. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1535. if (c->dstFormat == PIX_FMT_NV12)
  1536. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1537. else
  1538. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1539. return srcSliceH;
  1540. }
  1541. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1542. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1543. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1544. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1545. return srcSliceH;
  1546. }
  1547. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1548. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1549. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1550. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1551. return srcSliceH;
  1552. }
  1553. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1554. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1555. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1556. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1557. return srcSliceH;
  1558. }
  1559. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1560. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1561. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1562. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1563. return srcSliceH;
  1564. }
  1565. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1566. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1567. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1568. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1569. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1570. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1571. return srcSliceH;
  1572. }
  1573. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1574. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1575. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1576. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1577. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1578. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1579. return srcSliceH;
  1580. }
  1581. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1582. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1583. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1584. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1585. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1586. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1587. return srcSliceH;
  1588. }
  1589. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1590. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1591. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1592. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1593. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1594. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1595. return srcSliceH;
  1596. }
  1597. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1598. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1599. const enum PixelFormat srcFormat= c->srcFormat;
  1600. const enum PixelFormat dstFormat= c->dstFormat;
  1601. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1602. const uint8_t *palette)=NULL;
  1603. int i;
  1604. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1605. uint8_t *srcPtr= src[0];
  1606. if (!usePal(srcFormat))
  1607. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1608. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1609. switch(dstFormat){
  1610. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1611. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1612. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1613. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1614. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1615. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1616. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1617. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1618. }
  1619. for (i=0; i<srcSliceH; i++) {
  1620. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1621. srcPtr+= srcStride[0];
  1622. dstPtr+= dstStride[0];
  1623. }
  1624. return srcSliceH;
  1625. }
  1626. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1627. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1628. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1629. const enum PixelFormat srcFormat= c->srcFormat;
  1630. const enum PixelFormat dstFormat= c->dstFormat;
  1631. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1632. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1633. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1634. const int dstId= fmt_depth(dstFormat) >> 2;
  1635. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1636. /* BGR -> BGR */
  1637. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1638. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1639. switch(srcId | (dstId<<4)){
  1640. case 0x34: conv= rgb16to15; break;
  1641. case 0x36: conv= rgb24to15; break;
  1642. case 0x38: conv= rgb32to15; break;
  1643. case 0x43: conv= rgb15to16; break;
  1644. case 0x46: conv= rgb24to16; break;
  1645. case 0x48: conv= rgb32to16; break;
  1646. case 0x63: conv= rgb15to24; break;
  1647. case 0x64: conv= rgb16to24; break;
  1648. case 0x68: conv= rgb32to24; break;
  1649. case 0x83: conv= rgb15to32; break;
  1650. case 0x84: conv= rgb16to32; break;
  1651. case 0x86: conv= rgb24to32; break;
  1652. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1653. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1654. }
  1655. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1656. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1657. switch(srcId | (dstId<<4)){
  1658. case 0x33: conv= rgb15tobgr15; break;
  1659. case 0x34: conv= rgb16tobgr15; break;
  1660. case 0x36: conv= rgb24tobgr15; break;
  1661. case 0x38: conv= rgb32tobgr15; break;
  1662. case 0x43: conv= rgb15tobgr16; break;
  1663. case 0x44: conv= rgb16tobgr16; break;
  1664. case 0x46: conv= rgb24tobgr16; break;
  1665. case 0x48: conv= rgb32tobgr16; break;
  1666. case 0x63: conv= rgb15tobgr24; break;
  1667. case 0x64: conv= rgb16tobgr24; break;
  1668. case 0x66: conv= rgb24tobgr24; break;
  1669. case 0x68: conv= rgb32tobgr24; break;
  1670. case 0x83: conv= rgb15tobgr32; break;
  1671. case 0x84: conv= rgb16tobgr32; break;
  1672. case 0x86: conv= rgb24tobgr32; break;
  1673. case 0x88: conv= rgb32tobgr32; break;
  1674. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1675. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1676. }
  1677. }else{
  1678. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1679. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1680. }
  1681. if(conv)
  1682. {
  1683. uint8_t *srcPtr= src[0];
  1684. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1685. srcPtr += ALT32_CORR;
  1686. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1687. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1688. else
  1689. {
  1690. int i;
  1691. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1692. for (i=0; i<srcSliceH; i++)
  1693. {
  1694. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1695. srcPtr+= srcStride[0];
  1696. dstPtr+= dstStride[0];
  1697. }
  1698. }
  1699. }
  1700. return srcSliceH;
  1701. }
  1702. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1703. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1704. rgb24toyv12(
  1705. src[0],
  1706. dst[0]+ srcSliceY *dstStride[0],
  1707. dst[1]+(srcSliceY>>1)*dstStride[1],
  1708. dst[2]+(srcSliceY>>1)*dstStride[2],
  1709. c->srcW, srcSliceH,
  1710. dstStride[0], dstStride[1], srcStride[0]);
  1711. return srcSliceH;
  1712. }
  1713. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1714. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1715. int i;
  1716. /* copy Y */
  1717. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1718. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1719. else{
  1720. uint8_t *srcPtr= src[0];
  1721. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1722. for (i=0; i<srcSliceH; i++)
  1723. {
  1724. memcpy(dstPtr, srcPtr, c->srcW);
  1725. srcPtr+= srcStride[0];
  1726. dstPtr+= dstStride[0];
  1727. }
  1728. }
  1729. if (c->dstFormat==PIX_FMT_YUV420P){
  1730. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1731. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1732. }else{
  1733. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1734. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1735. }
  1736. return srcSliceH;
  1737. }
  1738. /* unscaled copy like stuff (assumes nearly identical formats) */
  1739. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1740. int srcSliceH, uint8_t* dst[], int dstStride[])
  1741. {
  1742. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1743. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1744. else
  1745. {
  1746. int i;
  1747. uint8_t *srcPtr= src[0];
  1748. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1749. int length=0;
  1750. /* universal length finder */
  1751. while(length+c->srcW <= FFABS(dstStride[0])
  1752. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1753. assert(length!=0);
  1754. for (i=0; i<srcSliceH; i++)
  1755. {
  1756. memcpy(dstPtr, srcPtr, length);
  1757. srcPtr+= srcStride[0];
  1758. dstPtr+= dstStride[0];
  1759. }
  1760. }
  1761. return srcSliceH;
  1762. }
  1763. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1764. int srcSliceH, uint8_t* dst[], int dstStride[])
  1765. {
  1766. int plane;
  1767. for (plane=0; plane<3; plane++)
  1768. {
  1769. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1770. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1771. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1772. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1773. {
  1774. if (!isGray(c->dstFormat))
  1775. fillPlane(dst[plane], dstStride[plane], length, height, y, 128);
  1776. }
  1777. else
  1778. {
  1779. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1780. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1781. else
  1782. {
  1783. int i;
  1784. uint8_t *srcPtr= src[plane];
  1785. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1786. for (i=0; i<height; i++)
  1787. {
  1788. memcpy(dstPtr, srcPtr, length);
  1789. srcPtr+= srcStride[plane];
  1790. dstPtr+= dstStride[plane];
  1791. }
  1792. }
  1793. }
  1794. }
  1795. return srcSliceH;
  1796. }
  1797. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1798. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1799. int length= c->srcW;
  1800. int y= srcSliceY;
  1801. int height= srcSliceH;
  1802. int i, j;
  1803. uint8_t *srcPtr= src[0];
  1804. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1805. if (!isGray(c->dstFormat)){
  1806. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1807. memset(dst[1], 128, dstStride[1]*height);
  1808. memset(dst[2], 128, dstStride[2]*height);
  1809. }
  1810. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1811. for (i=0; i<height; i++)
  1812. {
  1813. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1814. srcPtr+= srcStride[0];
  1815. dstPtr+= dstStride[0];
  1816. }
  1817. return srcSliceH;
  1818. }
  1819. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1820. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1821. int length= c->srcW;
  1822. int y= srcSliceY;
  1823. int height= srcSliceH;
  1824. int i, j;
  1825. uint8_t *srcPtr= src[0];
  1826. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1827. for (i=0; i<height; i++)
  1828. {
  1829. for (j=0; j<length; j++)
  1830. {
  1831. dstPtr[j<<1] = srcPtr[j];
  1832. dstPtr[(j<<1)+1] = srcPtr[j];
  1833. }
  1834. srcPtr+= srcStride[0];
  1835. dstPtr+= dstStride[0];
  1836. }
  1837. return srcSliceH;
  1838. }
  1839. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1840. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1841. int length= c->srcW;
  1842. int y= srcSliceY;
  1843. int height= srcSliceH;
  1844. int i, j;
  1845. uint16_t *srcPtr= (uint16_t*)src[0];
  1846. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1847. for (i=0; i<height; i++)
  1848. {
  1849. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1850. srcPtr+= srcStride[0]/2;
  1851. dstPtr+= dstStride[0]/2;
  1852. }
  1853. return srcSliceH;
  1854. }
  1855. static void getSubSampleFactors(int *h, int *v, int format){
  1856. switch(format){
  1857. case PIX_FMT_UYVY422:
  1858. case PIX_FMT_YUYV422:
  1859. *h=1;
  1860. *v=0;
  1861. break;
  1862. case PIX_FMT_YUV420P:
  1863. case PIX_FMT_YUVA420P:
  1864. case PIX_FMT_GRAY16BE:
  1865. case PIX_FMT_GRAY16LE:
  1866. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1867. case PIX_FMT_NV12:
  1868. case PIX_FMT_NV21:
  1869. *h=1;
  1870. *v=1;
  1871. break;
  1872. case PIX_FMT_YUV440P:
  1873. *h=0;
  1874. *v=1;
  1875. break;
  1876. case PIX_FMT_YUV410P:
  1877. *h=2;
  1878. *v=2;
  1879. break;
  1880. case PIX_FMT_YUV444P:
  1881. *h=0;
  1882. *v=0;
  1883. break;
  1884. case PIX_FMT_YUV422P:
  1885. *h=1;
  1886. *v=0;
  1887. break;
  1888. case PIX_FMT_YUV411P:
  1889. *h=2;
  1890. *v=0;
  1891. break;
  1892. default:
  1893. *h=0;
  1894. *v=0;
  1895. break;
  1896. }
  1897. }
  1898. static uint16_t roundToInt16(int64_t f){
  1899. int r= (f + (1<<15))>>16;
  1900. if (r<-0x7FFF) return 0x8000;
  1901. else if (r> 0x7FFF) return 0x7FFF;
  1902. else return r;
  1903. }
  1904. /**
  1905. * @param inv_table the yuv2rgb coefficients, normally ff_yuv2rgb_coeffs[x]
  1906. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1907. * @return -1 if not supported
  1908. */
  1909. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1910. int64_t crv = inv_table[0];
  1911. int64_t cbu = inv_table[1];
  1912. int64_t cgu = -inv_table[2];
  1913. int64_t cgv = -inv_table[3];
  1914. int64_t cy = 1<<16;
  1915. int64_t oy = 0;
  1916. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1917. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1918. c->brightness= brightness;
  1919. c->contrast = contrast;
  1920. c->saturation= saturation;
  1921. c->srcRange = srcRange;
  1922. c->dstRange = dstRange;
  1923. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  1924. c->uOffset= 0x0400040004000400LL;
  1925. c->vOffset= 0x0400040004000400LL;
  1926. if (!srcRange){
  1927. cy= (cy*255) / 219;
  1928. oy= 16<<16;
  1929. }else{
  1930. crv= (crv*224) / 255;
  1931. cbu= (cbu*224) / 255;
  1932. cgu= (cgu*224) / 255;
  1933. cgv= (cgv*224) / 255;
  1934. }
  1935. cy = (cy *contrast )>>16;
  1936. crv= (crv*contrast * saturation)>>32;
  1937. cbu= (cbu*contrast * saturation)>>32;
  1938. cgu= (cgu*contrast * saturation)>>32;
  1939. cgv= (cgv*contrast * saturation)>>32;
  1940. oy -= 256*brightness;
  1941. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1942. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1943. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1944. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1945. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1946. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1947. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  1948. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  1949. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  1950. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  1951. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  1952. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  1953. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1954. //FIXME factorize
  1955. #ifdef COMPILE_ALTIVEC
  1956. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1957. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  1958. #endif
  1959. return 0;
  1960. }
  1961. /**
  1962. * @return -1 if not supported
  1963. */
  1964. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1965. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1966. *inv_table = c->srcColorspaceTable;
  1967. *table = c->dstColorspaceTable;
  1968. *srcRange = c->srcRange;
  1969. *dstRange = c->dstRange;
  1970. *brightness= c->brightness;
  1971. *contrast = c->contrast;
  1972. *saturation= c->saturation;
  1973. return 0;
  1974. }
  1975. static int handle_jpeg(enum PixelFormat *format)
  1976. {
  1977. switch (*format) {
  1978. case PIX_FMT_YUVJ420P:
  1979. *format = PIX_FMT_YUV420P;
  1980. return 1;
  1981. case PIX_FMT_YUVJ422P:
  1982. *format = PIX_FMT_YUV422P;
  1983. return 1;
  1984. case PIX_FMT_YUVJ444P:
  1985. *format = PIX_FMT_YUV444P;
  1986. return 1;
  1987. case PIX_FMT_YUVJ440P:
  1988. *format = PIX_FMT_YUV440P;
  1989. return 1;
  1990. default:
  1991. return 0;
  1992. }
  1993. }
  1994. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1995. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1996. SwsContext *c;
  1997. int i;
  1998. int usesVFilter, usesHFilter;
  1999. int unscaled, needsDither;
  2000. int srcRange, dstRange;
  2001. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2002. #if ARCH_X86
  2003. if (flags & SWS_CPU_CAPS_MMX)
  2004. __asm__ volatile("emms\n\t"::: "memory");
  2005. #endif
  2006. #if !defined(RUNTIME_CPUDETECT) || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2007. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2008. #if HAVE_MMX2
  2009. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2010. #elif HAVE_AMD3DNOW
  2011. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2012. #elif HAVE_MMX
  2013. flags |= SWS_CPU_CAPS_MMX;
  2014. #elif HAVE_ALTIVEC
  2015. flags |= SWS_CPU_CAPS_ALTIVEC;
  2016. #elif ARCH_BFIN
  2017. flags |= SWS_CPU_CAPS_BFIN;
  2018. #endif
  2019. #endif /* RUNTIME_CPUDETECT */
  2020. if (clip_table[512] != 255) globalInit();
  2021. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2022. unscaled = (srcW == dstW && srcH == dstH);
  2023. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2024. && (fmt_depth(dstFormat))<24
  2025. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2026. srcRange = handle_jpeg(&srcFormat);
  2027. dstRange = handle_jpeg(&dstFormat);
  2028. if (!isSupportedIn(srcFormat))
  2029. {
  2030. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2031. return NULL;
  2032. }
  2033. if (!isSupportedOut(dstFormat))
  2034. {
  2035. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2036. return NULL;
  2037. }
  2038. i= flags & ( SWS_POINT
  2039. |SWS_AREA
  2040. |SWS_BILINEAR
  2041. |SWS_FAST_BILINEAR
  2042. |SWS_BICUBIC
  2043. |SWS_X
  2044. |SWS_GAUSS
  2045. |SWS_LANCZOS
  2046. |SWS_SINC
  2047. |SWS_SPLINE
  2048. |SWS_BICUBLIN);
  2049. if(!i || (i & (i-1)))
  2050. {
  2051. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2052. return NULL;
  2053. }
  2054. /* sanity check */
  2055. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2056. {
  2057. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2058. srcW, srcH, dstW, dstH);
  2059. return NULL;
  2060. }
  2061. if(srcW > VOFW || dstW > VOFW){
  2062. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2063. return NULL;
  2064. }
  2065. if (!dstFilter) dstFilter= &dummyFilter;
  2066. if (!srcFilter) srcFilter= &dummyFilter;
  2067. c= av_mallocz(sizeof(SwsContext));
  2068. c->av_class = &sws_context_class;
  2069. c->srcW= srcW;
  2070. c->srcH= srcH;
  2071. c->dstW= dstW;
  2072. c->dstH= dstH;
  2073. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2074. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2075. c->flags= flags;
  2076. c->dstFormat= dstFormat;
  2077. c->srcFormat= srcFormat;
  2078. c->vRounder= 4* 0x0001000100010001ULL;
  2079. usesHFilter= usesVFilter= 0;
  2080. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2081. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2082. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2083. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2084. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2085. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2086. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2087. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2088. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2089. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2090. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2091. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2092. // drop some chroma lines if the user wants it
  2093. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2094. c->chrSrcVSubSample+= c->vChrDrop;
  2095. // drop every other pixel for chroma calculation unless user wants full chroma
  2096. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2097. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2098. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2099. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2100. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2101. c->chrSrcHSubSample=1;
  2102. if (param){
  2103. c->param[0] = param[0];
  2104. c->param[1] = param[1];
  2105. }else{
  2106. c->param[0] =
  2107. c->param[1] = SWS_PARAM_DEFAULT;
  2108. }
  2109. c->chrIntHSubSample= c->chrDstHSubSample;
  2110. c->chrIntVSubSample= c->chrSrcVSubSample;
  2111. // Note the -((-x)>>y) is so that we always round toward +inf.
  2112. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2113. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2114. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2115. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2116. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2117. /* unscaled special cases */
  2118. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2119. {
  2120. /* yv12_to_nv12 */
  2121. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2122. {
  2123. c->swScale= PlanarToNV12Wrapper;
  2124. }
  2125. /* yuv2bgr */
  2126. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2127. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2128. {
  2129. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2130. }
  2131. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
  2132. {
  2133. c->swScale= yvu9toyv12Wrapper;
  2134. }
  2135. /* bgr24toYV12 */
  2136. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
  2137. c->swScale= bgr24toyv12Wrapper;
  2138. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2139. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2140. && (isBGR(dstFormat) || isRGB(dstFormat))
  2141. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2142. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2143. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2144. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2145. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2146. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2147. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2148. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2149. && dstFormat != PIX_FMT_RGB32_1
  2150. && dstFormat != PIX_FMT_BGR32_1
  2151. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2152. c->swScale= rgb2rgbWrapper;
  2153. if ((usePal(srcFormat) && (
  2154. dstFormat == PIX_FMT_RGB32 ||
  2155. dstFormat == PIX_FMT_RGB32_1 ||
  2156. dstFormat == PIX_FMT_RGB24 ||
  2157. dstFormat == PIX_FMT_BGR32 ||
  2158. dstFormat == PIX_FMT_BGR32_1 ||
  2159. dstFormat == PIX_FMT_BGR24)))
  2160. c->swScale= pal2rgbWrapper;
  2161. if (srcFormat == PIX_FMT_YUV422P)
  2162. {
  2163. if (dstFormat == PIX_FMT_YUYV422)
  2164. c->swScale= YUV422PToYuy2Wrapper;
  2165. else if (dstFormat == PIX_FMT_UYVY422)
  2166. c->swScale= YUV422PToUyvyWrapper;
  2167. }
  2168. /* LQ converters if -sws 0 or -sws 4*/
  2169. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2170. /* yv12_to_yuy2 */
  2171. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2172. {
  2173. if (dstFormat == PIX_FMT_YUYV422)
  2174. c->swScale= PlanarToYuy2Wrapper;
  2175. else if (dstFormat == PIX_FMT_UYVY422)
  2176. c->swScale= PlanarToUyvyWrapper;
  2177. }
  2178. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV420P)
  2179. c->swScale= YUYV2YUV420Wrapper;
  2180. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV420P)
  2181. c->swScale= UYVY2YUV420Wrapper;
  2182. }
  2183. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2184. c->swScale= YUYV2YUV422Wrapper;
  2185. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2186. c->swScale= UYVY2YUV422Wrapper;
  2187. #ifdef COMPILE_ALTIVEC
  2188. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2189. !(c->flags & SWS_BITEXACT) &&
  2190. srcFormat == PIX_FMT_YUV420P) {
  2191. // unscaled YV12 -> packed YUV, we want speed
  2192. if (dstFormat == PIX_FMT_YUYV422)
  2193. c->swScale= yv12toyuy2_unscaled_altivec;
  2194. else if (dstFormat == PIX_FMT_UYVY422)
  2195. c->swScale= yv12touyvy_unscaled_altivec;
  2196. }
  2197. #endif
  2198. /* simple copy */
  2199. if ( srcFormat == dstFormat
  2200. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2201. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2202. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2203. {
  2204. if (isPacked(c->srcFormat))
  2205. c->swScale= packedCopy;
  2206. else /* Planar YUV or gray */
  2207. c->swScale= planarCopy;
  2208. }
  2209. /* gray16{le,be} conversions */
  2210. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2211. {
  2212. c->swScale= gray16togray;
  2213. }
  2214. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2215. {
  2216. c->swScale= graytogray16;
  2217. }
  2218. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2219. {
  2220. c->swScale= gray16swap;
  2221. }
  2222. #if ARCH_BFIN
  2223. if (flags & SWS_CPU_CAPS_BFIN)
  2224. ff_bfin_get_unscaled_swscale (c);
  2225. #endif
  2226. if (c->swScale){
  2227. if (flags&SWS_PRINT_INFO)
  2228. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2229. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2230. return c;
  2231. }
  2232. }
  2233. if (flags & SWS_CPU_CAPS_MMX2)
  2234. {
  2235. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2236. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2237. {
  2238. if (flags&SWS_PRINT_INFO)
  2239. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2240. }
  2241. if (usesHFilter) c->canMMX2BeUsed=0;
  2242. }
  2243. else
  2244. c->canMMX2BeUsed=0;
  2245. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2246. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2247. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2248. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2249. // n-2 is the last chrominance sample available
  2250. // this is not perfect, but no one should notice the difference, the more correct variant
  2251. // would be like the vertical one, but that would require some special code for the
  2252. // first and last pixel
  2253. if (flags&SWS_FAST_BILINEAR)
  2254. {
  2255. if (c->canMMX2BeUsed)
  2256. {
  2257. c->lumXInc+= 20;
  2258. c->chrXInc+= 20;
  2259. }
  2260. //we don't use the x86 asm scaler if MMX is available
  2261. else if (flags & SWS_CPU_CAPS_MMX)
  2262. {
  2263. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2264. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2265. }
  2266. }
  2267. /* precalculate horizontal scaler filter coefficients */
  2268. {
  2269. const int filterAlign=
  2270. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2271. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2272. 1;
  2273. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2274. srcW , dstW, filterAlign, 1<<14,
  2275. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2276. srcFilter->lumH, dstFilter->lumH, c->param);
  2277. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2278. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2279. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2280. srcFilter->chrH, dstFilter->chrH, c->param);
  2281. #define MAX_FUNNY_CODE_SIZE 10000
  2282. #if defined(COMPILE_MMX2)
  2283. // can't downscale !!!
  2284. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2285. {
  2286. #ifdef MAP_ANONYMOUS
  2287. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2288. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2289. #else
  2290. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2291. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2292. #endif
  2293. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2294. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2295. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2296. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2297. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2298. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2299. }
  2300. #endif /* defined(COMPILE_MMX2) */
  2301. } // initialize horizontal stuff
  2302. /* precalculate vertical scaler filter coefficients */
  2303. {
  2304. const int filterAlign=
  2305. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2306. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2307. 1;
  2308. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2309. srcH , dstH, filterAlign, (1<<12),
  2310. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2311. srcFilter->lumV, dstFilter->lumV, c->param);
  2312. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2313. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2314. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2315. srcFilter->chrV, dstFilter->chrV, c->param);
  2316. #if HAVE_ALTIVEC
  2317. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2318. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2319. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2320. int j;
  2321. short *p = (short *)&c->vYCoeffsBank[i];
  2322. for (j=0;j<8;j++)
  2323. p[j] = c->vLumFilter[i];
  2324. }
  2325. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2326. int j;
  2327. short *p = (short *)&c->vCCoeffsBank[i];
  2328. for (j=0;j<8;j++)
  2329. p[j] = c->vChrFilter[i];
  2330. }
  2331. #endif
  2332. }
  2333. // calculate buffer sizes so that they won't run out while handling these damn slices
  2334. c->vLumBufSize= c->vLumFilterSize;
  2335. c->vChrBufSize= c->vChrFilterSize;
  2336. for (i=0; i<dstH; i++)
  2337. {
  2338. int chrI= i*c->chrDstH / dstH;
  2339. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2340. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2341. nextSlice>>= c->chrSrcVSubSample;
  2342. nextSlice<<= c->chrSrcVSubSample;
  2343. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2344. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2345. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2346. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2347. }
  2348. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2349. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2350. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2351. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2352. /* align at 16 bytes for AltiVec */
  2353. for (i=0; i<c->vLumBufSize; i++)
  2354. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2355. for (i=0; i<c->vChrBufSize; i++)
  2356. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2357. //try to avoid drawing green stuff between the right end and the stride end
  2358. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2359. assert(2*VOFW == VOF);
  2360. assert(c->chrDstH <= dstH);
  2361. if (flags&SWS_PRINT_INFO)
  2362. {
  2363. #ifdef DITHER1XBPP
  2364. const char *dither= " dithered";
  2365. #else
  2366. const char *dither= "";
  2367. #endif
  2368. if (flags&SWS_FAST_BILINEAR)
  2369. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2370. else if (flags&SWS_BILINEAR)
  2371. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2372. else if (flags&SWS_BICUBIC)
  2373. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2374. else if (flags&SWS_X)
  2375. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2376. else if (flags&SWS_POINT)
  2377. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2378. else if (flags&SWS_AREA)
  2379. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2380. else if (flags&SWS_BICUBLIN)
  2381. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2382. else if (flags&SWS_GAUSS)
  2383. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2384. else if (flags&SWS_SINC)
  2385. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2386. else if (flags&SWS_LANCZOS)
  2387. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2388. else if (flags&SWS_SPLINE)
  2389. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2390. else
  2391. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2392. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2393. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2394. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2395. else
  2396. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2397. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2398. if (flags & SWS_CPU_CAPS_MMX2)
  2399. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2400. else if (flags & SWS_CPU_CAPS_3DNOW)
  2401. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2402. else if (flags & SWS_CPU_CAPS_MMX)
  2403. av_log(c, AV_LOG_INFO, "using MMX\n");
  2404. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2405. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2406. else
  2407. av_log(c, AV_LOG_INFO, "using C\n");
  2408. }
  2409. if (flags & SWS_PRINT_INFO)
  2410. {
  2411. if (flags & SWS_CPU_CAPS_MMX)
  2412. {
  2413. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2414. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2415. else
  2416. {
  2417. if (c->hLumFilterSize==4)
  2418. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2419. else if (c->hLumFilterSize==8)
  2420. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2421. else
  2422. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2423. if (c->hChrFilterSize==4)
  2424. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2425. else if (c->hChrFilterSize==8)
  2426. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2427. else
  2428. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2429. }
  2430. }
  2431. else
  2432. {
  2433. #if ARCH_X86
  2434. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2435. #else
  2436. if (flags & SWS_FAST_BILINEAR)
  2437. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2438. else
  2439. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2440. #endif
  2441. }
  2442. if (isPlanarYUV(dstFormat))
  2443. {
  2444. if (c->vLumFilterSize==1)
  2445. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2446. else
  2447. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2448. }
  2449. else
  2450. {
  2451. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2452. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2453. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2454. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2455. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2456. else
  2457. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2458. }
  2459. if (dstFormat==PIX_FMT_BGR24)
  2460. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2461. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2462. else if (dstFormat==PIX_FMT_RGB32)
  2463. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2464. else if (dstFormat==PIX_FMT_BGR565)
  2465. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2466. else if (dstFormat==PIX_FMT_BGR555)
  2467. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2468. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2469. }
  2470. if (flags & SWS_PRINT_INFO)
  2471. {
  2472. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2473. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2474. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2475. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2476. }
  2477. c->swScale= getSwsFunc(flags);
  2478. return c;
  2479. }
  2480. /**
  2481. * swscale wrapper, so we don't need to export the SwsContext.
  2482. * Assumes planar YUV to be in YUV order instead of YVU.
  2483. */
  2484. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2485. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2486. int i;
  2487. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2488. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2489. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2490. return 0;
  2491. }
  2492. if (c->sliceDir == 0) {
  2493. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2494. }
  2495. if (usePal(c->srcFormat)){
  2496. for (i=0; i<256; i++){
  2497. int p, r, g, b,y,u,v;
  2498. if(c->srcFormat == PIX_FMT_PAL8){
  2499. p=((uint32_t*)(src[1]))[i];
  2500. r= (p>>16)&0xFF;
  2501. g= (p>> 8)&0xFF;
  2502. b= p &0xFF;
  2503. }else if(c->srcFormat == PIX_FMT_RGB8){
  2504. r= (i>>5 )*36;
  2505. g= ((i>>2)&7)*36;
  2506. b= (i&3 )*85;
  2507. }else if(c->srcFormat == PIX_FMT_BGR8){
  2508. b= (i>>6 )*85;
  2509. g= ((i>>3)&7)*36;
  2510. r= (i&7 )*36;
  2511. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2512. r= (i>>3 )*255;
  2513. g= ((i>>1)&3)*85;
  2514. b= (i&1 )*255;
  2515. }else {
  2516. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2517. b= (i>>3 )*255;
  2518. g= ((i>>1)&3)*85;
  2519. r= (i&1 )*255;
  2520. }
  2521. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2522. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2523. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2524. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2525. switch(c->dstFormat) {
  2526. case PIX_FMT_BGR32:
  2527. #ifndef WORDS_BIGENDIAN
  2528. case PIX_FMT_RGB24:
  2529. #endif
  2530. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2531. break;
  2532. case PIX_FMT_BGR32_1:
  2533. #ifdef WORDS_BIGENDIAN
  2534. case PIX_FMT_BGR24:
  2535. #endif
  2536. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2537. break;
  2538. case PIX_FMT_RGB32_1:
  2539. #ifdef WORDS_BIGENDIAN
  2540. case PIX_FMT_RGB24:
  2541. #endif
  2542. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2543. break;
  2544. case PIX_FMT_RGB32:
  2545. #ifndef WORDS_BIGENDIAN
  2546. case PIX_FMT_BGR24:
  2547. #endif
  2548. default:
  2549. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2550. }
  2551. }
  2552. }
  2553. // copy strides, so they can safely be modified
  2554. if (c->sliceDir == 1) {
  2555. // slices go from top to bottom
  2556. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2557. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2558. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2559. } else {
  2560. // slices go from bottom to top => we flip the image internally
  2561. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2562. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2563. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2],
  2564. dst[3] + (c->dstH-1)*dstStride[3]};
  2565. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2566. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2567. src2[0] += (srcSliceH-1)*srcStride[0];
  2568. if (!usePal(c->srcFormat))
  2569. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2570. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2571. src2[3] += (srcSliceH-1)*srcStride[3];
  2572. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2573. }
  2574. }
  2575. #if LIBSWSCALE_VERSION_MAJOR < 1
  2576. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2577. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2578. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2579. }
  2580. #endif
  2581. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2582. float lumaSharpen, float chromaSharpen,
  2583. float chromaHShift, float chromaVShift,
  2584. int verbose)
  2585. {
  2586. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2587. if (lumaGBlur!=0.0){
  2588. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2589. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2590. }else{
  2591. filter->lumH= sws_getIdentityVec();
  2592. filter->lumV= sws_getIdentityVec();
  2593. }
  2594. if (chromaGBlur!=0.0){
  2595. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2596. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2597. }else{
  2598. filter->chrH= sws_getIdentityVec();
  2599. filter->chrV= sws_getIdentityVec();
  2600. }
  2601. if (chromaSharpen!=0.0){
  2602. SwsVector *id= sws_getIdentityVec();
  2603. sws_scaleVec(filter->chrH, -chromaSharpen);
  2604. sws_scaleVec(filter->chrV, -chromaSharpen);
  2605. sws_addVec(filter->chrH, id);
  2606. sws_addVec(filter->chrV, id);
  2607. sws_freeVec(id);
  2608. }
  2609. if (lumaSharpen!=0.0){
  2610. SwsVector *id= sws_getIdentityVec();
  2611. sws_scaleVec(filter->lumH, -lumaSharpen);
  2612. sws_scaleVec(filter->lumV, -lumaSharpen);
  2613. sws_addVec(filter->lumH, id);
  2614. sws_addVec(filter->lumV, id);
  2615. sws_freeVec(id);
  2616. }
  2617. if (chromaHShift != 0.0)
  2618. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2619. if (chromaVShift != 0.0)
  2620. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2621. sws_normalizeVec(filter->chrH, 1.0);
  2622. sws_normalizeVec(filter->chrV, 1.0);
  2623. sws_normalizeVec(filter->lumH, 1.0);
  2624. sws_normalizeVec(filter->lumV, 1.0);
  2625. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2626. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2627. return filter;
  2628. }
  2629. SwsVector *sws_getGaussianVec(double variance, double quality){
  2630. const int length= (int)(variance*quality + 0.5) | 1;
  2631. int i;
  2632. double *coeff= av_malloc(length*sizeof(double));
  2633. double middle= (length-1)*0.5;
  2634. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2635. vec->coeff= coeff;
  2636. vec->length= length;
  2637. for (i=0; i<length; i++)
  2638. {
  2639. double dist= i-middle;
  2640. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2641. }
  2642. sws_normalizeVec(vec, 1.0);
  2643. return vec;
  2644. }
  2645. SwsVector *sws_getConstVec(double c, int length){
  2646. int i;
  2647. double *coeff= av_malloc(length*sizeof(double));
  2648. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2649. vec->coeff= coeff;
  2650. vec->length= length;
  2651. for (i=0; i<length; i++)
  2652. coeff[i]= c;
  2653. return vec;
  2654. }
  2655. SwsVector *sws_getIdentityVec(void){
  2656. return sws_getConstVec(1.0, 1);
  2657. }
  2658. double sws_dcVec(SwsVector *a){
  2659. int i;
  2660. double sum=0;
  2661. for (i=0; i<a->length; i++)
  2662. sum+= a->coeff[i];
  2663. return sum;
  2664. }
  2665. void sws_scaleVec(SwsVector *a, double scalar){
  2666. int i;
  2667. for (i=0; i<a->length; i++)
  2668. a->coeff[i]*= scalar;
  2669. }
  2670. void sws_normalizeVec(SwsVector *a, double height){
  2671. sws_scaleVec(a, height/sws_dcVec(a));
  2672. }
  2673. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2674. int length= a->length + b->length - 1;
  2675. double *coeff= av_malloc(length*sizeof(double));
  2676. int i, j;
  2677. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2678. vec->coeff= coeff;
  2679. vec->length= length;
  2680. for (i=0; i<length; i++) coeff[i]= 0.0;
  2681. for (i=0; i<a->length; i++)
  2682. {
  2683. for (j=0; j<b->length; j++)
  2684. {
  2685. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2686. }
  2687. }
  2688. return vec;
  2689. }
  2690. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2691. int length= FFMAX(a->length, b->length);
  2692. double *coeff= av_malloc(length*sizeof(double));
  2693. int i;
  2694. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2695. vec->coeff= coeff;
  2696. vec->length= length;
  2697. for (i=0; i<length; i++) coeff[i]= 0.0;
  2698. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2699. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2700. return vec;
  2701. }
  2702. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2703. int length= FFMAX(a->length, b->length);
  2704. double *coeff= av_malloc(length*sizeof(double));
  2705. int i;
  2706. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2707. vec->coeff= coeff;
  2708. vec->length= length;
  2709. for (i=0; i<length; i++) coeff[i]= 0.0;
  2710. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2711. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2712. return vec;
  2713. }
  2714. /* shift left / or right if "shift" is negative */
  2715. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2716. int length= a->length + FFABS(shift)*2;
  2717. double *coeff= av_malloc(length*sizeof(double));
  2718. int i;
  2719. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2720. vec->coeff= coeff;
  2721. vec->length= length;
  2722. for (i=0; i<length; i++) coeff[i]= 0.0;
  2723. for (i=0; i<a->length; i++)
  2724. {
  2725. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2726. }
  2727. return vec;
  2728. }
  2729. void sws_shiftVec(SwsVector *a, int shift){
  2730. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2731. av_free(a->coeff);
  2732. a->coeff= shifted->coeff;
  2733. a->length= shifted->length;
  2734. av_free(shifted);
  2735. }
  2736. void sws_addVec(SwsVector *a, SwsVector *b){
  2737. SwsVector *sum= sws_sumVec(a, b);
  2738. av_free(a->coeff);
  2739. a->coeff= sum->coeff;
  2740. a->length= sum->length;
  2741. av_free(sum);
  2742. }
  2743. void sws_subVec(SwsVector *a, SwsVector *b){
  2744. SwsVector *diff= sws_diffVec(a, b);
  2745. av_free(a->coeff);
  2746. a->coeff= diff->coeff;
  2747. a->length= diff->length;
  2748. av_free(diff);
  2749. }
  2750. void sws_convVec(SwsVector *a, SwsVector *b){
  2751. SwsVector *conv= sws_getConvVec(a, b);
  2752. av_free(a->coeff);
  2753. a->coeff= conv->coeff;
  2754. a->length= conv->length;
  2755. av_free(conv);
  2756. }
  2757. SwsVector *sws_cloneVec(SwsVector *a){
  2758. double *coeff= av_malloc(a->length*sizeof(double));
  2759. int i;
  2760. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2761. vec->coeff= coeff;
  2762. vec->length= a->length;
  2763. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2764. return vec;
  2765. }
  2766. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  2767. int i;
  2768. double max=0;
  2769. double min=0;
  2770. double range;
  2771. for (i=0; i<a->length; i++)
  2772. if (a->coeff[i]>max) max= a->coeff[i];
  2773. for (i=0; i<a->length; i++)
  2774. if (a->coeff[i]<min) min= a->coeff[i];
  2775. range= max - min;
  2776. for (i=0; i<a->length; i++)
  2777. {
  2778. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2779. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2780. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  2781. av_log(log_ctx, log_level, "|\n");
  2782. }
  2783. }
  2784. #if LIBSWSCALE_VERSION_MAJOR < 1
  2785. void sws_printVec(SwsVector *a){
  2786. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  2787. }
  2788. #endif
  2789. void sws_freeVec(SwsVector *a){
  2790. if (!a) return;
  2791. av_freep(&a->coeff);
  2792. a->length=0;
  2793. av_free(a);
  2794. }
  2795. void sws_freeFilter(SwsFilter *filter){
  2796. if (!filter) return;
  2797. if (filter->lumH) sws_freeVec(filter->lumH);
  2798. if (filter->lumV) sws_freeVec(filter->lumV);
  2799. if (filter->chrH) sws_freeVec(filter->chrH);
  2800. if (filter->chrV) sws_freeVec(filter->chrV);
  2801. av_free(filter);
  2802. }
  2803. void sws_freeContext(SwsContext *c){
  2804. int i;
  2805. if (!c) return;
  2806. if (c->lumPixBuf)
  2807. {
  2808. for (i=0; i<c->vLumBufSize; i++)
  2809. av_freep(&c->lumPixBuf[i]);
  2810. av_freep(&c->lumPixBuf);
  2811. }
  2812. if (c->chrPixBuf)
  2813. {
  2814. for (i=0; i<c->vChrBufSize; i++)
  2815. av_freep(&c->chrPixBuf[i]);
  2816. av_freep(&c->chrPixBuf);
  2817. }
  2818. av_freep(&c->vLumFilter);
  2819. av_freep(&c->vChrFilter);
  2820. av_freep(&c->hLumFilter);
  2821. av_freep(&c->hChrFilter);
  2822. #if HAVE_ALTIVEC
  2823. av_freep(&c->vYCoeffsBank);
  2824. av_freep(&c->vCCoeffsBank);
  2825. #endif
  2826. av_freep(&c->vLumFilterPos);
  2827. av_freep(&c->vChrFilterPos);
  2828. av_freep(&c->hLumFilterPos);
  2829. av_freep(&c->hChrFilterPos);
  2830. #if ARCH_X86 && CONFIG_GPL
  2831. #ifdef MAP_ANONYMOUS
  2832. if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2833. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2834. #else
  2835. av_free(c->funnyYCode);
  2836. av_free(c->funnyUVCode);
  2837. #endif
  2838. c->funnyYCode=NULL;
  2839. c->funnyUVCode=NULL;
  2840. #endif /* ARCH_X86 && CONFIG_GPL */
  2841. av_freep(&c->lumMmx2Filter);
  2842. av_freep(&c->chrMmx2Filter);
  2843. av_freep(&c->lumMmx2FilterPos);
  2844. av_freep(&c->chrMmx2FilterPos);
  2845. av_freep(&c->yuvTable);
  2846. av_free(c);
  2847. }
  2848. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2849. int srcW, int srcH, enum PixelFormat srcFormat,
  2850. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2851. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2852. {
  2853. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2854. if (!param)
  2855. param = default_param;
  2856. if (context) {
  2857. if (context->srcW != srcW || context->srcH != srcH ||
  2858. context->srcFormat != srcFormat ||
  2859. context->dstW != dstW || context->dstH != dstH ||
  2860. context->dstFormat != dstFormat || context->flags != flags ||
  2861. context->param[0] != param[0] || context->param[1] != param[1])
  2862. {
  2863. sws_freeContext(context);
  2864. context = NULL;
  2865. }
  2866. }
  2867. if (!context) {
  2868. return sws_getContext(srcW, srcH, srcFormat,
  2869. dstW, dstH, dstFormat, flags,
  2870. srcFilter, dstFilter, param);
  2871. }
  2872. return context;
  2873. }