You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1101 lines
35KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/thread.h"
  30. #include "cabac.h"
  31. #include "error_resilience.h"
  32. #include "get_bits.h"
  33. #include "h264chroma.h"
  34. #include "h264dsp.h"
  35. #include "h264pred.h"
  36. #include "h264qpel.h"
  37. #include "internal.h"
  38. #include "mpegutils.h"
  39. #include "parser.h"
  40. #include "qpeldsp.h"
  41. #include "rectangle.h"
  42. #include "videodsp.h"
  43. #define H264_MAX_PICTURE_COUNT 32
  44. #define H264_MAX_THREADS 16
  45. #define MAX_SPS_COUNT 32
  46. #define MAX_PPS_COUNT 256
  47. #define MAX_MMCO_COUNT 66
  48. #define MAX_DELAYED_PIC_COUNT 16
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #define FMO 0
  53. /**
  54. * The maximum number of slices supported by the decoder.
  55. * must be a power of 2
  56. */
  57. #define MAX_SLICES 32
  58. #ifdef ALLOW_INTERLACE
  59. #define MB_MBAFF(h) h->mb_mbaff
  60. #define MB_FIELD(h) h->mb_field_decoding_flag
  61. #define FRAME_MBAFF(h) h->mb_aff_frame
  62. #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
  63. #define LEFT_MBS 2
  64. #define LTOP 0
  65. #define LBOT 1
  66. #define LEFT(i) (i)
  67. #else
  68. #define MB_MBAFF(h) 0
  69. #define MB_FIELD(h) 0
  70. #define FRAME_MBAFF(h) 0
  71. #define FIELD_PICTURE(h) 0
  72. #undef IS_INTERLACED
  73. #define IS_INTERLACED(mb_type) 0
  74. #define LEFT_MBS 1
  75. #define LTOP 0
  76. #define LBOT 0
  77. #define LEFT(i) 0
  78. #endif
  79. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  80. #ifndef CABAC
  81. #define CABAC(h) h->pps.cabac
  82. #endif
  83. #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
  84. #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
  85. #define EXTENDED_SAR 255
  86. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  87. #define MB_TYPE_8x8DCT 0x01000000
  88. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  89. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  90. #define QP_MAX_NUM (51 + 2 * 6) // The maximum supported qp
  91. /* NAL unit types */
  92. enum {
  93. NAL_SLICE = 1,
  94. NAL_DPA = 2,
  95. NAL_DPB = 3,
  96. NAL_DPC = 4,
  97. NAL_IDR_SLICE = 5,
  98. NAL_SEI = 6,
  99. NAL_SPS = 7,
  100. NAL_PPS = 8,
  101. NAL_AUD = 9,
  102. NAL_END_SEQUENCE = 10,
  103. NAL_END_STREAM = 11,
  104. NAL_FILLER_DATA = 12,
  105. NAL_SPS_EXT = 13,
  106. NAL_AUXILIARY_SLICE = 19,
  107. NAL_FF_IGNORE = 0xff0f001,
  108. };
  109. /**
  110. * SEI message types
  111. */
  112. typedef enum {
  113. SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  114. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  115. SEI_TYPE_USER_DATA_REGISTERED = 4, ///< registered user data as specified by Rec. ITU-T T.35
  116. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  117. SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
  118. SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
  119. SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation
  120. } SEI_Type;
  121. /**
  122. * pic_struct in picture timing SEI message
  123. */
  124. typedef enum {
  125. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  126. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  127. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  128. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  129. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  130. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  131. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  132. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  133. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  134. } SEI_PicStructType;
  135. /**
  136. * Sequence parameter set
  137. */
  138. typedef struct SPS {
  139. unsigned int sps_id;
  140. int profile_idc;
  141. int level_idc;
  142. int chroma_format_idc;
  143. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  144. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  145. int poc_type; ///< pic_order_cnt_type
  146. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  147. int delta_pic_order_always_zero_flag;
  148. int offset_for_non_ref_pic;
  149. int offset_for_top_to_bottom_field;
  150. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  151. int ref_frame_count; ///< num_ref_frames
  152. int gaps_in_frame_num_allowed_flag;
  153. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  154. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  155. int frame_mbs_only_flag;
  156. int mb_aff; ///< mb_adaptive_frame_field_flag
  157. int direct_8x8_inference_flag;
  158. int crop; ///< frame_cropping_flag
  159. /* those 4 are already in luma samples */
  160. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  161. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  162. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  163. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  164. int vui_parameters_present_flag;
  165. AVRational sar;
  166. int video_signal_type_present_flag;
  167. int full_range;
  168. int colour_description_present_flag;
  169. enum AVColorPrimaries color_primaries;
  170. enum AVColorTransferCharacteristic color_trc;
  171. enum AVColorSpace colorspace;
  172. int timing_info_present_flag;
  173. uint32_t num_units_in_tick;
  174. uint32_t time_scale;
  175. int fixed_frame_rate_flag;
  176. short offset_for_ref_frame[256]; // FIXME dyn aloc?
  177. int bitstream_restriction_flag;
  178. int num_reorder_frames;
  179. int scaling_matrix_present;
  180. uint8_t scaling_matrix4[6][16];
  181. uint8_t scaling_matrix8[6][64];
  182. int nal_hrd_parameters_present_flag;
  183. int vcl_hrd_parameters_present_flag;
  184. int pic_struct_present_flag;
  185. int time_offset_length;
  186. int cpb_cnt; ///< See H.264 E.1.2
  187. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
  188. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  189. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  190. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  191. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  192. int residual_color_transform_flag; ///< residual_colour_transform_flag
  193. int constraint_set_flags; ///< constraint_set[0-3]_flag
  194. int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
  195. } SPS;
  196. /**
  197. * Picture parameter set
  198. */
  199. typedef struct PPS {
  200. unsigned int sps_id;
  201. int cabac; ///< entropy_coding_mode_flag
  202. int pic_order_present; ///< pic_order_present_flag
  203. int slice_group_count; ///< num_slice_groups_minus1 + 1
  204. int mb_slice_group_map_type;
  205. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  206. int weighted_pred; ///< weighted_pred_flag
  207. int weighted_bipred_idc;
  208. int init_qp; ///< pic_init_qp_minus26 + 26
  209. int init_qs; ///< pic_init_qs_minus26 + 26
  210. int chroma_qp_index_offset[2];
  211. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  212. int constrained_intra_pred; ///< constrained_intra_pred_flag
  213. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  214. int transform_8x8_mode; ///< transform_8x8_mode_flag
  215. uint8_t scaling_matrix4[6][16];
  216. uint8_t scaling_matrix8[6][64];
  217. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  218. int chroma_qp_diff;
  219. } PPS;
  220. /**
  221. * Memory management control operation opcode.
  222. */
  223. typedef enum MMCOOpcode {
  224. MMCO_END = 0,
  225. MMCO_SHORT2UNUSED,
  226. MMCO_LONG2UNUSED,
  227. MMCO_SHORT2LONG,
  228. MMCO_SET_MAX_LONG,
  229. MMCO_RESET,
  230. MMCO_LONG,
  231. } MMCOOpcode;
  232. /**
  233. * Memory management control operation.
  234. */
  235. typedef struct MMCO {
  236. MMCOOpcode opcode;
  237. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  238. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  239. } MMCO;
  240. typedef struct H264Picture {
  241. AVFrame *f;
  242. ThreadFrame tf;
  243. AVBufferRef *qscale_table_buf;
  244. int8_t *qscale_table;
  245. AVBufferRef *motion_val_buf[2];
  246. int16_t (*motion_val[2])[2];
  247. AVBufferRef *mb_type_buf;
  248. uint32_t *mb_type;
  249. AVBufferRef *hwaccel_priv_buf;
  250. void *hwaccel_picture_private; ///< hardware accelerator private data
  251. AVBufferRef *ref_index_buf[2];
  252. int8_t *ref_index[2];
  253. int field_poc[2]; ///< top/bottom POC
  254. int poc; ///< frame POC
  255. int frame_num; ///< frame_num (raw frame_num from slice header)
  256. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  257. not mix pictures before and after MMCO_RESET. */
  258. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  259. pic_num & max_pic_num; long -> long_pic_num) */
  260. int long_ref; ///< 1->long term reference 0->short term reference
  261. int ref_poc[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
  262. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  263. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  264. int field_picture; ///< whether or not picture was encoded in separate fields
  265. int reference;
  266. int recovered; ///< picture at IDR or recovery point + recovery count
  267. } H264Picture;
  268. typedef struct H264Ref {
  269. uint8_t *data[3];
  270. int linesize[3];
  271. int reference;
  272. int poc;
  273. int pic_id;
  274. H264Picture *parent;
  275. } H264Ref;
  276. typedef struct H264SliceContext {
  277. struct H264Context *h264;
  278. GetBitContext gb;
  279. ERContext er;
  280. int slice_num;
  281. int slice_type;
  282. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  283. int slice_type_fixed;
  284. int qscale;
  285. int chroma_qp[2]; // QPc
  286. int qp_thresh; ///< QP threshold to skip loopfilter
  287. int last_qscale_diff;
  288. // deblock
  289. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  290. int slice_alpha_c0_offset;
  291. int slice_beta_offset;
  292. // Weighted pred stuff
  293. int use_weight;
  294. int use_weight_chroma;
  295. int luma_log2_weight_denom;
  296. int chroma_log2_weight_denom;
  297. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  298. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  299. // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  300. int luma_weight[48][2][2];
  301. int chroma_weight[48][2][2][2];
  302. int implicit_weight[48][48][2];
  303. int prev_mb_skipped;
  304. int next_mb_skipped;
  305. int chroma_pred_mode;
  306. int intra16x16_pred_mode;
  307. int8_t intra4x4_pred_mode_cache[5 * 8];
  308. int8_t(*intra4x4_pred_mode);
  309. int topleft_mb_xy;
  310. int top_mb_xy;
  311. int topright_mb_xy;
  312. int left_mb_xy[LEFT_MBS];
  313. int topleft_type;
  314. int top_type;
  315. int topright_type;
  316. int left_type[LEFT_MBS];
  317. const uint8_t *left_block;
  318. int topleft_partition;
  319. unsigned int topleft_samples_available;
  320. unsigned int top_samples_available;
  321. unsigned int topright_samples_available;
  322. unsigned int left_samples_available;
  323. ptrdiff_t linesize, uvlinesize;
  324. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  325. ptrdiff_t mb_uvlinesize;
  326. int mb_x, mb_y;
  327. int mb_xy;
  328. int resync_mb_x;
  329. int resync_mb_y;
  330. // index of the first MB of the next slice
  331. int next_slice_idx;
  332. int mb_skip_run;
  333. int is_complex;
  334. int mb_field_decoding_flag;
  335. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  336. int redundant_pic_count;
  337. /**
  338. * number of neighbors (top and/or left) that used 8x8 dct
  339. */
  340. int neighbor_transform_size;
  341. int direct_spatial_mv_pred;
  342. int col_parity;
  343. int col_fieldoff;
  344. int cbp;
  345. int top_cbp;
  346. int left_cbp;
  347. int dist_scale_factor[32];
  348. int dist_scale_factor_field[2][32];
  349. int map_col_to_list0[2][16 + 32];
  350. int map_col_to_list0_field[2][2][16 + 32];
  351. /**
  352. * num_ref_idx_l0/1_active_minus1 + 1
  353. */
  354. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  355. unsigned int list_count;
  356. H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  357. * Reordered version of default_ref_list
  358. * according to picture reordering in slice header */
  359. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  360. const uint8_t *intra_pcm_ptr;
  361. int16_t *dc_val_base;
  362. uint8_t *bipred_scratchpad;
  363. uint8_t *edge_emu_buffer;
  364. uint8_t (*top_borders[2])[(16 * 3) * 2];
  365. int bipred_scratchpad_allocated;
  366. int edge_emu_buffer_allocated;
  367. int top_borders_allocated[2];
  368. /**
  369. * non zero coeff count cache.
  370. * is 64 if not available.
  371. */
  372. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  373. /**
  374. * Motion vector cache.
  375. */
  376. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  377. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  378. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  379. uint8_t direct_cache[5 * 8];
  380. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  381. ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  382. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  383. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  384. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  385. ///< check that i is not too large or ensure that there is some unused stuff after mb
  386. int16_t mb_padding[256 * 2];
  387. uint8_t (*mvd_table[2])[2];
  388. /**
  389. * Cabac
  390. */
  391. CABACContext cabac;
  392. uint8_t cabac_state[1024];
  393. int cabac_init_idc;
  394. // rbsp buffer used for this slice
  395. uint8_t *rbsp_buffer;
  396. unsigned int rbsp_buffer_size;
  397. } H264SliceContext;
  398. /**
  399. * H264Context
  400. */
  401. typedef struct H264Context {
  402. const AVClass *class;
  403. AVCodecContext *avctx;
  404. VideoDSPContext vdsp;
  405. H264DSPContext h264dsp;
  406. H264ChromaContext h264chroma;
  407. H264QpelContext h264qpel;
  408. GetBitContext gb;
  409. H264Picture DPB[H264_MAX_PICTURE_COUNT];
  410. H264Picture *cur_pic_ptr;
  411. H264Picture cur_pic;
  412. H264SliceContext *slice_ctx;
  413. int nb_slice_ctx;
  414. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  415. /* coded dimensions -- 16 * mb w/h */
  416. int width, height;
  417. int chroma_x_shift, chroma_y_shift;
  418. int droppable;
  419. int coded_picture_number;
  420. int low_delay;
  421. int context_initialized;
  422. int flags;
  423. int workaround_bugs;
  424. int8_t(*intra4x4_pred_mode);
  425. H264PredContext hpc;
  426. uint8_t (*non_zero_count)[48];
  427. #define LIST_NOT_USED -1 // FIXME rename?
  428. #define PART_NOT_AVAILABLE -2
  429. /**
  430. * block_offset[ 0..23] for frame macroblocks
  431. * block_offset[24..47] for field macroblocks
  432. */
  433. int block_offset[2 * (16 * 3)];
  434. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  435. uint32_t *mb2br_xy;
  436. int b_stride; // FIXME use s->b4_stride
  437. SPS sps; ///< current sps
  438. PPS pps; ///< current pps
  439. uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
  440. uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
  441. uint32_t(*dequant4_coeff[6])[16];
  442. uint32_t(*dequant8_coeff[6])[64];
  443. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  444. // interlacing specific flags
  445. int mb_aff_frame;
  446. int picture_structure;
  447. int first_field;
  448. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  449. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  450. uint16_t *cbp_table;
  451. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  452. uint8_t *chroma_pred_mode_table;
  453. uint8_t (*mvd_table[2])[2];
  454. uint8_t *direct_table;
  455. uint8_t zigzag_scan[16];
  456. uint8_t zigzag_scan8x8[64];
  457. uint8_t zigzag_scan8x8_cavlc[64];
  458. uint8_t field_scan[16];
  459. uint8_t field_scan8x8[64];
  460. uint8_t field_scan8x8_cavlc[64];
  461. const uint8_t *zigzag_scan_q0;
  462. const uint8_t *zigzag_scan8x8_q0;
  463. const uint8_t *zigzag_scan8x8_cavlc_q0;
  464. const uint8_t *field_scan_q0;
  465. const uint8_t *field_scan8x8_q0;
  466. const uint8_t *field_scan8x8_cavlc_q0;
  467. int x264_build;
  468. int mb_y;
  469. int mb_height, mb_width;
  470. int mb_stride;
  471. int mb_num;
  472. // =============================================================
  473. // Things below are not used in the MB or more inner code
  474. int nal_ref_idc;
  475. int nal_unit_type;
  476. /**
  477. * Used to parse AVC variant of h264
  478. */
  479. int is_avc; ///< this flag is != 0 if codec is avc1
  480. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  481. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  482. int chroma_format_idc; ///< chroma format from sps to detect changes
  483. SPS *sps_buffers[MAX_SPS_COUNT];
  484. PPS *pps_buffers[MAX_PPS_COUNT];
  485. int dequant_coeff_pps; ///< reinit tables when pps changes
  486. uint16_t *slice_table_base;
  487. // POC stuff
  488. int poc_lsb;
  489. int poc_msb;
  490. int delta_poc_bottom;
  491. int delta_poc[2];
  492. int frame_num;
  493. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  494. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  495. int frame_num_offset; ///< for POC type 2
  496. int prev_frame_num_offset; ///< for POC type 2
  497. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  498. /**
  499. * frame_num for frames or 2 * frame_num + 1 for field pics.
  500. */
  501. int curr_pic_num;
  502. /**
  503. * max_frame_num or 2 * max_frame_num for field pics.
  504. */
  505. int max_pic_num;
  506. H264Picture *short_ref[32];
  507. H264Picture *long_ref[32];
  508. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  509. int last_pocs[MAX_DELAYED_PIC_COUNT];
  510. H264Picture *next_output_pic;
  511. int next_outputed_poc;
  512. /**
  513. * memory management control operations buffer.
  514. */
  515. MMCO mmco[MAX_MMCO_COUNT];
  516. int mmco_index;
  517. int mmco_reset;
  518. int long_ref_count; ///< number of actual long term references
  519. int short_ref_count; ///< number of actual short term references
  520. /**
  521. * @name Members for slice based multithreading
  522. * @{
  523. */
  524. /**
  525. * current slice number, used to initalize slice_num of each thread/context
  526. */
  527. int current_slice;
  528. /**
  529. * Max number of threads / contexts.
  530. * This is equal to AVCodecContext.thread_count unless
  531. * multithreaded decoding is impossible, in which case it is
  532. * reduced to 1.
  533. */
  534. int max_contexts;
  535. int slice_context_count;
  536. /**
  537. * 1 if the single thread fallback warning has already been
  538. * displayed, 0 otherwise.
  539. */
  540. int single_decode_warning;
  541. enum AVPictureType pict_type;
  542. /** @} */
  543. /**
  544. * pic_struct in picture timing SEI message
  545. */
  546. SEI_PicStructType sei_pic_struct;
  547. /**
  548. * Complement sei_pic_struct
  549. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  550. * However, soft telecined frames may have these values.
  551. * This is used in an attempt to flag soft telecine progressive.
  552. */
  553. int prev_interlaced_frame;
  554. /**
  555. * frame_packing_arrangment SEI message
  556. */
  557. int sei_frame_packing_present;
  558. int frame_packing_arrangement_type;
  559. int content_interpretation_type;
  560. int quincunx_subsampling;
  561. /**
  562. * display orientation SEI message
  563. */
  564. int sei_display_orientation_present;
  565. int sei_anticlockwise_rotation;
  566. int sei_hflip, sei_vflip;
  567. /**
  568. * User data registered by Rec. ITU-T T.35 SEI
  569. */
  570. int sei_reguserdata_afd_present;
  571. uint8_t active_format_description;
  572. int a53_caption_size;
  573. uint8_t *a53_caption;
  574. /**
  575. * Bit set of clock types for fields/frames in picture timing SEI message.
  576. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  577. * interlaced).
  578. */
  579. int sei_ct_type;
  580. /**
  581. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  582. */
  583. int sei_dpb_output_delay;
  584. /**
  585. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  586. */
  587. int sei_cpb_removal_delay;
  588. /**
  589. * recovery_frame_cnt from SEI message
  590. *
  591. * Set to -1 if no recovery point SEI message found or to number of frames
  592. * before playback synchronizes. Frames having recovery point are key
  593. * frames.
  594. */
  595. int sei_recovery_frame_cnt;
  596. /**
  597. * recovery_frame is the frame_num at which the next frame should
  598. * be fully constructed.
  599. *
  600. * Set to -1 when not expecting a recovery point.
  601. */
  602. int recovery_frame;
  603. /**
  604. * We have seen an IDR, so all the following frames in coded order are correctly
  605. * decodable.
  606. */
  607. #define FRAME_RECOVERED_IDR (1 << 0)
  608. /**
  609. * Sufficient number of frames have been decoded since a SEI recovery point,
  610. * so all the following frames in presentation order are correct.
  611. */
  612. #define FRAME_RECOVERED_SEI (1 << 1)
  613. int frame_recovered; ///< Initial frame has been completely recovered
  614. /* for frame threading, this is set to 1
  615. * after finish_setup() has been called, so we cannot modify
  616. * some context properties (which are supposed to stay constant between
  617. * slices) anymore */
  618. int setup_finished;
  619. // Timestamp stuff
  620. int sei_buffering_period_present; ///< Buffering period SEI flag
  621. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  622. int enable_er;
  623. AVBufferPool *qscale_table_pool;
  624. AVBufferPool *mb_type_pool;
  625. AVBufferPool *motion_val_pool;
  626. AVBufferPool *ref_index_pool;
  627. /* Motion Estimation */
  628. qpel_mc_func (*qpel_put)[16];
  629. qpel_mc_func (*qpel_avg)[16];
  630. } H264Context;
  631. extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM + 1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
  632. extern const uint16_t ff_h264_mb_sizes[4];
  633. /**
  634. * Decode SEI
  635. */
  636. int ff_h264_decode_sei(H264Context *h);
  637. /**
  638. * Decode SPS
  639. */
  640. int ff_h264_decode_seq_parameter_set(H264Context *h);
  641. /**
  642. * compute profile from sps
  643. */
  644. int ff_h264_get_profile(SPS *sps);
  645. /**
  646. * Decode PPS
  647. */
  648. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  649. /**
  650. * Decode a network abstraction layer unit.
  651. * @param consumed is the number of bytes used as input
  652. * @param length is the length of the array
  653. * @param dst_length is the number of decoded bytes FIXME here
  654. * or a decode rbsp tailing?
  655. * @return decoded bytes, might be src+1 if no escapes
  656. */
  657. const uint8_t *ff_h264_decode_nal(H264Context *h, H264SliceContext *sl, const uint8_t *src,
  658. int *dst_length, int *consumed, int length);
  659. /**
  660. * Free any data that may have been allocated in the H264 context
  661. * like SPS, PPS etc.
  662. */
  663. void ff_h264_free_context(H264Context *h);
  664. /**
  665. * Reconstruct bitstream slice_type.
  666. */
  667. int ff_h264_get_slice_type(const H264SliceContext *sl);
  668. /**
  669. * Allocate tables.
  670. * needs width/height
  671. */
  672. int ff_h264_alloc_tables(H264Context *h);
  673. int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl);
  674. void ff_h264_fill_mbaff_ref_list(H264Context *h, H264SliceContext *sl);
  675. void ff_h264_remove_all_refs(H264Context *h);
  676. /**
  677. * Execute the reference picture marking (memory management control operations).
  678. */
  679. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  680. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
  681. int first_slice);
  682. int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
  683. /**
  684. * Check if the top & left blocks are available if needed & change the
  685. * dc mode so it only uses the available blocks.
  686. */
  687. int ff_h264_check_intra4x4_pred_mode(const H264Context *h, H264SliceContext *sl);
  688. /**
  689. * Check if the top & left blocks are available if needed & change the
  690. * dc mode so it only uses the available blocks.
  691. */
  692. int ff_h264_check_intra_pred_mode(const H264Context *h, H264SliceContext *sl,
  693. int mode, int is_chroma);
  694. void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
  695. int ff_h264_decode_extradata(H264Context *h);
  696. int ff_h264_decode_init(AVCodecContext *avctx);
  697. void ff_h264_decode_init_vlc(void);
  698. /**
  699. * Decode a macroblock
  700. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  701. */
  702. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
  703. /**
  704. * Decode a CABAC coded macroblock
  705. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  706. */
  707. int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
  708. void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
  709. void h264_init_dequant_tables(H264Context *h);
  710. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  711. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  712. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  713. int *mb_type);
  714. void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  715. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  716. unsigned int linesize, unsigned int uvlinesize);
  717. void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  718. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  719. unsigned int linesize, unsigned int uvlinesize);
  720. /**
  721. * Reset SEI values at the beginning of the frame.
  722. *
  723. * @param h H.264 context.
  724. */
  725. void ff_h264_reset_sei(H264Context *h);
  726. /*
  727. * o-o o-o
  728. * / / /
  729. * o-o o-o
  730. * ,---'
  731. * o-o o-o
  732. * / / /
  733. * o-o o-o
  734. */
  735. /* Scan8 organization:
  736. * 0 1 2 3 4 5 6 7
  737. * 0 DY y y y y y
  738. * 1 y Y Y Y Y
  739. * 2 y Y Y Y Y
  740. * 3 y Y Y Y Y
  741. * 4 y Y Y Y Y
  742. * 5 DU u u u u u
  743. * 6 u U U U U
  744. * 7 u U U U U
  745. * 8 u U U U U
  746. * 9 u U U U U
  747. * 10 DV v v v v v
  748. * 11 v V V V V
  749. * 12 v V V V V
  750. * 13 v V V V V
  751. * 14 v V V V V
  752. * DY/DU/DV are for luma/chroma DC.
  753. */
  754. #define LUMA_DC_BLOCK_INDEX 48
  755. #define CHROMA_DC_BLOCK_INDEX 49
  756. // This table must be here because scan8[constant] must be known at compiletime
  757. static const uint8_t scan8[16 * 3 + 3] = {
  758. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  759. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  760. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  761. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  762. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  763. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  764. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  765. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  766. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  767. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  768. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  769. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  770. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  771. };
  772. static av_always_inline uint32_t pack16to32(int a, int b)
  773. {
  774. #if HAVE_BIGENDIAN
  775. return (b & 0xFFFF) + (a << 16);
  776. #else
  777. return (a & 0xFFFF) + (b << 16);
  778. #endif
  779. }
  780. static av_always_inline uint16_t pack8to16(int a, int b)
  781. {
  782. #if HAVE_BIGENDIAN
  783. return (b & 0xFF) + (a << 8);
  784. #else
  785. return (a & 0xFF) + (b << 8);
  786. #endif
  787. }
  788. /**
  789. * Get the chroma qp.
  790. */
  791. static av_always_inline int get_chroma_qp(const H264Context *h, int t, int qscale)
  792. {
  793. return h->pps.chroma_qp_table[t][qscale];
  794. }
  795. /**
  796. * Get the predicted intra4x4 prediction mode.
  797. */
  798. static av_always_inline int pred_intra_mode(const H264Context *h,
  799. H264SliceContext *sl, int n)
  800. {
  801. const int index8 = scan8[n];
  802. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  803. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  804. const int min = FFMIN(left, top);
  805. ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  806. if (min < 0)
  807. return DC_PRED;
  808. else
  809. return min;
  810. }
  811. static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
  812. H264SliceContext *sl)
  813. {
  814. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  815. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  816. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  817. i4x4[4] = i4x4_cache[7 + 8 * 3];
  818. i4x4[5] = i4x4_cache[7 + 8 * 2];
  819. i4x4[6] = i4x4_cache[7 + 8 * 1];
  820. }
  821. static av_always_inline void write_back_non_zero_count(const H264Context *h,
  822. H264SliceContext *sl)
  823. {
  824. const int mb_xy = sl->mb_xy;
  825. uint8_t *nnz = h->non_zero_count[mb_xy];
  826. uint8_t *nnz_cache = sl->non_zero_count_cache;
  827. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  828. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  829. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  830. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  831. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  832. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  833. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  834. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  835. if (!h->chroma_y_shift) {
  836. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  837. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  838. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  839. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  840. }
  841. }
  842. static av_always_inline void write_back_motion_list(const H264Context *h,
  843. H264SliceContext *sl,
  844. int b_stride,
  845. int b_xy, int b8_xy,
  846. int mb_type, int list)
  847. {
  848. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  849. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  850. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  851. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  852. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  853. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  854. if (CABAC(h)) {
  855. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  856. : h->mb2br_xy[sl->mb_xy]];
  857. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  858. if (IS_SKIP(mb_type)) {
  859. AV_ZERO128(mvd_dst);
  860. } else {
  861. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  862. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  863. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  864. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  865. }
  866. }
  867. {
  868. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  869. int8_t *ref_cache = sl->ref_cache[list];
  870. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  871. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  872. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  873. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  874. }
  875. }
  876. static av_always_inline void write_back_motion(const H264Context *h,
  877. H264SliceContext *sl,
  878. int mb_type)
  879. {
  880. const int b_stride = h->b_stride;
  881. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  882. const int b8_xy = 4 * sl->mb_xy;
  883. if (USES_LIST(mb_type, 0)) {
  884. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  885. } else {
  886. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  887. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  888. }
  889. if (USES_LIST(mb_type, 1))
  890. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  891. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  892. if (IS_8X8(mb_type)) {
  893. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  894. direct_table[1] = sl->sub_mb_type[1] >> 1;
  895. direct_table[2] = sl->sub_mb_type[2] >> 1;
  896. direct_table[3] = sl->sub_mb_type[3] >> 1;
  897. }
  898. }
  899. }
  900. static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
  901. {
  902. if (h->sps.direct_8x8_inference_flag)
  903. return !(AV_RN64A(sl->sub_mb_type) &
  904. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  905. 0x0001000100010001ULL));
  906. else
  907. return !(AV_RN64A(sl->sub_mb_type) &
  908. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  909. 0x0001000100010001ULL));
  910. }
  911. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  912. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  913. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  914. int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
  915. void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
  916. int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
  917. int ff_pred_weight_table(H264Context *h, H264SliceContext *sl);
  918. int ff_set_ref_count(H264Context *h, H264SliceContext *sl);
  919. int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl);
  920. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
  921. int ff_h264_update_thread_context(AVCodecContext *dst,
  922. const AVCodecContext *src);
  923. void ff_h264_flush_change(H264Context *h);
  924. void ff_h264_free_tables(H264Context *h);
  925. #endif /* AVCODEC_H264_H */