You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

966 lines
29KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. *
  19. * How to use this decoder:
  20. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  21. * have stsd atoms to describe media trak properties. A stsd atom for a
  22. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  23. * with the 4-byte length of the atom followed by the codec fourcc. Some
  24. * decoders need information in this atom to operate correctly. Such
  25. * is the case with SVQ3. In order to get the best use out of this decoder,
  26. * the calling app must make the SVQ3 ImageDescription atom available
  27. * via the AVCodecContext's extradata[_size] field:
  28. *
  29. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  30. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  31. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  32. * buffer (which will be the same as the ImageDescription atom size field
  33. * from the QT file, minus 4 bytes since the length is missing)
  34. *
  35. * You will know you have these parameters passed correctly when the decoder
  36. * correctly decodes this file:
  37. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  38. *
  39. */
  40. /**
  41. * @file svq3.c
  42. * svq3 decoder.
  43. */
  44. #define FULLPEL_MODE 1
  45. #define HALFPEL_MODE 2
  46. #define THIRDPEL_MODE 3
  47. /* dual scan (from some older h264 draft)
  48. o-->o-->o o
  49. | /|
  50. o o o / o
  51. | / | |/ |
  52. o o o o
  53. /
  54. o-->o-->o-->o
  55. */
  56. static const uint8_t svq3_scan[16]={
  57. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  58. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  59. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  60. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  61. };
  62. static const uint8_t svq3_pred_0[25][2] = {
  63. { 0, 0 },
  64. { 1, 0 }, { 0, 1 },
  65. { 0, 2 }, { 1, 1 }, { 2, 0 },
  66. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  67. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  68. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  69. { 2, 4 }, { 3, 3 }, { 4, 2 },
  70. { 4, 3 }, { 3, 4 },
  71. { 4, 4 }
  72. };
  73. static const int8_t svq3_pred_1[6][6][5] = {
  74. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  75. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  76. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  77. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  78. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  79. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  80. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  81. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  82. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  83. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  84. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  85. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  86. };
  87. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  88. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  89. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  90. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  91. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  92. };
  93. static const uint32_t svq3_dequant_coeff[32] = {
  94. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  95. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  96. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  97. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  98. };
  99. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  100. const int qmul= svq3_dequant_coeff[qp];
  101. #define stride 16
  102. int i;
  103. int temp[16];
  104. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  105. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  106. for(i=0; i<4; i++){
  107. const int offset= y_offset[i];
  108. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  109. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  110. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  111. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  112. temp[4*i+0]= z0+z3;
  113. temp[4*i+1]= z1+z2;
  114. temp[4*i+2]= z1-z2;
  115. temp[4*i+3]= z0-z3;
  116. }
  117. for(i=0; i<4; i++){
  118. const int offset= x_offset[i];
  119. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  120. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  121. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  122. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  123. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  124. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  125. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  126. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  127. }
  128. }
  129. #undef stride
  130. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  131. const int qmul= svq3_dequant_coeff[qp];
  132. int i;
  133. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  134. if (dc) {
  135. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  136. block[0] = 0;
  137. }
  138. for (i=0; i < 4; i++) {
  139. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  140. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  141. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  142. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  143. block[0 + 4*i]= z0 + z3;
  144. block[1 + 4*i]= z1 + z2;
  145. block[2 + 4*i]= z1 - z2;
  146. block[3 + 4*i]= z0 - z3;
  147. }
  148. for (i=0; i < 4; i++) {
  149. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  150. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  151. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  152. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  153. const int rr= (dc + 0x80000);
  154. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  155. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  156. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  157. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  158. }
  159. }
  160. static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){
  161. LOAD_TOP_EDGE
  162. LOAD_LEFT_EDGE
  163. const __attribute__((unused)) int unu0= t0;
  164. const __attribute__((unused)) int unu1= l0;
  165. src[0+0*stride]=(l1 + t1)>>1;
  166. src[1+0*stride]=
  167. src[0+1*stride]=(l2 + t2)>>1;
  168. src[2+0*stride]=
  169. src[1+1*stride]=
  170. src[0+2*stride]=
  171. src[3+0*stride]=
  172. src[2+1*stride]=
  173. src[1+2*stride]=
  174. src[0+3*stride]=
  175. src[3+1*stride]=
  176. src[2+2*stride]=
  177. src[1+3*stride]=
  178. src[3+2*stride]=
  179. src[2+3*stride]=
  180. src[3+3*stride]=(l3 + t3)>>1;
  181. }
  182. static void pred16x16_plane_svq3_c(uint8_t *src, int stride){
  183. pred16x16_plane_compat_c(src, stride, 1);
  184. }
  185. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  186. int index, const int type) {
  187. static const uint8_t *const scan_patterns[4] =
  188. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  189. int run, level, sign, vlc, limit;
  190. const int intra = (3 * type) >> 2;
  191. const uint8_t *const scan = scan_patterns[type];
  192. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  193. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  194. if (vlc == INVALID_VLC)
  195. return -1;
  196. sign = (vlc & 0x1) - 1;
  197. vlc = (vlc + 1) >> 1;
  198. if (type == 3) {
  199. if (vlc < 3) {
  200. run = 0;
  201. level = vlc;
  202. } else if (vlc < 4) {
  203. run = 1;
  204. level = 1;
  205. } else {
  206. run = (vlc & 0x3);
  207. level = ((vlc + 9) >> 2) - run;
  208. }
  209. } else {
  210. if (vlc < 16) {
  211. run = svq3_dct_tables[intra][vlc].run;
  212. level = svq3_dct_tables[intra][vlc].level;
  213. } else if (intra) {
  214. run = (vlc & 0x7);
  215. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  216. } else {
  217. run = (vlc & 0xF);
  218. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  219. }
  220. }
  221. if ((index += run) >= limit)
  222. return -1;
  223. block[scan[index]] = (level ^ sign) - sign;
  224. }
  225. if (type != 2) {
  226. break;
  227. }
  228. }
  229. return 0;
  230. }
  231. static inline void svq3_mc_dir_part (MpegEncContext *s,
  232. int x, int y, int width, int height,
  233. int mx, int my, int dxy,
  234. int thirdpel, int dir, int avg) {
  235. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  236. uint8_t *src, *dest;
  237. int i, emu = 0;
  238. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  239. mx += x;
  240. my += y;
  241. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  242. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  243. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  244. emu = 1;
  245. }
  246. mx = clip (mx, -16, (s->h_edge_pos - width + 15));
  247. my = clip (my, -16, (s->v_edge_pos - height + 15));
  248. }
  249. /* form component predictions */
  250. dest = s->current_picture.data[0] + x + y*s->linesize;
  251. src = pic->data[0] + mx + my*s->linesize;
  252. if (emu) {
  253. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  254. mx, my, s->h_edge_pos, s->v_edge_pos);
  255. src = s->edge_emu_buffer;
  256. }
  257. if(thirdpel)
  258. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  259. else
  260. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  261. if (!(s->flags & CODEC_FLAG_GRAY)) {
  262. mx = (mx + (mx < (int) x)) >> 1;
  263. my = (my + (my < (int) y)) >> 1;
  264. width = (width >> 1);
  265. height = (height >> 1);
  266. blocksize++;
  267. for (i=1; i < 3; i++) {
  268. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  269. src = pic->data[i] + mx + my*s->uvlinesize;
  270. if (emu) {
  271. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  272. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  273. src = s->edge_emu_buffer;
  274. }
  275. if(thirdpel)
  276. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  277. else
  278. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  279. }
  280. }
  281. }
  282. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  283. int cbp, dir, mode, mx, my, dx, dy, x, y, part_width, part_height;
  284. int i, j, k, l, m;
  285. uint32_t vlc;
  286. int8_t *top, *left;
  287. MpegEncContext *const s = (MpegEncContext *) h;
  288. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  289. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  290. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  291. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  292. h->topright_samples_available = 0xFFFF;
  293. if (mb_type == 0) { /* SKIP */
  294. if (s->pict_type == P_TYPE) {
  295. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  296. cbp = 0;
  297. mb_type = MB_TYPE_SKIP;
  298. } else {
  299. for (dir=0; dir < 2; dir++) {
  300. for (i=0; i < 4; i++) {
  301. for (j=0; j < 4; j++) {
  302. int dxy;
  303. x = 16*s->mb_x + 4*j;
  304. y = 16*s->mb_y + 4*i;
  305. mx = 2*s->next_picture.motion_val[0][b_xy + j + i*h->b_stride][0];
  306. my = 2*s->next_picture.motion_val[0][b_xy + j + i*h->b_stride][1];
  307. if (dir == 0) {
  308. mx = (mx * h->frame_num_offset) / h->prev_frame_num_offset;
  309. my = (my * h->frame_num_offset) / h->prev_frame_num_offset;
  310. } else {
  311. mx = (mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset;
  312. my = (my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset;
  313. }
  314. mx = ((unsigned)(mx + 3 + 0x6000))/6 - 0x1000;
  315. my = ((unsigned)(my + 3 + 0x6000))/6 - 0x1000;
  316. dxy= (mx&1) + 2*(my&1);
  317. /* update mv_cache */
  318. s->current_picture.motion_val[dir][b_xy + j + i*h->b_stride][0] = 3*mx;
  319. s->current_picture.motion_val[dir][b_xy + j + i*h->b_stride][1] = 3*my;
  320. svq3_mc_dir_part (s, x, y, 4, 4, mx>>1, my>>1, dxy, 0, dir, (dir == 1));
  321. }
  322. }
  323. }
  324. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48)
  325. return -1;
  326. cbp = golomb_to_inter_cbp[vlc];
  327. mb_type = MB_TYPE_16x16;
  328. }
  329. } else if (mb_type < 8) { /* INTER */
  330. int dir0, dir1;
  331. if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) {
  332. mode = THIRDPEL_MODE;
  333. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) {
  334. mode = HALFPEL_MODE;
  335. } else {
  336. mode = FULLPEL_MODE;
  337. }
  338. /* fill caches */
  339. /* note ref_cache should contain here:
  340. ????????
  341. ???11111
  342. N??11111
  343. N??11111
  344. N??11111
  345. N
  346. */
  347. for (m=0; m < 2; m++) {
  348. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  349. for (i=0; i < 4; i++) {
  350. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  351. }
  352. } else {
  353. for (i=0; i < 4; i++) {
  354. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  355. }
  356. }
  357. if (s->mb_y > 0) {
  358. memcpy (h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  359. memset (&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  360. if (s->mb_x < (s->mb_width - 1)) {
  361. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  362. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  363. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  364. h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1;
  365. }else
  366. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  367. if (s->mb_x > 0) {
  368. *(uint32_t *) h->mv_cache[0][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  369. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  370. }else
  371. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  372. }else
  373. memset (&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  374. if (s->pict_type != B_TYPE)
  375. break;
  376. }
  377. /* decode motion vector(s) and form prediction(s) */
  378. if (s->pict_type == P_TYPE) {
  379. part_width = ((mb_type & 5) == 5) ? 4 : 8 << (mb_type & 1);
  380. part_height = 16 >> ((unsigned) mb_type / 3);
  381. dir0 = 0;
  382. dir1 = 0;
  383. } else { /* B_TYPE */
  384. part_width = 16;
  385. part_height = 16;
  386. dir0 = (mb_type == 2) ? 1 : 0;
  387. dir1 = (mb_type == 1) ? 0 : 1;
  388. }
  389. for (dir=dir0; dir <= dir1; dir++) {
  390. for (i=0; i < 16; i+=part_height) {
  391. for (j=0; j < 16; j+=part_width) {
  392. int avg=(dir == 1 && dir0 != dir1);
  393. int dxy;
  394. x = 16*s->mb_x + j;
  395. y = 16*s->mb_y + i;
  396. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  397. pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);
  398. /* clip motion vector prediction to frame border */
  399. mx = clip (mx, -6*x, 6*(s->h_edge_pos - part_width - x));
  400. my = clip (my, -6*y, 6*(s->v_edge_pos - part_height - y));
  401. /* get motion vector differential */
  402. dy = svq3_get_se_golomb (&s->gb);
  403. dx = svq3_get_se_golomb (&s->gb);
  404. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  405. return -1;
  406. }
  407. /* compute motion vector */
  408. if (mode == THIRDPEL_MODE) {
  409. int fx, fy;
  410. mx = ((mx + 1)>>1) + dx;
  411. my = ((my + 1)>>1) + dy;
  412. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  413. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  414. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  415. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  416. mx += mx;
  417. my += my;
  418. } else if (mode == HALFPEL_MODE) {
  419. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  420. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  421. dxy= (mx&1) + 2*(my&1);
  422. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  423. mx *= 3;
  424. my *= 3;
  425. } else {
  426. assert(mode == FULLPEL_MODE);
  427. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  428. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  429. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  430. mx *= 6;
  431. my *= 6;
  432. }
  433. /* update mv_cache */
  434. fill_rectangle(h->mv_cache[dir][scan8[k]], part_width>>2, part_height>>2, 8, pack16to32(mx,my), 4);
  435. }
  436. }
  437. }
  438. /* write back or clear motion vectors */
  439. if (s->pict_type == P_TYPE || mb_type != 2) {
  440. for (i=0; i < 4; i++) {
  441. memcpy (s->current_picture.motion_val[0][b_xy + i*h->b_stride], h->mv_cache[0][scan8[0] + 8*i], 4*2*sizeof(int16_t));
  442. }
  443. } else {
  444. for (i=0; i < 4; i++) {
  445. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  446. }
  447. }
  448. if (s->pict_type == B_TYPE) {
  449. if (mb_type != 1) {
  450. for (i=0; i < 4; i++) {
  451. memcpy (s->current_picture.motion_val[1][b_xy + i*h->b_stride], h->mv_cache[1][scan8[0] + 8*i], 4*2*sizeof(int16_t));
  452. }
  453. } else {
  454. for (i=0; i < 4; i++) {
  455. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  456. }
  457. }
  458. }
  459. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48)
  460. return -1;
  461. cbp = golomb_to_inter_cbp[vlc];
  462. mb_type = MB_TYPE_16x16;
  463. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  464. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  465. if (mb_type == 8) {
  466. if (s->mb_x > 0) {
  467. for (i=0; i < 4; i++) {
  468. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  469. }
  470. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  471. h->left_samples_available = 0x5F5F;
  472. }
  473. }
  474. if (s->mb_y > 0) {
  475. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  476. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  477. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  478. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  479. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  480. h->top_samples_available = 0x33FF;
  481. }
  482. }
  483. /* decode prediction codes for luma blocks */
  484. for (i=0; i < 16; i+=2) {
  485. vlc = svq3_get_ue_golomb (&s->gb);
  486. if (vlc >= 25)
  487. return -1;
  488. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  489. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  490. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  491. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  492. if (left[1] == -1 || left[2] == -1)
  493. return -1;
  494. }
  495. } else {
  496. /* DC_128_PRED block type */
  497. for (i=0; i < 4; i++) {
  498. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  499. }
  500. }
  501. write_back_intra_pred_mode (h);
  502. if (mb_type == 8) {
  503. check_intra4x4_pred_mode (h);
  504. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  505. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  506. } else {
  507. for (i=0; i < 4; i++) {
  508. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  509. }
  510. h->top_samples_available = 0x33FF;
  511. h->left_samples_available = 0x5F5F;
  512. }
  513. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48)
  514. return -1;
  515. cbp = golomb_to_intra4x4_cbp[vlc];
  516. mb_type = MB_TYPE_INTRA4x4;
  517. } else { /* INTRA16x16 */
  518. dir = i_mb_type_info[mb_type - 8].pred_mode;
  519. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  520. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1)
  521. return -1;
  522. cbp = i_mb_type_info[mb_type - 8].cbp;
  523. mb_type = MB_TYPE_INTRA16x16;
  524. }
  525. if (!IS_INTER(mb_type) && s->pict_type != I_TYPE) {
  526. for (i=0; i < 4; i++) {
  527. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  528. }
  529. if (s->pict_type == B_TYPE) {
  530. for (i=0; i < 4; i++) {
  531. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  532. }
  533. }
  534. }
  535. if (!IS_INTRA4x4(mb_type)) {
  536. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  537. }
  538. if (!IS_SKIP(mb_type)) {
  539. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  540. s->dsp.clear_blocks(h->mb);
  541. }
  542. if (IS_INTRA16x16(mb_type) || (s->pict_type != I_TYPE && s->adaptive_quant && cbp)) {
  543. s->qscale += svq3_get_se_golomb (&s->gb);
  544. if (s->qscale > 31)
  545. return -1;
  546. }
  547. if (IS_INTRA16x16(mb_type)) {
  548. if (svq3_decode_block (&s->gb, h->mb, 0, 0))
  549. return -1;
  550. }
  551. if (!IS_SKIP(mb_type) && cbp) {
  552. l = IS_INTRA16x16(mb_type) ? 1 : 0;
  553. m = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  554. for (i=0; i < 4; i++) {
  555. if ((cbp & (1 << i))) {
  556. for (j=0; j < 4; j++) {
  557. k = l ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  558. h->non_zero_count_cache[ scan8[k] ] = 1;
  559. if (svq3_decode_block (&s->gb, &h->mb[16*k], l, m))
  560. return -1;
  561. }
  562. }
  563. }
  564. if ((cbp & 0x30)) {
  565. for (i=0; i < 2; ++i) {
  566. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3))
  567. return -1;
  568. }
  569. if ((cbp & 0x20)) {
  570. for (i=0; i < 8; i++) {
  571. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  572. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1))
  573. return -1;
  574. }
  575. }
  576. }
  577. }
  578. s->current_picture.mb_type[mb_xy] = mb_type;
  579. if (IS_INTRA(mb_type)) {
  580. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  581. }
  582. return 0;
  583. }
  584. static int svq3_decode_slice_header (H264Context *h) {
  585. MpegEncContext *const s = (MpegEncContext *) h;
  586. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  587. int i, header;
  588. header = get_bits (&s->gb, 8);
  589. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  590. /* TODO: what? */
  591. fprintf (stderr, "unsupported slice header (%02X)\n", header);
  592. return -1;
  593. } else {
  594. int length = (header >> 5) & 3;
  595. h->next_slice_index = s->gb.index + 8*show_bits (&s->gb, 8*length) + 8*length;
  596. if (h->next_slice_index > s->gb.size_in_bits)
  597. return -1;
  598. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  599. s->gb.index += 8;
  600. if (length > 0) {
  601. memcpy ((uint8_t *) &s->gb.buffer[s->gb.index >> 3],
  602. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  603. }
  604. }
  605. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3)
  606. return -1;
  607. h->slice_type = golomb_to_pict_type[i];
  608. if ((header & 0x9F) == 2) {
  609. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  610. s->mb_skip_run = get_bits (&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  611. } else {
  612. get_bits1 (&s->gb);
  613. s->mb_skip_run = 0;
  614. }
  615. h->slice_num = get_bits (&s->gb, 8);
  616. s->qscale = get_bits (&s->gb, 5);
  617. s->adaptive_quant = get_bits1 (&s->gb);
  618. /* unknown fields */
  619. get_bits1 (&s->gb);
  620. if (h->unknown_svq3_flag) {
  621. get_bits1 (&s->gb);
  622. }
  623. get_bits1 (&s->gb);
  624. get_bits (&s->gb, 2);
  625. while (get_bits1 (&s->gb)) {
  626. get_bits (&s->gb, 8);
  627. }
  628. /* reset intra predictors and invalidate motion vector references */
  629. if (s->mb_x > 0) {
  630. memset (h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  631. memset (h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  632. }
  633. if (s->mb_y > 0) {
  634. memset (h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  635. if (s->mb_x > 0) {
  636. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  637. }
  638. }
  639. return 0;
  640. }
  641. static int svq3_decode_frame (AVCodecContext *avctx,
  642. void *data, int *data_size,
  643. uint8_t *buf, int buf_size) {
  644. MpegEncContext *const s = avctx->priv_data;
  645. H264Context *const h = avctx->priv_data;
  646. int m, mb_type;
  647. *data_size = 0;
  648. s->flags = avctx->flags;
  649. if (!s->context_initialized) {
  650. s->width = avctx->width;
  651. s->height = avctx->height;
  652. h->pred4x4[DIAG_DOWN_LEFT_PRED] = pred4x4_down_left_svq3_c;
  653. h->pred16x16[PLANE_PRED8x8] = pred16x16_plane_svq3_c;
  654. h->halfpel_flag = 1;
  655. h->thirdpel_flag = 1;
  656. h->unknown_svq3_flag = 0;
  657. h->chroma_qp = 4;
  658. if (MPV_common_init (s) < 0)
  659. return -1;
  660. h->b_stride = 4*s->mb_width;
  661. alloc_tables (h);
  662. if (avctx->extradata && avctx->extradata_size >= 0x64
  663. && !memcmp (avctx->extradata, "SVQ3", 4)) {
  664. GetBitContext gb;
  665. init_get_bits (&gb, (uint8_t *) avctx->extradata + 0x62,
  666. 8*(avctx->extradata_size - 0x62));
  667. /* 'frame size code' and optional 'width, height' */
  668. if (get_bits (&gb, 3) == 7) {
  669. get_bits (&gb, 12);
  670. get_bits (&gb, 12);
  671. }
  672. h->halfpel_flag = get_bits1 (&gb);
  673. h->thirdpel_flag = get_bits1 (&gb);
  674. /* unknown fields */
  675. get_bits1 (&gb);
  676. get_bits1 (&gb);
  677. get_bits1 (&gb);
  678. get_bits1 (&gb);
  679. s->low_delay = get_bits1 (&gb);
  680. /* unknown field */
  681. get_bits1 (&gb);
  682. while (get_bits1 (&gb)) {
  683. get_bits (&gb, 8);
  684. }
  685. h->unknown_svq3_flag = get_bits1 (&gb);
  686. avctx->has_b_frames = !s->low_delay;
  687. }
  688. }
  689. /* special case for last picture */
  690. if (buf_size == 0) {
  691. if (s->next_picture_ptr && !s->low_delay) {
  692. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  693. *data_size = sizeof(AVFrame);
  694. }
  695. return 0;
  696. }
  697. init_get_bits (&s->gb, buf, 8*buf_size);
  698. s->mb_x = s->mb_y = 0;
  699. if (svq3_decode_slice_header (h))
  700. return -1;
  701. s->pict_type = h->slice_type;
  702. s->picture_number = h->slice_num;
  703. if(avctx->debug&FF_DEBUG_PICT_INFO){
  704. printf("%c hpel:%d, tpel:%d aqp:%d qp:%d\n",
  705. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  706. s->adaptive_quant, s->qscale
  707. );
  708. }
  709. /* for hurry_up==5 */
  710. s->current_picture.pict_type = s->pict_type;
  711. s->current_picture.key_frame = (s->pict_type == I_TYPE);
  712. /* skip b frames if we dont have reference frames */
  713. if (s->last_picture_ptr == NULL && s->pict_type == B_TYPE) return 0;
  714. /* skip b frames if we are in a hurry */
  715. if (avctx->hurry_up && s->pict_type == B_TYPE) return 0;
  716. /* skip everything if we are in a hurry >= 5 */
  717. if (avctx->hurry_up >= 5) return 0;
  718. if (s->next_p_frame_damaged) {
  719. if (s->pict_type == B_TYPE)
  720. return 0;
  721. else
  722. s->next_p_frame_damaged = 0;
  723. }
  724. frame_start (h);
  725. if (s->pict_type == B_TYPE) {
  726. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  727. if (h->frame_num_offset < 0) {
  728. h->frame_num_offset += 256;
  729. }
  730. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  731. printf ("error in B-frame picture id\n");
  732. return -1;
  733. }
  734. } else {
  735. h->prev_frame_num = h->frame_num;
  736. h->frame_num = h->slice_num;
  737. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  738. if (h->prev_frame_num_offset < 0) {
  739. h->prev_frame_num_offset += 256;
  740. }
  741. }
  742. for(m=0; m<2; m++){
  743. int i;
  744. for(i=0; i<4; i++){
  745. int j;
  746. for(j=-1; j<4; j++)
  747. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  748. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  749. }
  750. }
  751. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  752. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  753. if ( (s->gb.index + 7) >= s->gb.size_in_bits &&
  754. ((s->gb.index & 7) == 0 || show_bits (&s->gb, (-s->gb.index & 7)) == 0)) {
  755. s->gb.index = h->next_slice_index;
  756. s->gb.size_in_bits = 8*buf_size;
  757. if (svq3_decode_slice_header (h))
  758. return -1;
  759. /* TODO: support s->mb_skip_run */
  760. }
  761. mb_type = svq3_get_ue_golomb (&s->gb);
  762. if (s->pict_type == I_TYPE) {
  763. mb_type += 8;
  764. } else if (s->pict_type == B_TYPE && mb_type >= 4) {
  765. mb_type += 4;
  766. }
  767. if (mb_type > 33 || svq3_decode_mb (h, mb_type)) {
  768. fprintf (stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  769. return -1;
  770. }
  771. if (mb_type != 0) {
  772. hl_decode_mb (h);
  773. }
  774. }
  775. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  776. }
  777. MPV_frame_end(s);
  778. if (s->pict_type == B_TYPE || s->low_delay) {
  779. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  780. } else {
  781. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  782. }
  783. avctx->frame_number = s->picture_number - 1;
  784. /* dont output the last pic after seeking */
  785. if (s->last_picture_ptr || s->low_delay) {
  786. *data_size = sizeof(AVFrame);
  787. }
  788. return buf_size;
  789. }
  790. AVCodec svq3_decoder = {
  791. "svq3",
  792. CODEC_TYPE_VIDEO,
  793. CODEC_ID_SVQ3,
  794. sizeof(H264Context),
  795. decode_init,
  796. NULL,
  797. decode_end,
  798. svq3_decode_frame,
  799. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1,
  800. };