You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

813 lines
31KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard.
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef FFMPEG_DSPUTIL_H
  29. #define FFMPEG_DSPUTIL_H
  30. #include "avcodec.h"
  31. //#define DEBUG
  32. /* dct code */
  33. typedef short DCTELEM;
  34. typedef int DWTELEM;
  35. typedef short IDWTELEM;
  36. void fdct_ifast (DCTELEM *data);
  37. void fdct_ifast248 (DCTELEM *data);
  38. void ff_jpeg_fdct_islow (DCTELEM *data);
  39. void ff_fdct248_islow (DCTELEM *data);
  40. void j_rev_dct (DCTELEM *data);
  41. void j_rev_dct4 (DCTELEM *data);
  42. void j_rev_dct2 (DCTELEM *data);
  43. void j_rev_dct1 (DCTELEM *data);
  44. void ff_wmv2_idct_c(DCTELEM *data);
  45. void ff_fdct_mmx(DCTELEM *block);
  46. void ff_fdct_mmx2(DCTELEM *block);
  47. void ff_fdct_sse2(DCTELEM *block);
  48. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  49. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  53. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
  55. const float *src2, int src3, int blocksize, int step);
  56. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  57. const float *win, float add_bias, int len);
  58. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  59. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  60. /* encoding scans */
  61. extern const uint8_t ff_alternate_horizontal_scan[64];
  62. extern const uint8_t ff_alternate_vertical_scan[64];
  63. extern const uint8_t ff_zigzag_direct[64];
  64. extern const uint8_t ff_zigzag248_direct[64];
  65. /* pixel operations */
  66. #define MAX_NEG_CROP 1024
  67. /* temporary */
  68. extern uint32_t ff_squareTbl[512];
  69. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  70. /* VP3 DSP functions */
  71. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  72. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  73. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  74. /* 1/2^n downscaling functions from imgconvert.c */
  75. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  76. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  77. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  78. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  79. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  80. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  81. /* minimum alignment rules ;)
  82. If you notice errors in the align stuff, need more alignment for some ASM code
  83. for some CPU or need to use a function with less aligned data then send a mail
  84. to the ffmpeg-devel mailing list, ...
  85. !warning These alignments might not match reality, (missing attribute((align))
  86. stuff somewhere possible).
  87. I (Michael) did not check them, these are just the alignments which I think
  88. could be reached easily ...
  89. !future video codecs might need functions with less strict alignment
  90. */
  91. /*
  92. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  93. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  94. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  95. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  96. void clear_blocks_c(DCTELEM *blocks);
  97. */
  98. /* add and put pixel (decoding) */
  99. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  100. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  101. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  102. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  103. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  104. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  105. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  106. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  107. #define DEF_OLD_QPEL(name)\
  108. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  109. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  110. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  111. DEF_OLD_QPEL(qpel16_mc11_old_c)
  112. DEF_OLD_QPEL(qpel16_mc31_old_c)
  113. DEF_OLD_QPEL(qpel16_mc12_old_c)
  114. DEF_OLD_QPEL(qpel16_mc32_old_c)
  115. DEF_OLD_QPEL(qpel16_mc13_old_c)
  116. DEF_OLD_QPEL(qpel16_mc33_old_c)
  117. DEF_OLD_QPEL(qpel8_mc11_old_c)
  118. DEF_OLD_QPEL(qpel8_mc31_old_c)
  119. DEF_OLD_QPEL(qpel8_mc12_old_c)
  120. DEF_OLD_QPEL(qpel8_mc32_old_c)
  121. DEF_OLD_QPEL(qpel8_mc13_old_c)
  122. DEF_OLD_QPEL(qpel8_mc33_old_c)
  123. #define CALL_2X_PIXELS(a, b, n)\
  124. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  125. b(block , pixels , line_size, h);\
  126. b(block+n, pixels+n, line_size, h);\
  127. }
  128. /* motion estimation */
  129. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  130. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  131. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  132. // for snow slices
  133. typedef struct slice_buffer_s slice_buffer;
  134. /**
  135. * Scantable.
  136. */
  137. typedef struct ScanTable{
  138. const uint8_t *scantable;
  139. uint8_t permutated[64];
  140. uint8_t raster_end[64];
  141. #ifdef ARCH_POWERPC
  142. /** Used by dct_quantize_altivec to find last-non-zero */
  143. DECLARE_ALIGNED(16, uint8_t, inverse[64]);
  144. #endif
  145. } ScanTable;
  146. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  147. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  148. int block_w, int block_h,
  149. int src_x, int src_y, int w, int h);
  150. /**
  151. * DSPContext.
  152. */
  153. typedef struct DSPContext {
  154. /* pixel ops : interface with DCT */
  155. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  156. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  157. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  158. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  159. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  160. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  161. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  162. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  163. /**
  164. * translational global motion compensation.
  165. */
  166. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  167. /**
  168. * global motion compensation.
  169. */
  170. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  171. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  172. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  173. int (*pix_sum)(uint8_t * pix, int line_size);
  174. int (*pix_norm1)(uint8_t * pix, int line_size);
  175. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  176. me_cmp_func sad[5]; /* identical to pix_absAxA except additional void * */
  177. me_cmp_func sse[5];
  178. me_cmp_func hadamard8_diff[5];
  179. me_cmp_func dct_sad[5];
  180. me_cmp_func quant_psnr[5];
  181. me_cmp_func bit[5];
  182. me_cmp_func rd[5];
  183. me_cmp_func vsad[5];
  184. me_cmp_func vsse[5];
  185. me_cmp_func nsse[5];
  186. me_cmp_func w53[5];
  187. me_cmp_func w97[5];
  188. me_cmp_func dct_max[5];
  189. me_cmp_func dct264_sad[5];
  190. me_cmp_func me_pre_cmp[5];
  191. me_cmp_func me_cmp[5];
  192. me_cmp_func me_sub_cmp[5];
  193. me_cmp_func mb_cmp[5];
  194. me_cmp_func ildct_cmp[5]; //only width 16 used
  195. me_cmp_func frame_skip_cmp[5]; //only width 8 used
  196. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  197. int size);
  198. /**
  199. * Halfpel motion compensation with rounding (a+b+1)>>1.
  200. * this is an array[4][4] of motion compensation functions for 4
  201. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  202. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  203. * @param block destination where the result is stored
  204. * @param pixels source
  205. * @param line_size number of bytes in a horizontal line of block
  206. * @param h height
  207. */
  208. op_pixels_func put_pixels_tab[4][4];
  209. /**
  210. * Halfpel motion compensation with rounding (a+b+1)>>1.
  211. * This is an array[4][4] of motion compensation functions for 4
  212. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  213. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  214. * @param block destination into which the result is averaged (a+b+1)>>1
  215. * @param pixels source
  216. * @param line_size number of bytes in a horizontal line of block
  217. * @param h height
  218. */
  219. op_pixels_func avg_pixels_tab[4][4];
  220. /**
  221. * Halfpel motion compensation with no rounding (a+b)>>1.
  222. * this is an array[2][4] of motion compensation functions for 2
  223. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  224. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  225. * @param block destination where the result is stored
  226. * @param pixels source
  227. * @param line_size number of bytes in a horizontal line of block
  228. * @param h height
  229. */
  230. op_pixels_func put_no_rnd_pixels_tab[4][4];
  231. /**
  232. * Halfpel motion compensation with no rounding (a+b)>>1.
  233. * this is an array[2][4] of motion compensation functions for 2
  234. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  235. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  236. * @param block destination into which the result is averaged (a+b)>>1
  237. * @param pixels source
  238. * @param line_size number of bytes in a horizontal line of block
  239. * @param h height
  240. */
  241. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  242. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  243. /**
  244. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  245. * this is an array[12] of motion compensation functions for the 9 thirdpe
  246. * positions<br>
  247. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  248. * @param block destination where the result is stored
  249. * @param pixels source
  250. * @param line_size number of bytes in a horizontal line of block
  251. * @param h height
  252. */
  253. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  254. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  255. qpel_mc_func put_qpel_pixels_tab[2][16];
  256. qpel_mc_func avg_qpel_pixels_tab[2][16];
  257. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  258. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  259. qpel_mc_func put_mspel_pixels_tab[8];
  260. /**
  261. * h264 Chroma MC
  262. */
  263. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  264. /* This is really one func used in VC-1 decoding */
  265. h264_chroma_mc_func put_no_rnd_h264_chroma_pixels_tab[3];
  266. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  267. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  268. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  269. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  270. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  271. h264_weight_func weight_h264_pixels_tab[10];
  272. h264_biweight_func biweight_h264_pixels_tab[10];
  273. /* AVS specific */
  274. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  275. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  276. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  277. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  278. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  279. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  280. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  281. me_cmp_func pix_abs[2][4];
  282. /* huffyuv specific */
  283. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  284. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  285. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  286. /**
  287. * subtract huffyuv's variant of median prediction
  288. * note, this might read from src1[-1], src2[-1]
  289. */
  290. void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
  291. /* this might write to dst[w] */
  292. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  293. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  294. void (*h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
  295. void (*h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
  296. void (*h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
  297. void (*h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0);
  298. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  299. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  300. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  301. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  302. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  303. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  304. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  305. void (*h261_loop_filter)(uint8_t *src, int stride);
  306. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  307. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  308. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  309. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  310. /* no alignment needed */
  311. void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  312. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  313. void (*vector_fmul)(float *dst, const float *src, int len);
  314. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  315. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  316. void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
  317. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  318. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  319. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  320. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  321. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  322. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  323. /* (I)DCT */
  324. void (*fdct)(DCTELEM *block/* align 16*/);
  325. void (*fdct248)(DCTELEM *block/* align 16*/);
  326. /* IDCT really*/
  327. void (*idct)(DCTELEM *block/* align 16*/);
  328. /**
  329. * block -> idct -> clip to unsigned 8 bit -> dest.
  330. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  331. * @param line_size size in bytes of a horizontal line of dest
  332. */
  333. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  334. /**
  335. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  336. * @param line_size size in bytes of a horizontal line of dest
  337. */
  338. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  339. /**
  340. * idct input permutation.
  341. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  342. * IDCT)
  343. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  344. * with the zigzag/alternate scan<br>
  345. * an example to avoid confusion:
  346. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  347. * - (x -> referece dct -> reference idct -> x)
  348. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  349. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  350. */
  351. uint8_t idct_permutation[64];
  352. int idct_permutation_type;
  353. #define FF_NO_IDCT_PERM 1
  354. #define FF_LIBMPEG2_IDCT_PERM 2
  355. #define FF_SIMPLE_IDCT_PERM 3
  356. #define FF_TRANSPOSE_IDCT_PERM 4
  357. #define FF_PARTTRANS_IDCT_PERM 5
  358. #define FF_SSE2_IDCT_PERM 6
  359. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  360. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  361. #define BASIS_SHIFT 16
  362. #define RECON_SHIFT 6
  363. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  364. #define EDGE_WIDTH 16
  365. /* h264 functions */
  366. void (*h264_idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  367. void (*h264_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  368. void (*h264_idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  369. void (*h264_idct8_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  370. void (*h264_dct)(DCTELEM block[4][4]);
  371. /* snow wavelet */
  372. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  373. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  374. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  375. void (*prefetch)(void *mem, int stride, int h);
  376. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  377. /* vc1 functions */
  378. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  379. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  380. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  381. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  382. void (*vc1_v_overlap)(uint8_t* src, int stride);
  383. void (*vc1_h_overlap)(uint8_t* src, int stride);
  384. /* put 8x8 block with bicubic interpolation and quarterpel precision
  385. * last argument is actually round value instead of height
  386. */
  387. op_pixels_func put_vc1_mspel_pixels_tab[16];
  388. /* intrax8 functions */
  389. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  390. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  391. int * range, int * sum, int edges);
  392. /* ape functions */
  393. /**
  394. * Add contents of the second vector to the first one.
  395. * @param len length of vectors, should be multiple of 16
  396. */
  397. void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  398. /**
  399. * Add contents of the second vector to the first one.
  400. * @param len length of vectors, should be multiple of 16
  401. */
  402. void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  403. /**
  404. * Calculate scalar product of two vectors.
  405. * @param len length of vectors, should be multiple of 16
  406. * @param shift number of bits to discard from product
  407. */
  408. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  409. } DSPContext;
  410. void dsputil_static_init(void);
  411. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  412. int ff_check_alignment(void);
  413. /**
  414. * permute block according to permuatation.
  415. * @param last last non zero element in scantable order
  416. */
  417. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  418. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  419. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  420. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  421. {
  422. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  423. }
  424. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  425. {
  426. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  427. }
  428. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  429. switch(type&0xFF){
  430. default:
  431. case FF_CMP_SAD:
  432. return lambda>>FF_LAMBDA_SHIFT;
  433. case FF_CMP_DCT:
  434. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  435. case FF_CMP_W53:
  436. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  437. case FF_CMP_W97:
  438. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  439. case FF_CMP_SATD:
  440. case FF_CMP_DCT264:
  441. return (2*lambda)>>FF_LAMBDA_SHIFT;
  442. case FF_CMP_RD:
  443. case FF_CMP_PSNR:
  444. case FF_CMP_SSE:
  445. case FF_CMP_NSSE:
  446. return lambda2>>FF_LAMBDA_SHIFT;
  447. case FF_CMP_BIT:
  448. return 1;
  449. }
  450. }
  451. /**
  452. * Empty mmx state.
  453. * this must be called between any dsp function and float/double code.
  454. * for example sin(); dsp->idct_put(); emms_c(); cos()
  455. */
  456. #define emms_c()
  457. /* should be defined by architectures supporting
  458. one or more MultiMedia extension */
  459. int mm_support(void);
  460. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  461. void dsputil_init_armv4l(DSPContext* c, AVCodecContext *avctx);
  462. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  463. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  464. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  465. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  466. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  467. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  468. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  469. #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
  470. #if defined(HAVE_MMX)
  471. #undef emms_c
  472. #define MM_MMX 0x0001 /* standard MMX */
  473. #define MM_3DNOW 0x0004 /* AMD 3DNOW */
  474. #define MM_MMXEXT 0x0002 /* SSE integer functions or AMD MMX ext */
  475. #define MM_SSE 0x0008 /* SSE functions */
  476. #define MM_SSE2 0x0010 /* PIV SSE2 functions */
  477. #define MM_3DNOWEXT 0x0020 /* AMD 3DNowExt */
  478. #define MM_SSE3 0x0040 /* Prescott SSE3 functions */
  479. #define MM_SSSE3 0x0080 /* Conroe SSSE3 functions */
  480. extern int mm_flags;
  481. void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  482. void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  483. void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  484. static inline void emms(void)
  485. {
  486. asm volatile ("emms;":::"memory");
  487. }
  488. #define emms_c() \
  489. {\
  490. if (mm_flags & MM_MMX)\
  491. emms();\
  492. }
  493. void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx);
  494. #elif defined(ARCH_ARMV4L)
  495. #define MM_IWMMXT 0x0100 /* XScale IWMMXT */
  496. extern int mm_flags;
  497. #elif defined(ARCH_POWERPC)
  498. #define MM_ALTIVEC 0x0001 /* standard AltiVec */
  499. extern int mm_flags;
  500. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
  501. #define STRIDE_ALIGN 16
  502. #elif defined(HAVE_MMI)
  503. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
  504. #define STRIDE_ALIGN 16
  505. #else
  506. #define mm_flags 0
  507. #define mm_support() 0
  508. #endif
  509. #ifndef DECLARE_ALIGNED_8
  510. # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
  511. #endif
  512. #ifndef STRIDE_ALIGN
  513. # define STRIDE_ALIGN 8
  514. #endif
  515. /* PSNR */
  516. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  517. int orig_linesize[3], int coded_linesize,
  518. AVCodecContext *avctx);
  519. /* FFT computation */
  520. /* NOTE: soon integer code will be added, so you must use the
  521. FFTSample type */
  522. typedef float FFTSample;
  523. struct MDCTContext;
  524. typedef struct FFTComplex {
  525. FFTSample re, im;
  526. } FFTComplex;
  527. typedef struct FFTContext {
  528. int nbits;
  529. int inverse;
  530. uint16_t *revtab;
  531. FFTComplex *exptab;
  532. FFTComplex *exptab1; /* only used by SSE code */
  533. FFTComplex *tmp_buf;
  534. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  535. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  536. void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
  537. void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
  538. } FFTContext;
  539. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  540. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  541. void ff_fft_permute_sse(FFTContext *s, FFTComplex *z);
  542. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  543. void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
  544. void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
  545. void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
  546. void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
  547. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  548. {
  549. s->fft_permute(s, z);
  550. }
  551. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  552. {
  553. s->fft_calc(s, z);
  554. }
  555. void ff_fft_end(FFTContext *s);
  556. /* MDCT computation */
  557. typedef struct MDCTContext {
  558. int n; /* size of MDCT (i.e. number of input data * 2) */
  559. int nbits; /* n = 2^nbits */
  560. /* pre/post rotation tables */
  561. FFTSample *tcos;
  562. FFTSample *tsin;
  563. FFTContext fft;
  564. } MDCTContext;
  565. static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input)
  566. {
  567. s->fft.imdct_calc(s, output, input);
  568. }
  569. static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
  570. {
  571. s->fft.imdct_half(s, output, input);
  572. }
  573. /**
  574. * Generate a Kaiser-Bessel Derived Window.
  575. * @param window pointer to half window
  576. * @param alpha determines window shape
  577. * @param n size of half window
  578. */
  579. void ff_kbd_window_init(float *window, float alpha, int n);
  580. /**
  581. * Generate a sine window.
  582. * @param window pointer to half window
  583. * @param n size of half window
  584. */
  585. void ff_sine_window_init(float *window, int n);
  586. int ff_mdct_init(MDCTContext *s, int nbits, int inverse);
  587. void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
  588. void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
  589. void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
  590. void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
  591. void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
  592. void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
  593. void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
  594. void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
  595. void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input);
  596. void ff_mdct_end(MDCTContext *s);
  597. #define WRAPPER8_16(name8, name16)\
  598. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  599. return name8(s, dst , src , stride, h)\
  600. +name8(s, dst+8 , src+8 , stride, h);\
  601. }
  602. #define WRAPPER8_16_SQ(name8, name16)\
  603. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  604. int score=0;\
  605. score +=name8(s, dst , src , stride, 8);\
  606. score +=name8(s, dst+8 , src+8 , stride, 8);\
  607. if(h==16){\
  608. dst += 8*stride;\
  609. src += 8*stride;\
  610. score +=name8(s, dst , src , stride, 8);\
  611. score +=name8(s, dst+8 , src+8 , stride, 8);\
  612. }\
  613. return score;\
  614. }
  615. static inline void copy_block2(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  616. {
  617. int i;
  618. for(i=0; i<h; i++)
  619. {
  620. AV_WN16(dst , AV_RN16(src ));
  621. dst+=dstStride;
  622. src+=srcStride;
  623. }
  624. }
  625. static inline void copy_block4(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  626. {
  627. int i;
  628. for(i=0; i<h; i++)
  629. {
  630. AV_WN32(dst , AV_RN32(src ));
  631. dst+=dstStride;
  632. src+=srcStride;
  633. }
  634. }
  635. static inline void copy_block8(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  636. {
  637. int i;
  638. for(i=0; i<h; i++)
  639. {
  640. AV_WN32(dst , AV_RN32(src ));
  641. AV_WN32(dst+4 , AV_RN32(src+4 ));
  642. dst+=dstStride;
  643. src+=srcStride;
  644. }
  645. }
  646. static inline void copy_block9(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  647. {
  648. int i;
  649. for(i=0; i<h; i++)
  650. {
  651. AV_WN32(dst , AV_RN32(src ));
  652. AV_WN32(dst+4 , AV_RN32(src+4 ));
  653. dst[8]= src[8];
  654. dst+=dstStride;
  655. src+=srcStride;
  656. }
  657. }
  658. static inline void copy_block16(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  659. {
  660. int i;
  661. for(i=0; i<h; i++)
  662. {
  663. AV_WN32(dst , AV_RN32(src ));
  664. AV_WN32(dst+4 , AV_RN32(src+4 ));
  665. AV_WN32(dst+8 , AV_RN32(src+8 ));
  666. AV_WN32(dst+12, AV_RN32(src+12));
  667. dst+=dstStride;
  668. src+=srcStride;
  669. }
  670. }
  671. static inline void copy_block17(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  672. {
  673. int i;
  674. for(i=0; i<h; i++)
  675. {
  676. AV_WN32(dst , AV_RN32(src ));
  677. AV_WN32(dst+4 , AV_RN32(src+4 ));
  678. AV_WN32(dst+8 , AV_RN32(src+8 ));
  679. AV_WN32(dst+12, AV_RN32(src+12));
  680. dst[16]= src[16];
  681. dst+=dstStride;
  682. src+=srcStride;
  683. }
  684. }
  685. #endif /* FFMPEG_DSPUTIL_H */