You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

840 lines
27KB

  1. /*
  2. * This file is part of Libav.
  3. *
  4. * Libav is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2.1 of the License, or (at your option) any later version.
  8. *
  9. * Libav is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with Libav; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. /**
  19. * @file
  20. * @brief IntraX8 (J-Frame) subdecoder, used by WMV2 and VC-1
  21. */
  22. #include "avcodec.h"
  23. #include "get_bits.h"
  24. #include "idctdsp.h"
  25. #include "mpegvideo.h"
  26. #include "msmpeg4data.h"
  27. #include "intrax8huf.h"
  28. #include "intrax8.h"
  29. #include "intrax8dsp.h"
  30. #define MAX_TABLE_DEPTH(table_bits, max_bits) \
  31. ((max_bits + table_bits - 1) / table_bits)
  32. #define DC_VLC_BITS 9
  33. #define AC_VLC_BITS 9
  34. #define OR_VLC_BITS 7
  35. #define DC_VLC_MTD MAX_TABLE_DEPTH(DC_VLC_BITS, MAX_DC_VLC_BITS)
  36. #define AC_VLC_MTD MAX_TABLE_DEPTH(AC_VLC_BITS, MAX_AC_VLC_BITS)
  37. #define OR_VLC_MTD MAX_TABLE_DEPTH(OR_VLC_BITS, MAX_OR_VLC_BITS)
  38. static VLC j_ac_vlc[2][2][8]; // [quant < 13], [intra / inter], [select]
  39. static VLC j_dc_vlc[2][8]; // [quant], [select]
  40. static VLC j_orient_vlc[2][4]; // [quant], [select]
  41. static av_cold int x8_vlc_init(void)
  42. {
  43. int i;
  44. int offset = 0;
  45. int sizeidx = 0;
  46. static const uint16_t sizes[8 * 4 + 8 * 2 + 2 + 4] = {
  47. 576, 548, 582, 618, 546, 616, 560, 642,
  48. 584, 582, 704, 664, 512, 544, 656, 640,
  49. 512, 648, 582, 566, 532, 614, 596, 648,
  50. 586, 552, 584, 590, 544, 578, 584, 624,
  51. 528, 528, 526, 528, 536, 528, 526, 544,
  52. 544, 512, 512, 528, 528, 544, 512, 544,
  53. 128, 128, 128, 128, 128, 128,
  54. };
  55. static VLC_TYPE table[28150][2];
  56. // set ac tables
  57. #define init_ac_vlc(dst, src) \
  58. do { \
  59. dst.table = &table[offset]; \
  60. dst.table_allocated = sizes[sizeidx]; \
  61. offset += sizes[sizeidx++]; \
  62. init_vlc(&dst, AC_VLC_BITS, 77, &src[1], 4, 2, &src[0], 4, 2, \
  63. INIT_VLC_USE_NEW_STATIC); \
  64. } while(0)
  65. for (i = 0; i < 8; i++) {
  66. init_ac_vlc(j_ac_vlc[0][0][i], x8_ac0_highquant_table[i][0]);
  67. init_ac_vlc(j_ac_vlc[0][1][i], x8_ac1_highquant_table[i][0]);
  68. init_ac_vlc(j_ac_vlc[1][0][i], x8_ac0_lowquant_table[i][0]);
  69. init_ac_vlc(j_ac_vlc[1][1][i], x8_ac1_lowquant_table[i][0]);
  70. }
  71. #undef init_ac_vlc
  72. // set dc tables
  73. #define init_dc_vlc(dst, src) \
  74. do { \
  75. dst.table = &table[offset]; \
  76. dst.table_allocated = sizes[sizeidx]; \
  77. offset += sizes[sizeidx++]; \
  78. init_vlc(&dst, DC_VLC_BITS, 34, &src[1], 4, 2, &src[0], 4, 2, \
  79. INIT_VLC_USE_NEW_STATIC); \
  80. } while(0)
  81. for (i = 0; i < 8; i++) {
  82. init_dc_vlc(j_dc_vlc[0][i], x8_dc_highquant_table[i][0]);
  83. init_dc_vlc(j_dc_vlc[1][i], x8_dc_lowquant_table[i][0]);
  84. }
  85. #undef init_dc_vlc
  86. // set orient tables
  87. #define init_or_vlc(dst, src) \
  88. do { \
  89. dst.table = &table[offset]; \
  90. dst.table_allocated = sizes[sizeidx]; \
  91. offset += sizes[sizeidx++]; \
  92. init_vlc(&dst, OR_VLC_BITS, 12, &src[1], 4, 2, &src[0], 4, 2, \
  93. INIT_VLC_USE_NEW_STATIC); \
  94. } while(0)
  95. for (i = 0; i < 2; i++)
  96. init_or_vlc(j_orient_vlc[0][i], x8_orient_highquant_table[i][0]);
  97. for (i = 0; i < 4; i++)
  98. init_or_vlc(j_orient_vlc[1][i], x8_orient_lowquant_table[i][0]);
  99. #undef init_or_vlc
  100. if (offset != sizeof(table) / sizeof(VLC_TYPE) / 2) {
  101. av_log(NULL, AV_LOG_ERROR, "table size %zd does not match needed %i\n",
  102. sizeof(table) / sizeof(VLC_TYPE) / 2, offset);
  103. return AVERROR_INVALIDDATA;
  104. }
  105. return 0;
  106. }
  107. static void x8_reset_vlc_tables(IntraX8Context *w)
  108. {
  109. memset(w->j_dc_vlc, 0, sizeof(w->j_dc_vlc));
  110. memset(w->j_ac_vlc, 0, sizeof(w->j_ac_vlc));
  111. w->j_orient_vlc = NULL;
  112. }
  113. static inline void x8_select_ac_table(IntraX8Context *const w, int mode)
  114. {
  115. MpegEncContext *const s = w->s;
  116. int table_index;
  117. assert(mode < 4);
  118. if (w->j_ac_vlc[mode])
  119. return;
  120. table_index = get_bits(&s->gb, 3);
  121. // 2 modes use same tables
  122. w->j_ac_vlc[mode] = &j_ac_vlc[w->quant < 13][mode >> 1][table_index];
  123. assert(w->j_ac_vlc[mode]);
  124. }
  125. static inline int x8_get_orient_vlc(IntraX8Context *w)
  126. {
  127. MpegEncContext *const s = w->s;
  128. if (!w->j_orient_vlc) {
  129. int table_index = get_bits(&s->gb, 1 + (w->quant < 13));
  130. w->j_orient_vlc = &j_orient_vlc[w->quant < 13][table_index];
  131. }
  132. assert(w->j_orient_vlc);
  133. assert(w->j_orient_vlc->table);
  134. return get_vlc2(&s->gb, w->j_orient_vlc->table, OR_VLC_BITS, OR_VLC_MTD);
  135. }
  136. #define extra_bits(eb) (eb) // 3 bits
  137. #define extra_run (0xFF << 8) // 1 bit
  138. #define extra_level (0x00 << 8) // 1 bit
  139. #define run_offset(r) ((r) << 16) // 6 bits
  140. #define level_offset(l) ((l) << 24) // 5 bits
  141. static const uint32_t ac_decode_table[] = {
  142. /* 46 */ extra_bits(3) | extra_run | run_offset(16) | level_offset(0),
  143. /* 47 */ extra_bits(3) | extra_run | run_offset(24) | level_offset(0),
  144. /* 48 */ extra_bits(2) | extra_run | run_offset(4) | level_offset(1),
  145. /* 49 */ extra_bits(3) | extra_run | run_offset(8) | level_offset(1),
  146. /* 50 */ extra_bits(5) | extra_run | run_offset(32) | level_offset(0),
  147. /* 51 */ extra_bits(4) | extra_run | run_offset(16) | level_offset(1),
  148. /* 52 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(4),
  149. /* 53 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(8),
  150. /* 54 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(12),
  151. /* 55 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(16),
  152. /* 56 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(24),
  153. /* 57 */ extra_bits(2) | extra_level | run_offset(1) | level_offset(3),
  154. /* 58 */ extra_bits(3) | extra_level | run_offset(1) | level_offset(7),
  155. /* 59 */ extra_bits(2) | extra_run | run_offset(16) | level_offset(0),
  156. /* 60 */ extra_bits(2) | extra_run | run_offset(20) | level_offset(0),
  157. /* 61 */ extra_bits(2) | extra_run | run_offset(24) | level_offset(0),
  158. /* 62 */ extra_bits(2) | extra_run | run_offset(28) | level_offset(0),
  159. /* 63 */ extra_bits(4) | extra_run | run_offset(32) | level_offset(0),
  160. /* 64 */ extra_bits(4) | extra_run | run_offset(48) | level_offset(0),
  161. /* 65 */ extra_bits(2) | extra_run | run_offset(4) | level_offset(1),
  162. /* 66 */ extra_bits(3) | extra_run | run_offset(8) | level_offset(1),
  163. /* 67 */ extra_bits(4) | extra_run | run_offset(16) | level_offset(1),
  164. /* 68 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(4),
  165. /* 69 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(8),
  166. /* 70 */ extra_bits(4) | extra_level | run_offset(0) | level_offset(16),
  167. /* 71 */ extra_bits(2) | extra_level | run_offset(1) | level_offset(3),
  168. /* 72 */ extra_bits(3) | extra_level | run_offset(1) | level_offset(7),
  169. };
  170. #undef extra_bits
  171. #undef extra_run
  172. #undef extra_level
  173. #undef run_offset
  174. #undef level_offset
  175. static void x8_get_ac_rlf(IntraX8Context *const w, const int mode,
  176. int *const run, int *const level, int *const final)
  177. {
  178. MpegEncContext *const s = w->s;
  179. int i, e;
  180. // x8_select_ac_table(w, mode);
  181. i = get_vlc2(&s->gb, w->j_ac_vlc[mode]->table, AC_VLC_BITS, AC_VLC_MTD);
  182. if (i < 46) { // [0-45]
  183. int t, l;
  184. if (i < 0) {
  185. (*level) =
  186. (*final) = // prevent 'may be used unilitialized'
  187. (*run) = 64; // this would cause error exit in the ac loop
  188. return;
  189. }
  190. /*
  191. * i == 0-15 r = 0-15 l = 0; r = i & %01111
  192. * i == 16-19 r = 0-3 l = 1; r = i & %00011
  193. * i == 20-21 r = 0-1 l = 2; r = i & %00001
  194. * i == 22 r = 0 l = 3; r = i & %00000
  195. */
  196. (*final) =
  197. t = (i > 22);
  198. i -= 23 * t;
  199. /* l = lut_l[i / 2] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3 }[i >> 1];
  200. * 11 10'01 01'00 00'00 00'00 00'00 00 => 0xE50000 */
  201. l = (0xE50000 >> (i & (0x1E))) & 3; // 0x1E or (~1) or ((i >> 1) << 1)
  202. /* t = lut_mask[l] = { 0x0f, 0x03, 0x01, 0x00 }[l];
  203. * as i < 256 the higher bits do not matter */
  204. t = (0x01030F >> (l << 3));
  205. (*run) = i & t;
  206. (*level) = l;
  207. } else if (i < 73) { // [46-72]
  208. uint32_t sm;
  209. uint32_t mask;
  210. i -= 46;
  211. sm = ac_decode_table[i];
  212. e = get_bits(&s->gb, sm & 0xF);
  213. sm >>= 8; // 3bits
  214. mask = sm & 0xff;
  215. sm >>= 8; // 1bit
  216. (*run) = (sm & 0xff) + (e & (mask)); // 6bits
  217. (*level) = (sm >> 8) + (e & (~mask)); // 5bits
  218. (*final) = i > (58 - 46);
  219. } else if (i < 75) { // [73-74]
  220. static const uint8_t crazy_mix_runlevel[32] = {
  221. 0x22, 0x32, 0x33, 0x53, 0x23, 0x42, 0x43, 0x63,
  222. 0x24, 0x52, 0x34, 0x73, 0x25, 0x62, 0x44, 0x83,
  223. 0x26, 0x72, 0x35, 0x54, 0x27, 0x82, 0x45, 0x64,
  224. 0x28, 0x92, 0x36, 0x74, 0x29, 0xa2, 0x46, 0x84,
  225. };
  226. (*final) = !(i & 1);
  227. e = get_bits(&s->gb, 5); // get the extra bits
  228. (*run) = crazy_mix_runlevel[e] >> 4;
  229. (*level) = crazy_mix_runlevel[e] & 0x0F;
  230. } else {
  231. (*level) = get_bits(&s->gb, 7 - 3 * (i & 1));
  232. (*run) = get_bits(&s->gb, 6);
  233. (*final) = get_bits1(&s->gb);
  234. }
  235. return;
  236. }
  237. /* static const uint8_t dc_extra_sbits[] = {
  238. * 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
  239. * }; */
  240. static const uint8_t dc_index_offset[] = {
  241. 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
  242. };
  243. static int x8_get_dc_rlf(IntraX8Context *const w, const int mode,
  244. int *const level, int *const final)
  245. {
  246. MpegEncContext *const s = w->s;
  247. int i, e, c;
  248. assert(mode < 3);
  249. if (!w->j_dc_vlc[mode]) {
  250. int table_index = get_bits(&s->gb, 3);
  251. // 4 modes, same table
  252. w->j_dc_vlc[mode] = &j_dc_vlc[w->quant < 13][table_index];
  253. }
  254. assert(w->j_dc_vlc);
  255. assert(w->j_dc_vlc[mode]->table);
  256. i = get_vlc2(&s->gb, w->j_dc_vlc[mode]->table, DC_VLC_BITS, DC_VLC_MTD);
  257. /* (i >= 17) { i -= 17; final =1; } */
  258. c = i > 16;
  259. (*final) = c;
  260. i -= 17 * c;
  261. if (i <= 0) {
  262. (*level) = 0;
  263. return -i;
  264. }
  265. c = (i + 1) >> 1; // hackish way to calculate dc_extra_sbits[]
  266. c -= c > 1;
  267. e = get_bits(&s->gb, c); // get the extra bits
  268. i = dc_index_offset[i] + (e >> 1);
  269. e = -(e & 1); // 0, 0xffffff
  270. (*level) = (i ^ e) - e; // (i ^ 0) -0 , (i ^ 0xff) - (-1)
  271. return 0;
  272. }
  273. // end of huffman
  274. static int x8_setup_spatial_predictor(IntraX8Context *const w, const int chroma)
  275. {
  276. MpegEncContext *const s = w->s;
  277. int range;
  278. int sum;
  279. int quant;
  280. w->dsp.setup_spatial_compensation(s->dest[chroma], s->sc.edge_emu_buffer,
  281. s->current_picture.f->linesize[chroma > 0],
  282. &range, &sum, w->edges);
  283. if (chroma) {
  284. w->orient = w->chroma_orient;
  285. quant = w->quant_dc_chroma;
  286. } else {
  287. quant = w->quant;
  288. }
  289. w->flat_dc = 0;
  290. if (range < quant || range < 3) {
  291. w->orient = 0;
  292. // yep you read right, a +-1 idct error may break decoding!
  293. if (range < 3) {
  294. w->flat_dc = 1;
  295. sum += 9;
  296. // ((1 << 17) + 9) / (8 + 8 + 1 + 2) = 6899
  297. w->predicted_dc = (sum * 6899) >> 17;
  298. }
  299. }
  300. if (chroma)
  301. return 0;
  302. assert(w->orient < 3);
  303. if (range < 2 * w->quant) {
  304. if ((w->edges & 3) == 0) {
  305. if (w->orient == 1)
  306. w->orient = 11;
  307. if (w->orient == 2)
  308. w->orient = 10;
  309. } else {
  310. w->orient = 0;
  311. }
  312. w->raw_orient = 0;
  313. } else {
  314. static const uint8_t prediction_table[3][12] = {
  315. { 0, 8, 4, 10, 11, 2, 6, 9, 1, 3, 5, 7 },
  316. { 4, 0, 8, 11, 10, 3, 5, 2, 6, 9, 1, 7 },
  317. { 8, 0, 4, 10, 11, 1, 7, 2, 6, 9, 3, 5 },
  318. };
  319. w->raw_orient = x8_get_orient_vlc(w);
  320. if (w->raw_orient < 0)
  321. return -1;
  322. assert(w->raw_orient < 12);
  323. assert(w->orient < 3);
  324. w->orient = prediction_table[w->orient][w->raw_orient];
  325. }
  326. return 0;
  327. }
  328. static void x8_update_predictions(IntraX8Context *const w, const int orient,
  329. const int est_run)
  330. {
  331. MpegEncContext *const s = w->s;
  332. w->prediction_table[s->mb_x * 2 + (s->mb_y & 1)] = (est_run << 2) + 1 * (orient == 4) + 2 * (orient == 8);
  333. /*
  334. * y = 2n + 0 -> // 0 2 4
  335. * y = 2n + 1 -> // 1 3 5
  336. */
  337. }
  338. static void x8_get_prediction_chroma(IntraX8Context *const w)
  339. {
  340. MpegEncContext *const s = w->s;
  341. w->edges = 1 * (!(s->mb_x >> 1));
  342. w->edges |= 2 * (!(s->mb_y >> 1));
  343. w->edges |= 4 * (s->mb_x >= (2 * s->mb_width - 1)); // mb_x for chroma would always be odd
  344. w->raw_orient = 0;
  345. // lut_co[8] = {inv,4,8,8, inv,4,8,8} <- => {1,1,0,0;1,1,0,0} => 0xCC
  346. if (w->edges & 3) {
  347. w->chroma_orient = 4 << ((0xCC >> w->edges) & 1);
  348. return;
  349. }
  350. // block[x - 1][y | 1 - 1)]
  351. w->chroma_orient = (w->prediction_table[2 * s->mb_x - 2] & 0x03) << 2;
  352. }
  353. static void x8_get_prediction(IntraX8Context *const w)
  354. {
  355. MpegEncContext *const s = w->s;
  356. int a, b, c, i;
  357. w->edges = 1 * (!s->mb_x);
  358. w->edges |= 2 * (!s->mb_y);
  359. w->edges |= 4 * (s->mb_x >= (2 * s->mb_width - 1));
  360. switch (w->edges & 3) {
  361. case 0:
  362. break;
  363. case 1:
  364. // take the one from the above block[0][y - 1]
  365. w->est_run = w->prediction_table[!(s->mb_y & 1)] >> 2;
  366. w->orient = 1;
  367. return;
  368. case 2:
  369. // take the one from the previous block[x - 1][0]
  370. w->est_run = w->prediction_table[2 * s->mb_x - 2] >> 2;
  371. w->orient = 2;
  372. return;
  373. case 3:
  374. w->est_run = 16;
  375. w->orient = 0;
  376. return;
  377. }
  378. // no edge cases
  379. b = w->prediction_table[2 * s->mb_x + !(s->mb_y & 1)]; // block[x ][y - 1]
  380. a = w->prediction_table[2 * s->mb_x - 2 + (s->mb_y & 1)]; // block[x - 1][y ]
  381. c = w->prediction_table[2 * s->mb_x - 2 + !(s->mb_y & 1)]; // block[x - 1][y - 1]
  382. w->est_run = FFMIN(b, a);
  383. /* This condition has nothing to do with w->edges, even if it looks
  384. * similar it would trigger if e.g. x = 3; y = 2;
  385. * I guess somebody wrote something wrong and it became standard. */
  386. if ((s->mb_x & s->mb_y) != 0)
  387. w->est_run = FFMIN(c, w->est_run);
  388. w->est_run >>= 2;
  389. a &= 3;
  390. b &= 3;
  391. c &= 3;
  392. i = (0xFFEAF4C4 >> (2 * b + 8 * a)) & 3;
  393. if (i != 3)
  394. w->orient = i;
  395. else
  396. w->orient = (0xFFEAD8 >> (2 * c + 8 * (w->quant > 12))) & 3;
  397. /*
  398. * lut1[b][a] = {
  399. * ->{ 0, 1, 0, pad },
  400. * { 0, 1, X, pad },
  401. * { 2, 2, 2, pad }
  402. * }
  403. * pad 2 2 2;
  404. * pad X 1 0;
  405. * pad 0 1 0 <-
  406. * -> 11 10 '10 10 '11 11'01 00 '11 00'01 00 => 0xEAF4C4
  407. *
  408. * lut2[q>12][c] = {
  409. * ->{ 0, 2, 1, pad},
  410. * { 2, 2, 2, pad}
  411. * }
  412. * pad 2 2 2;
  413. * pad 1 2 0 <-
  414. * -> 11 10'10 10 '11 01'10 00 => 0xEAD8
  415. */
  416. }
  417. static void x8_ac_compensation(IntraX8Context *const w, const int direction,
  418. const int dc_level)
  419. {
  420. MpegEncContext *const s = w->s;
  421. int t;
  422. #define B(x, y) s->block[0][s->idsp.idct_permutation[(x) + (y) * 8]]
  423. #define T(x) ((x) * dc_level + 0x8000) >> 16;
  424. switch (direction) {
  425. case 0:
  426. t = T(3811); // h
  427. B(1, 0) -= t;
  428. B(0, 1) -= t;
  429. t = T(487); // e
  430. B(2, 0) -= t;
  431. B(0, 2) -= t;
  432. t = T(506); // f
  433. B(3, 0) -= t;
  434. B(0, 3) -= t;
  435. t = T(135); // c
  436. B(4, 0) -= t;
  437. B(0, 4) -= t;
  438. B(2, 1) += t;
  439. B(1, 2) += t;
  440. B(3, 1) += t;
  441. B(1, 3) += t;
  442. t = T(173); // d
  443. B(5, 0) -= t;
  444. B(0, 5) -= t;
  445. t = T(61); // b
  446. B(6, 0) -= t;
  447. B(0, 6) -= t;
  448. B(5, 1) += t;
  449. B(1, 5) += t;
  450. t = T(42); // a
  451. B(7, 0) -= t;
  452. B(0, 7) -= t;
  453. B(4, 1) += t;
  454. B(1, 4) += t;
  455. B(4, 4) += t;
  456. t = T(1084); // g
  457. B(1, 1) += t;
  458. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7 * 8);
  459. break;
  460. case 1:
  461. B(0, 1) -= T(6269);
  462. B(0, 3) -= T(708);
  463. B(0, 5) -= T(172);
  464. B(0, 7) -= T(73);
  465. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7 * 8);
  466. break;
  467. case 2:
  468. B(1, 0) -= T(6269);
  469. B(3, 0) -= T(708);
  470. B(5, 0) -= T(172);
  471. B(7, 0) -= T(73);
  472. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7);
  473. break;
  474. }
  475. #undef B
  476. #undef T
  477. }
  478. static void dsp_x8_put_solidcolor(const uint8_t pix, uint8_t *dst,
  479. const int linesize)
  480. {
  481. int k;
  482. for (k = 0; k < 8; k++) {
  483. memset(dst, pix, 8);
  484. dst += linesize;
  485. }
  486. }
  487. static const int16_t quant_table[64] = {
  488. 256, 256, 256, 256, 256, 256, 259, 262,
  489. 265, 269, 272, 275, 278, 282, 285, 288,
  490. 292, 295, 299, 303, 306, 310, 314, 317,
  491. 321, 325, 329, 333, 337, 341, 345, 349,
  492. 353, 358, 362, 366, 371, 375, 379, 384,
  493. 389, 393, 398, 403, 408, 413, 417, 422,
  494. 428, 433, 438, 443, 448, 454, 459, 465,
  495. 470, 476, 482, 488, 493, 499, 505, 511,
  496. };
  497. static int x8_decode_intra_mb(IntraX8Context *const w, const int chroma)
  498. {
  499. MpegEncContext *const s = w->s;
  500. uint8_t *scantable;
  501. int final, run, level;
  502. int ac_mode, dc_mode, est_run, dc_level;
  503. int pos, n;
  504. int zeros_only;
  505. int use_quant_matrix;
  506. int sign;
  507. assert(w->orient < 12);
  508. s->bdsp.clear_block(s->block[0]);
  509. if (chroma)
  510. dc_mode = 2;
  511. else
  512. dc_mode = !!w->est_run; // 0, 1
  513. if (x8_get_dc_rlf(w, dc_mode, &dc_level, &final))
  514. return -1;
  515. n = 0;
  516. zeros_only = 0;
  517. if (!final) { // decode ac
  518. use_quant_matrix = w->use_quant_matrix;
  519. if (chroma) {
  520. ac_mode = 1;
  521. est_run = 64; // not used
  522. } else {
  523. if (w->raw_orient < 3)
  524. use_quant_matrix = 0;
  525. if (w->raw_orient > 4) {
  526. ac_mode = 0;
  527. est_run = 64;
  528. } else {
  529. if (w->est_run > 1) {
  530. ac_mode = 2;
  531. est_run = w->est_run;
  532. } else {
  533. ac_mode = 3;
  534. est_run = 64;
  535. }
  536. }
  537. }
  538. x8_select_ac_table(w, ac_mode);
  539. /* scantable_selector[12] = { 0, 2, 0, 1, 1, 1, 0, 2, 2, 0, 1, 2 }; <-
  540. * -> 10'01' 00'10' 10'00' 01'01' 01'00' 10'00 => 0x928548 */
  541. scantable = w->scantable[(0x928548 >> (2 * w->orient)) & 3].permutated;
  542. pos = 0;
  543. do {
  544. n++;
  545. if (n >= est_run) {
  546. ac_mode = 3;
  547. x8_select_ac_table(w, 3);
  548. }
  549. x8_get_ac_rlf(w, ac_mode, &run, &level, &final);
  550. pos += run + 1;
  551. if (pos > 63) {
  552. // this also handles vlc error in x8_get_ac_rlf
  553. return -1;
  554. }
  555. level = (level + 1) * w->dquant;
  556. level += w->qsum;
  557. sign = -get_bits1(&s->gb);
  558. level = (level ^ sign) - sign;
  559. if (use_quant_matrix)
  560. level = (level * quant_table[pos]) >> 8;
  561. s->block[0][scantable[pos]] = level;
  562. } while (!final);
  563. s->block_last_index[0] = pos;
  564. } else { // DC only
  565. s->block_last_index[0] = 0;
  566. if (w->flat_dc && ((unsigned) (dc_level + 1)) < 3) { // [-1; 1]
  567. int32_t divide_quant = !chroma ? w->divide_quant_dc_luma
  568. : w->divide_quant_dc_chroma;
  569. int32_t dc_quant = !chroma ? w->quant
  570. : w->quant_dc_chroma;
  571. // original intent dc_level += predicted_dc/quant;
  572. // but it got lost somewhere in the rounding
  573. dc_level += (w->predicted_dc * divide_quant + (1 << 12)) >> 13;
  574. dsp_x8_put_solidcolor(av_clip_uint8((dc_level * dc_quant + 4) >> 3),
  575. s->dest[chroma],
  576. s->current_picture.f->linesize[!!chroma]);
  577. goto block_placed;
  578. }
  579. zeros_only = (dc_level == 0);
  580. }
  581. if (!chroma)
  582. s->block[0][0] = dc_level * w->quant;
  583. else
  584. s->block[0][0] = dc_level * w->quant_dc_chroma;
  585. // there is !zero_only check in the original, but dc_level check is enough
  586. if ((unsigned int) (dc_level + 1) >= 3 && (w->edges & 3) != 3) {
  587. int direction;
  588. /* ac_comp_direction[orient] = { 0, 3, 3, 1, 1, 0, 0, 0, 2, 2, 2, 1 }; <-
  589. * -> 01'10' 10'10' 00'00' 00'01' 01'11' 11'00 => 0x6A017C */
  590. direction = (0x6A017C >> (w->orient * 2)) & 3;
  591. if (direction != 3) {
  592. // modify block_last[]
  593. x8_ac_compensation(w, direction, s->block[0][0]);
  594. }
  595. }
  596. if (w->flat_dc) {
  597. dsp_x8_put_solidcolor(w->predicted_dc, s->dest[chroma],
  598. s->current_picture.f->linesize[!!chroma]);
  599. } else {
  600. w->dsp.spatial_compensation[w->orient](s->sc.edge_emu_buffer,
  601. s->dest[chroma],
  602. s->current_picture.f->linesize[!!chroma]);
  603. }
  604. if (!zeros_only)
  605. s->idsp.idct_add(s->dest[chroma],
  606. s->current_picture.f->linesize[!!chroma],
  607. s->block[0]);
  608. block_placed:
  609. if (!chroma)
  610. x8_update_predictions(w, w->orient, n);
  611. if (s->loop_filter) {
  612. uint8_t *ptr = s->dest[chroma];
  613. int linesize = s->current_picture.f->linesize[!!chroma];
  614. if (!((w->edges & 2) || (zeros_only && (w->orient | 4) == 4)))
  615. w->dsp.h_loop_filter(ptr, linesize, w->quant);
  616. if (!((w->edges & 1) || (zeros_only && (w->orient | 8) == 8)))
  617. w->dsp.v_loop_filter(ptr, linesize, w->quant);
  618. }
  619. return 0;
  620. }
  621. // FIXME maybe merge with ff_*
  622. static void x8_init_block_index(MpegEncContext *s)
  623. {
  624. // not s->linesize as this would be wrong for field pics
  625. // not that IntraX8 has interlacing support ;)
  626. const int linesize = s->current_picture.f->linesize[0];
  627. const int uvlinesize = s->current_picture.f->linesize[1];
  628. s->dest[0] = s->current_picture.f->data[0];
  629. s->dest[1] = s->current_picture.f->data[1];
  630. s->dest[2] = s->current_picture.f->data[2];
  631. s->dest[0] += s->mb_y * linesize << 3;
  632. // chroma blocks are on add rows
  633. s->dest[1] += (s->mb_y & (~1)) * uvlinesize << 2;
  634. s->dest[2] += (s->mb_y & (~1)) * uvlinesize << 2;
  635. }
  636. av_cold int ff_intrax8_common_init(IntraX8Context *w, MpegEncContext *const s)
  637. {
  638. int ret = x8_vlc_init();
  639. if (ret < 0)
  640. return ret;
  641. w->s = s;
  642. // two rows, 2 blocks per cannon mb
  643. w->prediction_table = av_mallocz(s->mb_width * 2 * 2);
  644. if (!w->prediction_table)
  645. return AVERROR(ENOMEM);
  646. ff_init_scantable(s->idsp.idct_permutation, &w->scantable[0],
  647. ff_wmv1_scantable[0]);
  648. ff_init_scantable(s->idsp.idct_permutation, &w->scantable[1],
  649. ff_wmv1_scantable[2]);
  650. ff_init_scantable(s->idsp.idct_permutation, &w->scantable[2],
  651. ff_wmv1_scantable[3]);
  652. ff_intrax8dsp_init(&w->dsp);
  653. return 0;
  654. }
  655. av_cold void ff_intrax8_common_end(IntraX8Context *w)
  656. {
  657. av_freep(&w->prediction_table);
  658. }
  659. int ff_intrax8_decode_picture(IntraX8Context *const w, int dquant,
  660. int quant_offset)
  661. {
  662. MpegEncContext *const s = w->s;
  663. int mb_xy;
  664. assert(s);
  665. w->use_quant_matrix = get_bits1(&s->gb);
  666. w->dquant = dquant;
  667. w->quant = dquant >> 1;
  668. w->qsum = quant_offset;
  669. w->divide_quant_dc_luma = ((1 << 16) + (w->quant >> 1)) / w->quant;
  670. if (w->quant < 5) {
  671. w->quant_dc_chroma = w->quant;
  672. w->divide_quant_dc_chroma = w->divide_quant_dc_luma;
  673. } else {
  674. w->quant_dc_chroma = w->quant + ((w->quant + 3) >> 3);
  675. w->divide_quant_dc_chroma = ((1 << 16) + (w->quant_dc_chroma >> 1)) / w->quant_dc_chroma;
  676. }
  677. x8_reset_vlc_tables(w);
  678. for (s->mb_y = 0; s->mb_y < s->mb_height * 2; s->mb_y++) {
  679. x8_init_block_index(s);
  680. mb_xy = (s->mb_y >> 1) * s->mb_stride;
  681. for (s->mb_x = 0; s->mb_x < s->mb_width * 2; s->mb_x++) {
  682. x8_get_prediction(w);
  683. if (x8_setup_spatial_predictor(w, 0))
  684. goto error;
  685. if (x8_decode_intra_mb(w, 0))
  686. goto error;
  687. if (s->mb_x & s->mb_y & 1) {
  688. x8_get_prediction_chroma(w);
  689. /* when setting up chroma, no vlc is read,
  690. * so no error condition can be reached */
  691. x8_setup_spatial_predictor(w, 1);
  692. if (x8_decode_intra_mb(w, 1))
  693. goto error;
  694. x8_setup_spatial_predictor(w, 2);
  695. if (x8_decode_intra_mb(w, 2))
  696. goto error;
  697. s->dest[1] += 8;
  698. s->dest[2] += 8;
  699. /* emulate MB info in the relevant tables */
  700. s->mbskip_table[mb_xy] = 0;
  701. s->mbintra_table[mb_xy] = 1;
  702. s->current_picture.qscale_table[mb_xy] = w->quant;
  703. mb_xy++;
  704. }
  705. s->dest[0] += 8;
  706. }
  707. if (s->mb_y & 1)
  708. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 8, 16);
  709. }
  710. error:
  711. return 0;
  712. }