You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

290 lines
9.5KB

  1. /*
  2. * Common code between the AC-3 encoder and decoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3.c
  23. * Common code between the AC-3 encoder and decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "ac3.h"
  27. #include "get_bits.h"
  28. #if CONFIG_HARDCODED_TABLES
  29. /**
  30. * Starting frequency coefficient bin for each critical band.
  31. */
  32. static const uint8_t band_start_tab[51] = {
  33. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  34. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
  35. 20, 21, 22, 23, 24, 25, 26, 27, 28, 31,
  36. 34, 37, 40, 43, 46, 49, 55, 61, 67, 73,
  37. 79, 85, 97, 109, 121, 133, 157, 181, 205, 229, 253
  38. };
  39. /**
  40. * Maps each frequency coefficient bin to the critical band that contains it.
  41. */
  42. static const uint8_t bin_to_band_tab[253] = {
  43. 0,
  44. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
  45. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
  46. 25, 26, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30,
  47. 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34,
  48. 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36,
  49. 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38,
  50. 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40,
  51. 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
  52. 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
  53. 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43,
  54. 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44,
  55. 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45,
  56. 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45,
  57. 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
  58. 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
  59. 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
  60. 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
  61. 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
  62. 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
  63. 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49,
  64. 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49
  65. };
  66. #else /* CONFIG_HARDCODED_TABLES */
  67. static uint8_t band_start_tab[51];
  68. static uint8_t bin_to_band_tab[253];
  69. #endif
  70. static inline int calc_lowcomp1(int a, int b0, int b1, int c)
  71. {
  72. if ((b0 + 256) == b1) {
  73. a = c;
  74. } else if (b0 > b1) {
  75. a = FFMAX(a - 64, 0);
  76. }
  77. return a;
  78. }
  79. static inline int calc_lowcomp(int a, int b0, int b1, int bin)
  80. {
  81. if (bin < 7) {
  82. return calc_lowcomp1(a, b0, b1, 384);
  83. } else if (bin < 20) {
  84. return calc_lowcomp1(a, b0, b1, 320);
  85. } else {
  86. return FFMAX(a - 128, 0);
  87. }
  88. }
  89. void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd,
  90. int16_t *band_psd)
  91. {
  92. int bin, band;
  93. /* exponent mapping to PSD */
  94. for(bin=start;bin<end;bin++) {
  95. psd[bin]=(3072 - (exp[bin] << 7));
  96. }
  97. /* PSD integration */
  98. bin = start;
  99. band = bin_to_band_tab[start];
  100. do {
  101. int v = psd[bin++];
  102. int band_end = FFMIN(band_start_tab[band+1], end);
  103. for (; bin < band_end; bin++) {
  104. /* logadd */
  105. int adr = FFMIN(FFABS(v - psd[bin]) >> 1, 255);
  106. v = FFMAX(v, psd[bin]) + ff_ac3_log_add_tab[adr];
  107. }
  108. band_psd[band] = v;
  109. band++;
  110. } while (end > band_start_tab[band]);
  111. }
  112. int ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd,
  113. int start, int end, int fast_gain, int is_lfe,
  114. int dba_mode, int dba_nsegs, uint8_t *dba_offsets,
  115. uint8_t *dba_lengths, uint8_t *dba_values,
  116. int16_t *mask)
  117. {
  118. int16_t excite[50]; /* excitation */
  119. int bin, k;
  120. int bndstrt, bndend, begin, end1, tmp;
  121. int lowcomp, fastleak, slowleak;
  122. /* excitation function */
  123. bndstrt = bin_to_band_tab[start];
  124. bndend = bin_to_band_tab[end-1] + 1;
  125. if (bndstrt == 0) {
  126. lowcomp = 0;
  127. lowcomp = calc_lowcomp1(lowcomp, band_psd[0], band_psd[1], 384);
  128. excite[0] = band_psd[0] - fast_gain - lowcomp;
  129. lowcomp = calc_lowcomp1(lowcomp, band_psd[1], band_psd[2], 384);
  130. excite[1] = band_psd[1] - fast_gain - lowcomp;
  131. begin = 7;
  132. for (bin = 2; bin < 7; bin++) {
  133. if (!(is_lfe && bin == 6))
  134. lowcomp = calc_lowcomp1(lowcomp, band_psd[bin], band_psd[bin+1], 384);
  135. fastleak = band_psd[bin] - fast_gain;
  136. slowleak = band_psd[bin] - s->slow_gain;
  137. excite[bin] = fastleak - lowcomp;
  138. if (!(is_lfe && bin == 6)) {
  139. if (band_psd[bin] <= band_psd[bin+1]) {
  140. begin = bin + 1;
  141. break;
  142. }
  143. }
  144. }
  145. end1=bndend;
  146. if (end1 > 22) end1=22;
  147. for (bin = begin; bin < end1; bin++) {
  148. if (!(is_lfe && bin == 6))
  149. lowcomp = calc_lowcomp(lowcomp, band_psd[bin], band_psd[bin+1], bin);
  150. fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain);
  151. slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain);
  152. excite[bin] = FFMAX(fastleak - lowcomp, slowleak);
  153. }
  154. begin = 22;
  155. } else {
  156. /* coupling channel */
  157. begin = bndstrt;
  158. fastleak = (s->cpl_fast_leak << 8) + 768;
  159. slowleak = (s->cpl_slow_leak << 8) + 768;
  160. }
  161. for (bin = begin; bin < bndend; bin++) {
  162. fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain);
  163. slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain);
  164. excite[bin] = FFMAX(fastleak, slowleak);
  165. }
  166. /* compute masking curve */
  167. for (bin = bndstrt; bin < bndend; bin++) {
  168. tmp = s->db_per_bit - band_psd[bin];
  169. if (tmp > 0) {
  170. excite[bin] += tmp >> 2;
  171. }
  172. mask[bin] = FFMAX(ff_ac3_hearing_threshold_tab[bin >> s->sr_shift][s->sr_code], excite[bin]);
  173. }
  174. /* delta bit allocation */
  175. if (dba_mode == DBA_REUSE || dba_mode == DBA_NEW) {
  176. int band, seg, delta;
  177. if (dba_nsegs >= 8)
  178. return -1;
  179. band = 0;
  180. for (seg = 0; seg < dba_nsegs; seg++) {
  181. band += dba_offsets[seg];
  182. if (band >= 50 || dba_lengths[seg] > 50-band)
  183. return -1;
  184. if (dba_values[seg] >= 4) {
  185. delta = (dba_values[seg] - 3) << 7;
  186. } else {
  187. delta = (dba_values[seg] - 4) << 7;
  188. }
  189. for (k = 0; k < dba_lengths[seg]; k++) {
  190. mask[band] += delta;
  191. band++;
  192. }
  193. }
  194. }
  195. return 0;
  196. }
  197. void ff_ac3_bit_alloc_calc_bap(int16_t *mask, int16_t *psd, int start, int end,
  198. int snr_offset, int floor,
  199. const uint8_t *bap_tab, uint8_t *bap)
  200. {
  201. int i, j, k, end1, v, address;
  202. /* special case, if snr offset is -960, set all bap's to zero */
  203. if(snr_offset == -960) {
  204. memset(bap, 0, 256);
  205. return;
  206. }
  207. i = start;
  208. j = bin_to_band_tab[start];
  209. do {
  210. v = (FFMAX(mask[j] - snr_offset - floor, 0) & 0x1FE0) + floor;
  211. end1 = FFMIN(band_start_tab[j] + ff_ac3_critical_band_size_tab[j], end);
  212. for (k = i; k < end1; k++) {
  213. address = av_clip((psd[i] - v) >> 5, 0, 63);
  214. bap[i] = bap_tab[address];
  215. i++;
  216. }
  217. } while (end > band_start_tab[j++]);
  218. }
  219. /* AC-3 bit allocation. The algorithm is the one described in the AC-3
  220. spec. */
  221. void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,
  222. int8_t *exp, int start, int end,
  223. int snr_offset, int fast_gain, int is_lfe,
  224. int dba_mode, int dba_nsegs,
  225. uint8_t *dba_offsets, uint8_t *dba_lengths,
  226. uint8_t *dba_values)
  227. {
  228. int16_t psd[256]; /* scaled exponents */
  229. int16_t band_psd[50]; /* interpolated exponents */
  230. int16_t mask[50]; /* masking value */
  231. ff_ac3_bit_alloc_calc_psd(exp, start, end, psd, band_psd);
  232. ff_ac3_bit_alloc_calc_mask(s, band_psd, start, end, fast_gain, is_lfe,
  233. dba_mode, dba_nsegs, dba_offsets, dba_lengths, dba_values,
  234. mask);
  235. ff_ac3_bit_alloc_calc_bap(mask, psd, start, end, snr_offset, s->floor,
  236. ff_ac3_bap_tab, bap);
  237. }
  238. /**
  239. * Initializes some tables.
  240. * note: This function must remain thread safe because it is called by the
  241. * AVParser init code.
  242. */
  243. av_cold void ac3_common_init(void)
  244. {
  245. #if !CONFIG_HARDCODED_TABLES
  246. int i, j, k, l, v;
  247. /* compute bndtab and masktab from bandsz */
  248. k = 0;
  249. l = 0;
  250. for(i=0;i<50;i++) {
  251. band_start_tab[i] = l;
  252. v = ff_ac3_critical_band_size_tab[i];
  253. for(j=0;j<v;j++) bin_to_band_tab[k++]=i;
  254. l += v;
  255. }
  256. band_start_tab[50] = l;
  257. #endif /* !CONFIG_HARDCODED_TABLES */
  258. }