You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

496 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "sinewin.h"
  24. #include "wma.h"
  25. #include "wma_common.h"
  26. #include "wma_freqs.h"
  27. #include "wmadata.h"
  28. #undef NDEBUG
  29. #include <assert.h>
  30. /* XXX: use same run/length optimization as mpeg decoders */
  31. // FIXME maybe split decode / encode or pass flag
  32. static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  33. float **plevel_table, uint16_t **pint_table,
  34. const CoefVLCTable *vlc_table)
  35. {
  36. int n = vlc_table->n;
  37. const uint8_t *table_bits = vlc_table->huffbits;
  38. const uint32_t *table_codes = vlc_table->huffcodes;
  39. const uint16_t *levels_table = vlc_table->levels;
  40. uint16_t *run_table, *level_table, *int_table;
  41. float *flevel_table;
  42. int i, l, j, k, level;
  43. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  44. run_table = av_malloc_array(n, sizeof(uint16_t));
  45. level_table = av_malloc_array(n, sizeof(uint16_t));
  46. flevel_table = av_malloc_array(n, sizeof(*flevel_table));
  47. int_table = av_malloc_array(n, sizeof(uint16_t));
  48. if (!run_table || !level_table || !flevel_table || !int_table) {
  49. av_freep(&run_table);
  50. av_freep(&level_table);
  51. av_freep(&flevel_table);
  52. av_freep(&int_table);
  53. return AVERROR(ENOMEM);
  54. }
  55. i = 2;
  56. level = 1;
  57. k = 0;
  58. while (i < n) {
  59. int_table[k] = i;
  60. l = levels_table[k++];
  61. for (j = 0; j < l; j++) {
  62. run_table[i] = j;
  63. level_table[i] = level;
  64. flevel_table[i] = level;
  65. i++;
  66. }
  67. level++;
  68. }
  69. *prun_table = run_table;
  70. *plevel_table = flevel_table;
  71. *pint_table = int_table;
  72. av_free(level_table);
  73. return 0;
  74. }
  75. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  76. {
  77. WMACodecContext *s = avctx->priv_data;
  78. int i, ret;
  79. float bps1, high_freq;
  80. volatile float bps;
  81. int sample_rate1;
  82. int coef_vlc_table;
  83. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  84. avctx->channels <= 0 || avctx->channels > 2 ||
  85. avctx->bit_rate <= 0)
  86. return -1;
  87. ff_fmt_convert_init(&s->fmt_conv, avctx);
  88. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  89. s->version = 1;
  90. else
  91. s->version = 2;
  92. /* compute MDCT block size */
  93. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  94. s->version, 0);
  95. s->next_block_len_bits = s->frame_len_bits;
  96. s->prev_block_len_bits = s->frame_len_bits;
  97. s->block_len_bits = s->frame_len_bits;
  98. s->frame_len = 1 << s->frame_len_bits;
  99. if (s->use_variable_block_len) {
  100. int nb_max, nb;
  101. nb = ((flags2 >> 3) & 3) + 1;
  102. if ((avctx->bit_rate / avctx->channels) >= 32000)
  103. nb += 2;
  104. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  105. if (nb > nb_max)
  106. nb = nb_max;
  107. s->nb_block_sizes = nb + 1;
  108. } else
  109. s->nb_block_sizes = 1;
  110. /* init rate dependent parameters */
  111. s->use_noise_coding = 1;
  112. high_freq = avctx->sample_rate * 0.5;
  113. /* if version 2, then the rates are normalized */
  114. sample_rate1 = avctx->sample_rate;
  115. if (s->version == 2) {
  116. if (sample_rate1 >= 44100)
  117. sample_rate1 = 44100;
  118. else if (sample_rate1 >= 22050)
  119. sample_rate1 = 22050;
  120. else if (sample_rate1 >= 16000)
  121. sample_rate1 = 16000;
  122. else if (sample_rate1 >= 11025)
  123. sample_rate1 = 11025;
  124. else if (sample_rate1 >= 8000)
  125. sample_rate1 = 8000;
  126. }
  127. bps = (float) avctx->bit_rate /
  128. (float) (avctx->channels * avctx->sample_rate);
  129. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  130. if (s->byte_offset_bits + 3 > MIN_CACHE_BITS) {
  131. av_log(avctx, AV_LOG_ERROR, "byte_offset_bits %d is too large\n", s->byte_offset_bits);
  132. return AVERROR_PATCHWELCOME;
  133. }
  134. /* compute high frequency value and choose if noise coding should
  135. * be activated */
  136. bps1 = bps;
  137. if (avctx->channels == 2)
  138. bps1 = bps * 1.6;
  139. if (sample_rate1 == 44100) {
  140. if (bps1 >= 0.61)
  141. s->use_noise_coding = 0;
  142. else
  143. high_freq = high_freq * 0.4;
  144. } else if (sample_rate1 == 22050) {
  145. if (bps1 >= 1.16)
  146. s->use_noise_coding = 0;
  147. else if (bps1 >= 0.72)
  148. high_freq = high_freq * 0.7;
  149. else
  150. high_freq = high_freq * 0.6;
  151. } else if (sample_rate1 == 16000) {
  152. if (bps > 0.5)
  153. high_freq = high_freq * 0.5;
  154. else
  155. high_freq = high_freq * 0.3;
  156. } else if (sample_rate1 == 11025)
  157. high_freq = high_freq * 0.7;
  158. else if (sample_rate1 == 8000) {
  159. if (bps <= 0.625)
  160. high_freq = high_freq * 0.5;
  161. else if (bps > 0.75)
  162. s->use_noise_coding = 0;
  163. else
  164. high_freq = high_freq * 0.65;
  165. } else {
  166. if (bps >= 0.8)
  167. high_freq = high_freq * 0.75;
  168. else if (bps >= 0.6)
  169. high_freq = high_freq * 0.6;
  170. else
  171. high_freq = high_freq * 0.5;
  172. }
  173. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  174. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  175. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  176. avctx->block_align);
  177. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  178. bps, bps1, high_freq, s->byte_offset_bits);
  179. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  180. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  181. /* compute the scale factor band sizes for each MDCT block size */
  182. {
  183. int a, b, pos, lpos, k, block_len, i, j, n;
  184. const uint8_t *table;
  185. if (s->version == 1)
  186. s->coefs_start = 3;
  187. else
  188. s->coefs_start = 0;
  189. for (k = 0; k < s->nb_block_sizes; k++) {
  190. block_len = s->frame_len >> k;
  191. if (s->version == 1) {
  192. lpos = 0;
  193. for (i = 0; i < 25; i++) {
  194. a = ff_wma_critical_freqs[i];
  195. b = avctx->sample_rate;
  196. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  197. if (pos > block_len)
  198. pos = block_len;
  199. s->exponent_bands[0][i] = pos - lpos;
  200. if (pos >= block_len) {
  201. i++;
  202. break;
  203. }
  204. lpos = pos;
  205. }
  206. s->exponent_sizes[0] = i;
  207. } else {
  208. /* hardcoded tables */
  209. table = NULL;
  210. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  211. if (a < 3) {
  212. if (avctx->sample_rate >= 44100)
  213. table = exponent_band_44100[a];
  214. else if (avctx->sample_rate >= 32000)
  215. table = exponent_band_32000[a];
  216. else if (avctx->sample_rate >= 22050)
  217. table = exponent_band_22050[a];
  218. }
  219. if (table) {
  220. n = *table++;
  221. for (i = 0; i < n; i++)
  222. s->exponent_bands[k][i] = table[i];
  223. s->exponent_sizes[k] = n;
  224. } else {
  225. j = 0;
  226. lpos = 0;
  227. for (i = 0; i < 25; i++) {
  228. a = ff_wma_critical_freqs[i];
  229. b = avctx->sample_rate;
  230. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  231. pos <<= 2;
  232. if (pos > block_len)
  233. pos = block_len;
  234. if (pos > lpos)
  235. s->exponent_bands[k][j++] = pos - lpos;
  236. if (pos >= block_len)
  237. break;
  238. lpos = pos;
  239. }
  240. s->exponent_sizes[k] = j;
  241. }
  242. }
  243. /* max number of coefs */
  244. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  245. /* high freq computation */
  246. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  247. avctx->sample_rate + 0.5);
  248. n = s->exponent_sizes[k];
  249. j = 0;
  250. pos = 0;
  251. for (i = 0; i < n; i++) {
  252. int start, end;
  253. start = pos;
  254. pos += s->exponent_bands[k][i];
  255. end = pos;
  256. if (start < s->high_band_start[k])
  257. start = s->high_band_start[k];
  258. if (end > s->coefs_end[k])
  259. end = s->coefs_end[k];
  260. if (end > start)
  261. s->exponent_high_bands[k][j++] = end - start;
  262. }
  263. s->exponent_high_sizes[k] = j;
  264. #if 0
  265. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  266. s->frame_len >> k,
  267. s->coefs_end[k],
  268. s->high_band_start[k],
  269. s->exponent_high_sizes[k]);
  270. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  271. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  272. tprintf(s->avctx, "\n");
  273. #endif /* 0 */
  274. }
  275. }
  276. #ifdef TRACE
  277. {
  278. int i, j;
  279. for (i = 0; i < s->nb_block_sizes; i++) {
  280. tprintf(s->avctx, "%5d: n=%2d:",
  281. s->frame_len >> i,
  282. s->exponent_sizes[i]);
  283. for (j = 0; j < s->exponent_sizes[i]; j++)
  284. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  285. tprintf(s->avctx, "\n");
  286. }
  287. }
  288. #endif /* TRACE */
  289. /* init MDCT windows : simple sine window */
  290. for (i = 0; i < s->nb_block_sizes; i++) {
  291. ff_init_ff_sine_windows(s->frame_len_bits - i);
  292. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  293. }
  294. s->reset_block_lengths = 1;
  295. if (s->use_noise_coding) {
  296. /* init the noise generator */
  297. if (s->use_exp_vlc)
  298. s->noise_mult = 0.02;
  299. else
  300. s->noise_mult = 0.04;
  301. #ifdef TRACE
  302. for (i = 0; i < NOISE_TAB_SIZE; i++)
  303. s->noise_table[i] = 1.0 * s->noise_mult;
  304. #else
  305. {
  306. unsigned int seed;
  307. float norm;
  308. seed = 1;
  309. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  310. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  311. seed = seed * 314159 + 1;
  312. s->noise_table[i] = (float) ((int) seed) * norm;
  313. }
  314. }
  315. #endif /* TRACE */
  316. }
  317. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
  318. if (!s->fdsp)
  319. return AVERROR(ENOMEM);
  320. /* choose the VLC tables for the coefficients */
  321. coef_vlc_table = 2;
  322. if (avctx->sample_rate >= 32000) {
  323. if (bps1 < 0.72)
  324. coef_vlc_table = 0;
  325. else if (bps1 < 1.16)
  326. coef_vlc_table = 1;
  327. }
  328. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  329. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  330. ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  331. &s->int_table[0], s->coef_vlcs[0]);
  332. if (ret < 0)
  333. return ret;
  334. return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  335. &s->int_table[1], s->coef_vlcs[1]);
  336. }
  337. int ff_wma_total_gain_to_bits(int total_gain)
  338. {
  339. if (total_gain < 15)
  340. return 13;
  341. else if (total_gain < 32)
  342. return 12;
  343. else if (total_gain < 40)
  344. return 11;
  345. else if (total_gain < 45)
  346. return 10;
  347. else
  348. return 9;
  349. }
  350. int ff_wma_end(AVCodecContext *avctx)
  351. {
  352. WMACodecContext *s = avctx->priv_data;
  353. int i;
  354. for (i = 0; i < s->nb_block_sizes; i++)
  355. ff_mdct_end(&s->mdct_ctx[i]);
  356. if (s->use_exp_vlc)
  357. ff_free_vlc(&s->exp_vlc);
  358. if (s->use_noise_coding)
  359. ff_free_vlc(&s->hgain_vlc);
  360. for (i = 0; i < 2; i++) {
  361. ff_free_vlc(&s->coef_vlc[i]);
  362. av_freep(&s->run_table[i]);
  363. av_freep(&s->level_table[i]);
  364. av_freep(&s->int_table[i]);
  365. }
  366. av_freep(&s->fdsp);
  367. return 0;
  368. }
  369. /**
  370. * Decode an uncompressed coefficient.
  371. * @param gb GetBitContext
  372. * @return the decoded coefficient
  373. */
  374. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  375. {
  376. /** consumes up to 34 bits */
  377. int n_bits = 8;
  378. /** decode length */
  379. if (get_bits1(gb)) {
  380. n_bits += 8;
  381. if (get_bits1(gb)) {
  382. n_bits += 8;
  383. if (get_bits1(gb))
  384. n_bits += 7;
  385. }
  386. }
  387. return get_bits_long(gb, n_bits);
  388. }
  389. /**
  390. * Decode run level compressed coefficients.
  391. * @param avctx codec context
  392. * @param gb bitstream reader context
  393. * @param vlc vlc table for get_vlc2
  394. * @param level_table level codes
  395. * @param run_table run codes
  396. * @param version 0 for wma1,2 1 for wmapro
  397. * @param ptr output buffer
  398. * @param offset offset in the output buffer
  399. * @param num_coefs number of input coefficents
  400. * @param block_len input buffer length (2^n)
  401. * @param frame_len_bits number of bits for escaped run codes
  402. * @param coef_nb_bits number of bits for escaped level codes
  403. * @return 0 on success, -1 otherwise
  404. */
  405. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  406. VLC *vlc, const float *level_table,
  407. const uint16_t *run_table, int version,
  408. WMACoef *ptr, int offset, int num_coefs,
  409. int block_len, int frame_len_bits,
  410. int coef_nb_bits)
  411. {
  412. int code, level, sign;
  413. const uint32_t *ilvl = (const uint32_t *) level_table;
  414. uint32_t *iptr = (uint32_t *) ptr;
  415. const unsigned int coef_mask = block_len - 1;
  416. for (; offset < num_coefs; offset++) {
  417. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  418. if (code > 1) {
  419. /** normal code */
  420. offset += run_table[code];
  421. sign = get_bits1(gb) - 1;
  422. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  423. } else if (code == 1) {
  424. /** EOB */
  425. break;
  426. } else {
  427. /** escape */
  428. if (!version) {
  429. level = get_bits(gb, coef_nb_bits);
  430. /** NOTE: this is rather suboptimal. reading
  431. * block_len_bits would be better */
  432. offset += get_bits(gb, frame_len_bits);
  433. } else {
  434. level = ff_wma_get_large_val(gb);
  435. /** escape decode */
  436. if (get_bits1(gb)) {
  437. if (get_bits1(gb)) {
  438. if (get_bits1(gb)) {
  439. av_log(avctx, AV_LOG_ERROR,
  440. "broken escape sequence\n");
  441. return -1;
  442. } else
  443. offset += get_bits(gb, frame_len_bits) + 4;
  444. } else
  445. offset += get_bits(gb, 2) + 1;
  446. }
  447. }
  448. sign = get_bits1(gb) - 1;
  449. ptr[offset & coef_mask] = (level ^ sign) - sign;
  450. }
  451. }
  452. /** NOTE: EOB can be omitted */
  453. if (offset > num_coefs) {
  454. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  455. return -1;
  456. }
  457. return 0;
  458. }