You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1717 lines
63KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/libm.h"
  35. #include <stdint.h>
  36. #include <float.h>
  37. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  38. #define NOISE_FLOOR_OFFSET 6.0f
  39. /**
  40. * SBR VLC tables
  41. */
  42. enum {
  43. T_HUFFMAN_ENV_1_5DB,
  44. F_HUFFMAN_ENV_1_5DB,
  45. T_HUFFMAN_ENV_BAL_1_5DB,
  46. F_HUFFMAN_ENV_BAL_1_5DB,
  47. T_HUFFMAN_ENV_3_0DB,
  48. F_HUFFMAN_ENV_3_0DB,
  49. T_HUFFMAN_ENV_BAL_3_0DB,
  50. F_HUFFMAN_ENV_BAL_3_0DB,
  51. T_HUFFMAN_NOISE_3_0DB,
  52. T_HUFFMAN_NOISE_BAL_3_0DB,
  53. };
  54. /**
  55. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  56. */
  57. enum {
  58. FIXFIX,
  59. FIXVAR,
  60. VARFIX,
  61. VARVAR,
  62. };
  63. enum {
  64. EXTENSION_ID_PS = 2,
  65. };
  66. static VLC vlc_sbr[10];
  67. static const int8_t vlc_sbr_lav[10] =
  68. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  69. #define SBR_INIT_VLC_STATIC(num, size) \
  70. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  71. sbr_tmp[num].sbr_bits , 1, 1, \
  72. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  73. size)
  74. #define SBR_VLC_ROW(name) \
  75. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  76. av_cold void ff_aac_sbr_init(void)
  77. {
  78. int n;
  79. static const struct {
  80. const void *sbr_codes, *sbr_bits;
  81. const unsigned int table_size, elem_size;
  82. } sbr_tmp[] = {
  83. SBR_VLC_ROW(t_huffman_env_1_5dB),
  84. SBR_VLC_ROW(f_huffman_env_1_5dB),
  85. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_3_0dB),
  88. SBR_VLC_ROW(f_huffman_env_3_0dB),
  89. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  93. };
  94. // SBR VLC table initialization
  95. SBR_INIT_VLC_STATIC(0, 1098);
  96. SBR_INIT_VLC_STATIC(1, 1092);
  97. SBR_INIT_VLC_STATIC(2, 768);
  98. SBR_INIT_VLC_STATIC(3, 1026);
  99. SBR_INIT_VLC_STATIC(4, 1058);
  100. SBR_INIT_VLC_STATIC(5, 1052);
  101. SBR_INIT_VLC_STATIC(6, 544);
  102. SBR_INIT_VLC_STATIC(7, 544);
  103. SBR_INIT_VLC_STATIC(8, 592);
  104. SBR_INIT_VLC_STATIC(9, 512);
  105. for (n = 1; n < 320; n++)
  106. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  107. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  108. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  109. for (n = 0; n < 320; n++)
  110. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  111. ff_ps_init();
  112. }
  113. /** Places SBR in pure upsampling mode. */
  114. static void sbr_turnoff(SpectralBandReplication *sbr) {
  115. sbr->start = 0;
  116. // Init defults used in pure upsampling mode
  117. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  118. sbr->m[1] = 0;
  119. // Reset values for first SBR header
  120. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  121. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  122. }
  123. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  124. {
  125. sbr->kx[0] = sbr->kx[1];
  126. sbr_turnoff(sbr);
  127. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  128. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  129. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  130. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  131. * and scale back down at synthesis. */
  132. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
  133. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
  134. ff_ps_ctx_init(&sbr->ps);
  135. ff_sbrdsp_init(&sbr->dsp);
  136. }
  137. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  138. {
  139. ff_mdct_end(&sbr->mdct);
  140. ff_mdct_end(&sbr->mdct_ana);
  141. }
  142. static int qsort_comparison_function_int16(const void *a, const void *b)
  143. {
  144. return *(const int16_t *)a - *(const int16_t *)b;
  145. }
  146. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  147. {
  148. int i;
  149. for (i = 0; i <= last_el; i++)
  150. if (table[i] == needle)
  151. return 1;
  152. return 0;
  153. }
  154. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  155. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  156. {
  157. int k;
  158. if (sbr->bs_limiter_bands > 0) {
  159. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  160. 1.18509277094158210129f, //2^(0.49/2)
  161. 1.11987160404675912501f }; //2^(0.49/3)
  162. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  163. int16_t patch_borders[7];
  164. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  165. patch_borders[0] = sbr->kx[1];
  166. for (k = 1; k <= sbr->num_patches; k++)
  167. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  168. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  169. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  170. if (sbr->num_patches > 1)
  171. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  172. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  173. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  174. sizeof(sbr->f_tablelim[0]),
  175. qsort_comparison_function_int16);
  176. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  177. while (out < sbr->f_tablelim + sbr->n_lim) {
  178. if (*in >= *out * lim_bands_per_octave_warped) {
  179. *++out = *in++;
  180. } else if (*in == *out ||
  181. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  182. in++;
  183. sbr->n_lim--;
  184. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  185. *out = *in++;
  186. sbr->n_lim--;
  187. } else {
  188. *++out = *in++;
  189. }
  190. }
  191. } else {
  192. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  193. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  194. sbr->n_lim = 1;
  195. }
  196. }
  197. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  198. {
  199. unsigned int cnt = get_bits_count(gb);
  200. uint8_t bs_header_extra_1;
  201. uint8_t bs_header_extra_2;
  202. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  203. SpectrumParameters old_spectrum_params;
  204. sbr->start = 1;
  205. // Save last spectrum parameters variables to compare to new ones
  206. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  207. sbr->bs_amp_res_header = get_bits1(gb);
  208. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  209. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  210. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  211. skip_bits(gb, 2); // bs_reserved
  212. bs_header_extra_1 = get_bits1(gb);
  213. bs_header_extra_2 = get_bits1(gb);
  214. if (bs_header_extra_1) {
  215. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  216. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  217. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  218. } else {
  219. sbr->spectrum_params.bs_freq_scale = 2;
  220. sbr->spectrum_params.bs_alter_scale = 1;
  221. sbr->spectrum_params.bs_noise_bands = 2;
  222. }
  223. // Check if spectrum parameters changed
  224. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  225. sbr->reset = 1;
  226. if (bs_header_extra_2) {
  227. sbr->bs_limiter_bands = get_bits(gb, 2);
  228. sbr->bs_limiter_gains = get_bits(gb, 2);
  229. sbr->bs_interpol_freq = get_bits1(gb);
  230. sbr->bs_smoothing_mode = get_bits1(gb);
  231. } else {
  232. sbr->bs_limiter_bands = 2;
  233. sbr->bs_limiter_gains = 2;
  234. sbr->bs_interpol_freq = 1;
  235. sbr->bs_smoothing_mode = 1;
  236. }
  237. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  238. sbr_make_f_tablelim(sbr);
  239. return get_bits_count(gb) - cnt;
  240. }
  241. static int array_min_int16(const int16_t *array, int nel)
  242. {
  243. int i, min = array[0];
  244. for (i = 1; i < nel; i++)
  245. min = FFMIN(array[i], min);
  246. return min;
  247. }
  248. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  249. {
  250. int k, previous, present;
  251. float base, prod;
  252. base = powf((float)stop / start, 1.0f / num_bands);
  253. prod = start;
  254. previous = start;
  255. for (k = 0; k < num_bands-1; k++) {
  256. prod *= base;
  257. present = lrintf(prod);
  258. bands[k] = present - previous;
  259. previous = present;
  260. }
  261. bands[num_bands-1] = stop - previous;
  262. }
  263. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  264. {
  265. // Requirements (14496-3 sp04 p205)
  266. if (n_master <= 0) {
  267. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  268. return -1;
  269. }
  270. if (bs_xover_band >= n_master) {
  271. av_log(avctx, AV_LOG_ERROR,
  272. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  273. bs_xover_band);
  274. return -1;
  275. }
  276. return 0;
  277. }
  278. /// Master Frequency Band Table (14496-3 sp04 p194)
  279. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  280. SpectrumParameters *spectrum)
  281. {
  282. unsigned int temp, max_qmf_subbands;
  283. unsigned int start_min, stop_min;
  284. int k;
  285. const int8_t *sbr_offset_ptr;
  286. int16_t stop_dk[13];
  287. if (sbr->sample_rate < 32000) {
  288. temp = 3000;
  289. } else if (sbr->sample_rate < 64000) {
  290. temp = 4000;
  291. } else
  292. temp = 5000;
  293. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  294. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  295. switch (sbr->sample_rate) {
  296. case 16000:
  297. sbr_offset_ptr = sbr_offset[0];
  298. break;
  299. case 22050:
  300. sbr_offset_ptr = sbr_offset[1];
  301. break;
  302. case 24000:
  303. sbr_offset_ptr = sbr_offset[2];
  304. break;
  305. case 32000:
  306. sbr_offset_ptr = sbr_offset[3];
  307. break;
  308. case 44100: case 48000: case 64000:
  309. sbr_offset_ptr = sbr_offset[4];
  310. break;
  311. case 88200: case 96000: case 128000: case 176400: case 192000:
  312. sbr_offset_ptr = sbr_offset[5];
  313. break;
  314. default:
  315. av_log(ac->avctx, AV_LOG_ERROR,
  316. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  317. return -1;
  318. }
  319. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  320. if (spectrum->bs_stop_freq < 14) {
  321. sbr->k[2] = stop_min;
  322. make_bands(stop_dk, stop_min, 64, 13);
  323. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  324. for (k = 0; k < spectrum->bs_stop_freq; k++)
  325. sbr->k[2] += stop_dk[k];
  326. } else if (spectrum->bs_stop_freq == 14) {
  327. sbr->k[2] = 2*sbr->k[0];
  328. } else if (spectrum->bs_stop_freq == 15) {
  329. sbr->k[2] = 3*sbr->k[0];
  330. } else {
  331. av_log(ac->avctx, AV_LOG_ERROR,
  332. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  333. return -1;
  334. }
  335. sbr->k[2] = FFMIN(64, sbr->k[2]);
  336. // Requirements (14496-3 sp04 p205)
  337. if (sbr->sample_rate <= 32000) {
  338. max_qmf_subbands = 48;
  339. } else if (sbr->sample_rate == 44100) {
  340. max_qmf_subbands = 35;
  341. } else if (sbr->sample_rate >= 48000)
  342. max_qmf_subbands = 32;
  343. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  344. av_log(ac->avctx, AV_LOG_ERROR,
  345. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  346. return -1;
  347. }
  348. if (!spectrum->bs_freq_scale) {
  349. int dk, k2diff;
  350. dk = spectrum->bs_alter_scale + 1;
  351. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  352. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  353. return -1;
  354. for (k = 1; k <= sbr->n_master; k++)
  355. sbr->f_master[k] = dk;
  356. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  357. if (k2diff < 0) {
  358. sbr->f_master[1]--;
  359. sbr->f_master[2]-= (k2diff < -1);
  360. } else if (k2diff) {
  361. sbr->f_master[sbr->n_master]++;
  362. }
  363. sbr->f_master[0] = sbr->k[0];
  364. for (k = 1; k <= sbr->n_master; k++)
  365. sbr->f_master[k] += sbr->f_master[k - 1];
  366. } else {
  367. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  368. int two_regions, num_bands_0;
  369. int vdk0_max, vdk1_min;
  370. int16_t vk0[49];
  371. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  372. two_regions = 1;
  373. sbr->k[1] = 2 * sbr->k[0];
  374. } else {
  375. two_regions = 0;
  376. sbr->k[1] = sbr->k[2];
  377. }
  378. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  379. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  380. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  381. return -1;
  382. }
  383. vk0[0] = 0;
  384. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  385. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  386. vdk0_max = vk0[num_bands_0];
  387. vk0[0] = sbr->k[0];
  388. for (k = 1; k <= num_bands_0; k++) {
  389. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  390. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  391. return -1;
  392. }
  393. vk0[k] += vk0[k-1];
  394. }
  395. if (two_regions) {
  396. int16_t vk1[49];
  397. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  398. : 1.0f; // bs_alter_scale = {0,1}
  399. int num_bands_1 = lrintf(half_bands * invwarp *
  400. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  401. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  402. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  403. if (vdk1_min < vdk0_max) {
  404. int change;
  405. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  406. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  407. vk1[1] += change;
  408. vk1[num_bands_1] -= change;
  409. }
  410. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  411. vk1[0] = sbr->k[1];
  412. for (k = 1; k <= num_bands_1; k++) {
  413. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  414. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  415. return -1;
  416. }
  417. vk1[k] += vk1[k-1];
  418. }
  419. sbr->n_master = num_bands_0 + num_bands_1;
  420. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  421. return -1;
  422. memcpy(&sbr->f_master[0], vk0,
  423. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  424. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  425. num_bands_1 * sizeof(sbr->f_master[0]));
  426. } else {
  427. sbr->n_master = num_bands_0;
  428. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  429. return -1;
  430. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  431. }
  432. }
  433. return 0;
  434. }
  435. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  436. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  437. {
  438. int i, k, sb = 0;
  439. int msb = sbr->k[0];
  440. int usb = sbr->kx[1];
  441. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  442. sbr->num_patches = 0;
  443. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  444. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  445. } else
  446. k = sbr->n_master;
  447. do {
  448. int odd = 0;
  449. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  450. sb = sbr->f_master[i];
  451. odd = (sb + sbr->k[0]) & 1;
  452. }
  453. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  454. // After this check the final number of patches can still be six which is
  455. // illegal however the Coding Technologies decoder check stream has a final
  456. // count of 6 patches
  457. if (sbr->num_patches > 5) {
  458. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  459. return -1;
  460. }
  461. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  462. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  463. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  464. usb = sb;
  465. msb = sb;
  466. sbr->num_patches++;
  467. } else
  468. msb = sbr->kx[1];
  469. if (sbr->f_master[k] - sb < 3)
  470. k = sbr->n_master;
  471. } while (sb != sbr->kx[1] + sbr->m[1]);
  472. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  473. sbr->num_patches--;
  474. return 0;
  475. }
  476. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  477. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  478. {
  479. int k, temp;
  480. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  481. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  482. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  483. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  484. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  485. sbr->kx[1] = sbr->f_tablehigh[0];
  486. // Requirements (14496-3 sp04 p205)
  487. if (sbr->kx[1] + sbr->m[1] > 64) {
  488. av_log(ac->avctx, AV_LOG_ERROR,
  489. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  490. return -1;
  491. }
  492. if (sbr->kx[1] > 32) {
  493. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  494. return -1;
  495. }
  496. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  497. temp = sbr->n[1] & 1;
  498. for (k = 1; k <= sbr->n[0]; k++)
  499. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  500. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  501. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  502. if (sbr->n_q > 5) {
  503. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  504. return -1;
  505. }
  506. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  507. temp = 0;
  508. for (k = 1; k <= sbr->n_q; k++) {
  509. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  510. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  511. }
  512. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  513. return -1;
  514. sbr_make_f_tablelim(sbr);
  515. sbr->data[0].f_indexnoise = 0;
  516. sbr->data[1].f_indexnoise = 0;
  517. return 0;
  518. }
  519. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  520. int elements)
  521. {
  522. int i;
  523. for (i = 0; i < elements; i++) {
  524. vec[i] = get_bits1(gb);
  525. }
  526. }
  527. /** ceil(log2(index+1)) */
  528. static const int8_t ceil_log2[] = {
  529. 0, 1, 2, 2, 3, 3,
  530. };
  531. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  532. GetBitContext *gb, SBRData *ch_data)
  533. {
  534. int i;
  535. unsigned bs_pointer = 0;
  536. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  537. int abs_bord_trail = 16;
  538. int num_rel_lead, num_rel_trail;
  539. unsigned bs_num_env_old = ch_data->bs_num_env;
  540. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  541. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  542. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  543. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  544. case FIXFIX:
  545. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  546. num_rel_lead = ch_data->bs_num_env - 1;
  547. if (ch_data->bs_num_env == 1)
  548. ch_data->bs_amp_res = 0;
  549. if (ch_data->bs_num_env > 4) {
  550. av_log(ac->avctx, AV_LOG_ERROR,
  551. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  552. ch_data->bs_num_env);
  553. return -1;
  554. }
  555. ch_data->t_env[0] = 0;
  556. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  557. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  558. ch_data->bs_num_env;
  559. for (i = 0; i < num_rel_lead; i++)
  560. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  561. ch_data->bs_freq_res[1] = get_bits1(gb);
  562. for (i = 1; i < ch_data->bs_num_env; i++)
  563. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  564. break;
  565. case FIXVAR:
  566. abs_bord_trail += get_bits(gb, 2);
  567. num_rel_trail = get_bits(gb, 2);
  568. ch_data->bs_num_env = num_rel_trail + 1;
  569. ch_data->t_env[0] = 0;
  570. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  571. for (i = 0; i < num_rel_trail; i++)
  572. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  573. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  574. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  575. for (i = 0; i < ch_data->bs_num_env; i++)
  576. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  577. break;
  578. case VARFIX:
  579. ch_data->t_env[0] = get_bits(gb, 2);
  580. num_rel_lead = get_bits(gb, 2);
  581. ch_data->bs_num_env = num_rel_lead + 1;
  582. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  583. for (i = 0; i < num_rel_lead; i++)
  584. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  585. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  586. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  587. break;
  588. case VARVAR:
  589. ch_data->t_env[0] = get_bits(gb, 2);
  590. abs_bord_trail += get_bits(gb, 2);
  591. num_rel_lead = get_bits(gb, 2);
  592. num_rel_trail = get_bits(gb, 2);
  593. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  594. if (ch_data->bs_num_env > 5) {
  595. av_log(ac->avctx, AV_LOG_ERROR,
  596. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  597. ch_data->bs_num_env);
  598. return -1;
  599. }
  600. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  601. for (i = 0; i < num_rel_lead; i++)
  602. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  603. for (i = 0; i < num_rel_trail; i++)
  604. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  605. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  606. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  607. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  608. break;
  609. }
  610. if (bs_pointer > ch_data->bs_num_env + 1) {
  611. av_log(ac->avctx, AV_LOG_ERROR,
  612. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  613. bs_pointer);
  614. return -1;
  615. }
  616. for (i = 1; i <= ch_data->bs_num_env; i++) {
  617. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  618. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  619. return -1;
  620. }
  621. }
  622. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  623. ch_data->t_q[0] = ch_data->t_env[0];
  624. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  625. if (ch_data->bs_num_noise > 1) {
  626. unsigned int idx;
  627. if (ch_data->bs_frame_class == FIXFIX) {
  628. idx = ch_data->bs_num_env >> 1;
  629. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  630. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  631. } else { // VARFIX
  632. if (!bs_pointer)
  633. idx = 1;
  634. else if (bs_pointer == 1)
  635. idx = ch_data->bs_num_env - 1;
  636. else // bs_pointer > 1
  637. idx = bs_pointer - 1;
  638. }
  639. ch_data->t_q[1] = ch_data->t_env[idx];
  640. }
  641. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  642. ch_data->e_a[1] = -1;
  643. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  644. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  645. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  646. ch_data->e_a[1] = bs_pointer - 1;
  647. return 0;
  648. }
  649. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  650. //These variables are saved from the previous frame rather than copied
  651. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  652. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  653. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  654. //These variables are read from the bitstream and therefore copied
  655. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  656. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  657. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  658. dst->bs_num_env = src->bs_num_env;
  659. dst->bs_amp_res = src->bs_amp_res;
  660. dst->bs_num_noise = src->bs_num_noise;
  661. dst->bs_frame_class = src->bs_frame_class;
  662. dst->e_a[1] = src->e_a[1];
  663. }
  664. /// Read how the envelope and noise floor data is delta coded
  665. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  666. SBRData *ch_data)
  667. {
  668. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  669. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  670. }
  671. /// Read inverse filtering data
  672. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  673. SBRData *ch_data)
  674. {
  675. int i;
  676. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  677. for (i = 0; i < sbr->n_q; i++)
  678. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  679. }
  680. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  681. SBRData *ch_data, int ch)
  682. {
  683. int bits;
  684. int i, j, k;
  685. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  686. int t_lav, f_lav;
  687. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  688. const int odd = sbr->n[1] & 1;
  689. if (sbr->bs_coupling && ch) {
  690. if (ch_data->bs_amp_res) {
  691. bits = 5;
  692. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  693. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  694. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  695. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  696. } else {
  697. bits = 6;
  698. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  699. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  700. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  701. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  702. }
  703. } else {
  704. if (ch_data->bs_amp_res) {
  705. bits = 6;
  706. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  707. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  708. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  709. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  710. } else {
  711. bits = 7;
  712. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  713. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  714. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  715. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  716. }
  717. }
  718. for (i = 0; i < ch_data->bs_num_env; i++) {
  719. if (ch_data->bs_df_env[i]) {
  720. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  721. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  722. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  723. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  724. } else if (ch_data->bs_freq_res[i + 1]) {
  725. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  726. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  727. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  728. }
  729. } else {
  730. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  731. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  732. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  733. }
  734. }
  735. } else {
  736. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  737. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  738. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  739. }
  740. }
  741. //assign 0th elements of env_facs from last elements
  742. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  743. sizeof(ch_data->env_facs[0]));
  744. }
  745. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  746. SBRData *ch_data, int ch)
  747. {
  748. int i, j;
  749. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  750. int t_lav, f_lav;
  751. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  752. if (sbr->bs_coupling && ch) {
  753. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  754. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  755. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  756. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  757. } else {
  758. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  759. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  760. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  761. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  762. }
  763. for (i = 0; i < ch_data->bs_num_noise; i++) {
  764. if (ch_data->bs_df_noise[i]) {
  765. for (j = 0; j < sbr->n_q; j++)
  766. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  767. } else {
  768. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  769. for (j = 1; j < sbr->n_q; j++)
  770. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  771. }
  772. }
  773. //assign 0th elements of noise_facs from last elements
  774. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  775. sizeof(ch_data->noise_facs[0]));
  776. }
  777. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  778. GetBitContext *gb,
  779. int bs_extension_id, int *num_bits_left)
  780. {
  781. switch (bs_extension_id) {
  782. case EXTENSION_ID_PS:
  783. if (!ac->oc[1].m4ac.ps) {
  784. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  785. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  786. *num_bits_left = 0;
  787. } else {
  788. #if 1
  789. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  790. #else
  791. av_log_missing_feature(ac->avctx, "Parametric Stereo", 0);
  792. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  793. *num_bits_left = 0;
  794. #endif
  795. }
  796. break;
  797. default:
  798. av_log_missing_feature(ac->avctx, "Reserved SBR extensions", 1);
  799. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  800. *num_bits_left = 0;
  801. break;
  802. }
  803. }
  804. static int read_sbr_single_channel_element(AACContext *ac,
  805. SpectralBandReplication *sbr,
  806. GetBitContext *gb)
  807. {
  808. if (get_bits1(gb)) // bs_data_extra
  809. skip_bits(gb, 4); // bs_reserved
  810. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  811. return -1;
  812. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  813. read_sbr_invf(sbr, gb, &sbr->data[0]);
  814. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  815. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  816. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  817. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  818. return 0;
  819. }
  820. static int read_sbr_channel_pair_element(AACContext *ac,
  821. SpectralBandReplication *sbr,
  822. GetBitContext *gb)
  823. {
  824. if (get_bits1(gb)) // bs_data_extra
  825. skip_bits(gb, 8); // bs_reserved
  826. if ((sbr->bs_coupling = get_bits1(gb))) {
  827. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  828. return -1;
  829. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  830. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  831. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  832. read_sbr_invf(sbr, gb, &sbr->data[0]);
  833. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  834. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  835. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  836. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  837. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  838. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  839. } else {
  840. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  841. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  842. return -1;
  843. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  844. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  845. read_sbr_invf(sbr, gb, &sbr->data[0]);
  846. read_sbr_invf(sbr, gb, &sbr->data[1]);
  847. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  848. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  849. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  850. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  851. }
  852. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  853. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  854. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  855. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  856. return 0;
  857. }
  858. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  859. GetBitContext *gb, int id_aac)
  860. {
  861. unsigned int cnt = get_bits_count(gb);
  862. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  863. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  864. sbr_turnoff(sbr);
  865. return get_bits_count(gb) - cnt;
  866. }
  867. } else if (id_aac == TYPE_CPE) {
  868. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  869. sbr_turnoff(sbr);
  870. return get_bits_count(gb) - cnt;
  871. }
  872. } else {
  873. av_log(ac->avctx, AV_LOG_ERROR,
  874. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  875. sbr_turnoff(sbr);
  876. return get_bits_count(gb) - cnt;
  877. }
  878. if (get_bits1(gb)) { // bs_extended_data
  879. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  880. if (num_bits_left == 15)
  881. num_bits_left += get_bits(gb, 8); // bs_esc_count
  882. num_bits_left <<= 3;
  883. while (num_bits_left > 7) {
  884. num_bits_left -= 2;
  885. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  886. }
  887. if (num_bits_left < 0) {
  888. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  889. }
  890. if (num_bits_left > 0)
  891. skip_bits(gb, num_bits_left);
  892. }
  893. return get_bits_count(gb) - cnt;
  894. }
  895. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  896. {
  897. int err;
  898. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  899. if (err >= 0)
  900. err = sbr_make_f_derived(ac, sbr);
  901. if (err < 0) {
  902. av_log(ac->avctx, AV_LOG_ERROR,
  903. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  904. sbr_turnoff(sbr);
  905. }
  906. }
  907. /**
  908. * Decode Spectral Band Replication extension data; reference: table 4.55.
  909. *
  910. * @param crc flag indicating the presence of CRC checksum
  911. * @param cnt length of TYPE_FIL syntactic element in bytes
  912. *
  913. * @return Returns number of bytes consumed from the TYPE_FIL element.
  914. */
  915. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  916. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  917. {
  918. unsigned int num_sbr_bits = 0, num_align_bits;
  919. unsigned bytes_read;
  920. GetBitContext gbc = *gb_host, *gb = &gbc;
  921. skip_bits_long(gb_host, cnt*8 - 4);
  922. sbr->reset = 0;
  923. if (!sbr->sample_rate)
  924. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  925. if (!ac->oc[1].m4ac.ext_sample_rate)
  926. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  927. if (crc) {
  928. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  929. num_sbr_bits += 10;
  930. }
  931. //Save some state from the previous frame.
  932. sbr->kx[0] = sbr->kx[1];
  933. sbr->m[0] = sbr->m[1];
  934. sbr->kx_and_m_pushed = 1;
  935. num_sbr_bits++;
  936. if (get_bits1(gb)) // bs_header_flag
  937. num_sbr_bits += read_sbr_header(sbr, gb);
  938. if (sbr->reset)
  939. sbr_reset(ac, sbr);
  940. if (sbr->start)
  941. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  942. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  943. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  944. if (bytes_read > cnt) {
  945. av_log(ac->avctx, AV_LOG_ERROR,
  946. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  947. }
  948. return cnt;
  949. }
  950. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  951. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  952. {
  953. int k, e;
  954. int ch;
  955. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  956. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  957. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  958. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  959. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  960. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  961. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  962. float fac = temp1 / (1.0f + temp2);
  963. sbr->data[0].env_facs[e][k] = fac;
  964. sbr->data[1].env_facs[e][k] = fac * temp2;
  965. }
  966. }
  967. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  968. for (k = 0; k < sbr->n_q; k++) {
  969. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  970. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  971. float fac = temp1 / (1.0f + temp2);
  972. sbr->data[0].noise_facs[e][k] = fac;
  973. sbr->data[1].noise_facs[e][k] = fac * temp2;
  974. }
  975. }
  976. } else { // SCE or one non-coupled CPE
  977. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  978. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  979. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  980. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  981. sbr->data[ch].env_facs[e][k] =
  982. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  983. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  984. for (k = 0; k < sbr->n_q; k++)
  985. sbr->data[ch].noise_facs[e][k] =
  986. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  987. }
  988. }
  989. }
  990. /**
  991. * Analysis QMF Bank (14496-3 sp04 p206)
  992. *
  993. * @param x pointer to the beginning of the first sample window
  994. * @param W array of complex-valued samples split into subbands
  995. */
  996. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
  997. SBRDSPContext *sbrdsp, const float *in, float *x,
  998. float z[320], float W[2][32][32][2], int buf_idx)
  999. {
  1000. int i;
  1001. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1002. memcpy(x+288, in, 1024*sizeof(x[0]));
  1003. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1004. // are not supported
  1005. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1006. sbrdsp->sum64x5(z);
  1007. sbrdsp->qmf_pre_shuffle(z);
  1008. mdct->imdct_half(mdct, z, z+64);
  1009. sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
  1010. x += 32;
  1011. }
  1012. }
  1013. /**
  1014. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1015. * (14496-3 sp04 p206)
  1016. */
  1017. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1018. SBRDSPContext *sbrdsp, AVFloatDSPContext *fdsp,
  1019. float *out, float X[2][38][64],
  1020. float mdct_buf[2][64],
  1021. float *v0, int *v_off, const unsigned int div)
  1022. {
  1023. int i, n;
  1024. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1025. const int step = 128 >> div;
  1026. float *v;
  1027. for (i = 0; i < 32; i++) {
  1028. if (*v_off < step) {
  1029. int saved_samples = (1280 - 128) >> div;
  1030. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1031. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1032. } else {
  1033. *v_off -= step;
  1034. }
  1035. v = v0 + *v_off;
  1036. if (div) {
  1037. for (n = 0; n < 32; n++) {
  1038. X[0][i][ n] = -X[0][i][n];
  1039. X[0][i][32+n] = X[1][i][31-n];
  1040. }
  1041. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1042. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1043. } else {
  1044. sbrdsp->neg_odd_64(X[1][i]);
  1045. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1046. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1047. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1048. }
  1049. fdsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
  1050. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1051. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1052. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1053. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1059. out += 64 >> div;
  1060. }
  1061. }
  1062. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1063. * (14496-3 sp04 p214)
  1064. * Warning: This routine does not seem numerically stable.
  1065. */
  1066. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1067. float (*alpha0)[2], float (*alpha1)[2],
  1068. const float X_low[32][40][2], int k0)
  1069. {
  1070. int k;
  1071. for (k = 0; k < k0; k++) {
  1072. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1073. float dk;
  1074. dsp->autocorrelate(X_low[k], phi);
  1075. dk = phi[2][1][0] * phi[1][0][0] -
  1076. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1077. if (!dk) {
  1078. alpha1[k][0] = 0;
  1079. alpha1[k][1] = 0;
  1080. } else {
  1081. float temp_real, temp_im;
  1082. temp_real = phi[0][0][0] * phi[1][1][0] -
  1083. phi[0][0][1] * phi[1][1][1] -
  1084. phi[0][1][0] * phi[1][0][0];
  1085. temp_im = phi[0][0][0] * phi[1][1][1] +
  1086. phi[0][0][1] * phi[1][1][0] -
  1087. phi[0][1][1] * phi[1][0][0];
  1088. alpha1[k][0] = temp_real / dk;
  1089. alpha1[k][1] = temp_im / dk;
  1090. }
  1091. if (!phi[1][0][0]) {
  1092. alpha0[k][0] = 0;
  1093. alpha0[k][1] = 0;
  1094. } else {
  1095. float temp_real, temp_im;
  1096. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1097. alpha1[k][1] * phi[1][1][1];
  1098. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1099. alpha1[k][0] * phi[1][1][1];
  1100. alpha0[k][0] = -temp_real / phi[1][0][0];
  1101. alpha0[k][1] = -temp_im / phi[1][0][0];
  1102. }
  1103. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1104. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1105. alpha1[k][0] = 0;
  1106. alpha1[k][1] = 0;
  1107. alpha0[k][0] = 0;
  1108. alpha0[k][1] = 0;
  1109. }
  1110. }
  1111. }
  1112. /// Chirp Factors (14496-3 sp04 p214)
  1113. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1114. {
  1115. int i;
  1116. float new_bw;
  1117. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1118. for (i = 0; i < sbr->n_q; i++) {
  1119. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1120. new_bw = 0.6f;
  1121. } else
  1122. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1123. if (new_bw < ch_data->bw_array[i]) {
  1124. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1125. } else
  1126. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1127. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1128. }
  1129. }
  1130. /// Generate the subband filtered lowband
  1131. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1132. float X_low[32][40][2], const float W[2][32][32][2],
  1133. int buf_idx)
  1134. {
  1135. int i, k;
  1136. const int t_HFGen = 8;
  1137. const int i_f = 32;
  1138. memset(X_low, 0, 32*sizeof(*X_low));
  1139. for (k = 0; k < sbr->kx[1]; k++) {
  1140. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1141. X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
  1142. X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
  1143. }
  1144. }
  1145. buf_idx = 1-buf_idx;
  1146. for (k = 0; k < sbr->kx[0]; k++) {
  1147. for (i = 0; i < t_HFGen; i++) {
  1148. X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
  1149. X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
  1150. }
  1151. }
  1152. return 0;
  1153. }
  1154. /// High Frequency Generator (14496-3 sp04 p215)
  1155. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1156. float X_high[64][40][2], const float X_low[32][40][2],
  1157. const float (*alpha0)[2], const float (*alpha1)[2],
  1158. const float bw_array[5], const uint8_t *t_env,
  1159. int bs_num_env)
  1160. {
  1161. int j, x;
  1162. int g = 0;
  1163. int k = sbr->kx[1];
  1164. for (j = 0; j < sbr->num_patches; j++) {
  1165. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1166. const int p = sbr->patch_start_subband[j] + x;
  1167. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1168. g++;
  1169. g--;
  1170. if (g < 0) {
  1171. av_log(ac->avctx, AV_LOG_ERROR,
  1172. "ERROR : no subband found for frequency %d\n", k);
  1173. return -1;
  1174. }
  1175. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1176. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1177. alpha0[p], alpha1[p], bw_array[g],
  1178. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1179. }
  1180. }
  1181. if (k < sbr->m[1] + sbr->kx[1])
  1182. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1183. return 0;
  1184. }
  1185. /// Generate the subband filtered lowband
  1186. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1187. const float Y0[38][64][2], const float Y1[38][64][2],
  1188. const float X_low[32][40][2], int ch)
  1189. {
  1190. int k, i;
  1191. const int i_f = 32;
  1192. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1193. memset(X, 0, 2*sizeof(*X));
  1194. for (k = 0; k < sbr->kx[0]; k++) {
  1195. for (i = 0; i < i_Temp; i++) {
  1196. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1197. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1198. }
  1199. }
  1200. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1201. for (i = 0; i < i_Temp; i++) {
  1202. X[0][i][k] = Y0[i + i_f][k][0];
  1203. X[1][i][k] = Y0[i + i_f][k][1];
  1204. }
  1205. }
  1206. for (k = 0; k < sbr->kx[1]; k++) {
  1207. for (i = i_Temp; i < 38; i++) {
  1208. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1209. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1210. }
  1211. }
  1212. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1213. for (i = i_Temp; i < i_f; i++) {
  1214. X[0][i][k] = Y1[i][k][0];
  1215. X[1][i][k] = Y1[i][k][1];
  1216. }
  1217. }
  1218. return 0;
  1219. }
  1220. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1221. * (14496-3 sp04 p217)
  1222. */
  1223. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1224. SBRData *ch_data, int e_a[2])
  1225. {
  1226. int e, i, m;
  1227. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1228. for (e = 0; e < ch_data->bs_num_env; e++) {
  1229. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1230. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1231. int k;
  1232. if (sbr->kx[1] != table[0]) {
  1233. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1234. "Derived frequency tables were not regenerated.\n");
  1235. sbr_turnoff(sbr);
  1236. return AVERROR_BUG;
  1237. }
  1238. for (i = 0; i < ilim; i++)
  1239. for (m = table[i]; m < table[i + 1]; m++)
  1240. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1241. // ch_data->bs_num_noise > 1 => 2 noise floors
  1242. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1243. for (i = 0; i < sbr->n_q; i++)
  1244. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1245. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1246. for (i = 0; i < sbr->n[1]; i++) {
  1247. if (ch_data->bs_add_harmonic_flag) {
  1248. const unsigned int m_midpoint =
  1249. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1250. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1251. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1252. }
  1253. }
  1254. for (i = 0; i < ilim; i++) {
  1255. int additional_sinusoid_present = 0;
  1256. for (m = table[i]; m < table[i + 1]; m++) {
  1257. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1258. additional_sinusoid_present = 1;
  1259. break;
  1260. }
  1261. }
  1262. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1263. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1264. }
  1265. }
  1266. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1267. return 0;
  1268. }
  1269. /// Estimation of current envelope (14496-3 sp04 p218)
  1270. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1271. SpectralBandReplication *sbr, SBRData *ch_data)
  1272. {
  1273. int e, m;
  1274. int kx1 = sbr->kx[1];
  1275. if (sbr->bs_interpol_freq) {
  1276. for (e = 0; e < ch_data->bs_num_env; e++) {
  1277. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1278. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1279. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1280. for (m = 0; m < sbr->m[1]; m++) {
  1281. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1282. e_curr[e][m] = sum * recip_env_size;
  1283. }
  1284. }
  1285. } else {
  1286. int k, p;
  1287. for (e = 0; e < ch_data->bs_num_env; e++) {
  1288. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1289. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1290. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1291. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1292. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1293. float sum = 0.0f;
  1294. const int den = env_size * (table[p + 1] - table[p]);
  1295. for (k = table[p]; k < table[p + 1]; k++) {
  1296. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1297. }
  1298. sum /= den;
  1299. for (k = table[p]; k < table[p + 1]; k++) {
  1300. e_curr[e][k - kx1] = sum;
  1301. }
  1302. }
  1303. }
  1304. }
  1305. }
  1306. /**
  1307. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1308. * and Calculation of gain (14496-3 sp04 p219)
  1309. */
  1310. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1311. SBRData *ch_data, const int e_a[2])
  1312. {
  1313. int e, k, m;
  1314. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1315. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1316. for (e = 0; e < ch_data->bs_num_env; e++) {
  1317. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1318. for (k = 0; k < sbr->n_lim; k++) {
  1319. float gain_boost, gain_max;
  1320. float sum[2] = { 0.0f, 0.0f };
  1321. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1322. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1323. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1324. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1325. if (!sbr->s_mapped[e][m]) {
  1326. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1327. ((1.0f + sbr->e_curr[e][m]) *
  1328. (1.0f + sbr->q_mapped[e][m] * delta)));
  1329. } else {
  1330. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1331. ((1.0f + sbr->e_curr[e][m]) *
  1332. (1.0f + sbr->q_mapped[e][m])));
  1333. }
  1334. }
  1335. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1336. sum[0] += sbr->e_origmapped[e][m];
  1337. sum[1] += sbr->e_curr[e][m];
  1338. }
  1339. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1340. gain_max = FFMIN(100000.f, gain_max);
  1341. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1342. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1343. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1344. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1345. }
  1346. sum[0] = sum[1] = 0.0f;
  1347. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1348. sum[0] += sbr->e_origmapped[e][m];
  1349. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1350. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1351. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1352. }
  1353. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1354. gain_boost = FFMIN(1.584893192f, gain_boost);
  1355. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1356. sbr->gain[e][m] *= gain_boost;
  1357. sbr->q_m[e][m] *= gain_boost;
  1358. sbr->s_m[e][m] *= gain_boost;
  1359. }
  1360. }
  1361. }
  1362. }
  1363. /// Assembling HF Signals (14496-3 sp04 p220)
  1364. static void sbr_hf_assemble(float Y1[38][64][2],
  1365. const float X_high[64][40][2],
  1366. SpectralBandReplication *sbr, SBRData *ch_data,
  1367. const int e_a[2])
  1368. {
  1369. int e, i, j, m;
  1370. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1371. const int kx = sbr->kx[1];
  1372. const int m_max = sbr->m[1];
  1373. static const float h_smooth[5] = {
  1374. 0.33333333333333,
  1375. 0.30150283239582,
  1376. 0.21816949906249,
  1377. 0.11516383427084,
  1378. 0.03183050093751,
  1379. };
  1380. static const int8_t phi[2][4] = {
  1381. { 1, 0, -1, 0}, // real
  1382. { 0, 1, 0, -1}, // imaginary
  1383. };
  1384. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1385. int indexnoise = ch_data->f_indexnoise;
  1386. int indexsine = ch_data->f_indexsine;
  1387. if (sbr->reset) {
  1388. for (i = 0; i < h_SL; i++) {
  1389. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1390. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1391. }
  1392. } else if (h_SL) {
  1393. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1394. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1395. }
  1396. for (e = 0; e < ch_data->bs_num_env; e++) {
  1397. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1398. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1399. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1400. }
  1401. }
  1402. for (e = 0; e < ch_data->bs_num_env; e++) {
  1403. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1404. int phi_sign = (1 - 2*(kx & 1));
  1405. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1406. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1407. float *g_filt, *q_filt;
  1408. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1409. g_filt = g_filt_tab;
  1410. q_filt = q_filt_tab;
  1411. for (m = 0; m < m_max; m++) {
  1412. const int idx1 = i + h_SL;
  1413. g_filt[m] = 0.0f;
  1414. q_filt[m] = 0.0f;
  1415. for (j = 0; j <= h_SL; j++) {
  1416. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1417. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1418. }
  1419. }
  1420. } else {
  1421. g_filt = g_temp[i + h_SL];
  1422. q_filt = q_temp[i];
  1423. }
  1424. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1425. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1426. if (e != e_a[0] && e != e_a[1]) {
  1427. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1428. q_filt, indexnoise,
  1429. kx, m_max);
  1430. } else {
  1431. for (m = 0; m < m_max; m++) {
  1432. Y1[i][m + kx][0] +=
  1433. sbr->s_m[e][m] * phi[0][indexsine];
  1434. Y1[i][m + kx][1] +=
  1435. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1436. phi_sign = -phi_sign;
  1437. }
  1438. }
  1439. indexnoise = (indexnoise + m_max) & 0x1ff;
  1440. indexsine = (indexsine + 1) & 3;
  1441. }
  1442. }
  1443. ch_data->f_indexnoise = indexnoise;
  1444. ch_data->f_indexsine = indexsine;
  1445. }
  1446. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1447. float* L, float* R)
  1448. {
  1449. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1450. int ch;
  1451. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1452. int err;
  1453. if (!sbr->kx_and_m_pushed) {
  1454. sbr->kx[0] = sbr->kx[1];
  1455. sbr->m[0] = sbr->m[1];
  1456. } else {
  1457. sbr->kx_and_m_pushed = 0;
  1458. }
  1459. if (sbr->start) {
  1460. sbr_dequant(sbr, id_aac);
  1461. }
  1462. for (ch = 0; ch < nch; ch++) {
  1463. /* decode channel */
  1464. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1465. (float*)sbr->qmf_filter_scratch,
  1466. sbr->data[ch].W, sbr->data[ch].Ypos);
  1467. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W, sbr->data[ch].Ypos);
  1468. sbr->data[ch].Ypos ^= 1;
  1469. if (sbr->start) {
  1470. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1471. sbr_chirp(sbr, &sbr->data[ch]);
  1472. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1473. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1474. sbr->data[ch].bs_num_env);
  1475. // hf_adj
  1476. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1477. if (!err) {
  1478. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1479. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1480. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1481. sbr->X_high, sbr, &sbr->data[ch],
  1482. sbr->data[ch].e_a);
  1483. }
  1484. }
  1485. /* synthesis */
  1486. sbr_x_gen(sbr, sbr->X[ch],
  1487. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1488. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1489. sbr->X_low, ch);
  1490. }
  1491. if (ac->oc[1].m4ac.ps == 1) {
  1492. if (sbr->ps.start) {
  1493. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1494. } else {
  1495. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1496. }
  1497. nch = 2;
  1498. }
  1499. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, &ac->fdsp,
  1500. L, sbr->X[0], sbr->qmf_filter_scratch,
  1501. sbr->data[0].synthesis_filterbank_samples,
  1502. &sbr->data[0].synthesis_filterbank_samples_offset,
  1503. downsampled);
  1504. if (nch == 2)
  1505. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, &ac->fdsp,
  1506. R, sbr->X[1], sbr->qmf_filter_scratch,
  1507. sbr->data[1].synthesis_filterbank_samples,
  1508. &sbr->data[1].synthesis_filterbank_samples_offset,
  1509. downsampled);
  1510. }