You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1148 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10-bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  44. { "ibias", "intra quant bias",
  45. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  46. { .i64 = FF_DEFAULT_QUANT_BIAS }, INT_MIN, INT_MAX, VE },
  47. { NULL }
  48. };
  49. static const AVClass class = {
  50. .class_name = "dnxhd",
  51. .item_name = av_default_item_name,
  52. .option = options,
  53. .version = LIBAVUTIL_VERSION_INT,
  54. };
  55. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  56. const uint8_t *pixels,
  57. ptrdiff_t line_size)
  58. {
  59. int i;
  60. for (i = 0; i < 4; i++) {
  61. block[0] = pixels[0];
  62. block[1] = pixels[1];
  63. block[2] = pixels[2];
  64. block[3] = pixels[3];
  65. block[4] = pixels[4];
  66. block[5] = pixels[5];
  67. block[6] = pixels[6];
  68. block[7] = pixels[7];
  69. pixels += line_size;
  70. block += 8;
  71. }
  72. memcpy(block, block - 8, sizeof(*block) * 8);
  73. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  74. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  75. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  76. }
  77. static av_always_inline
  78. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  79. const uint8_t *pixels,
  80. ptrdiff_t line_size)
  81. {
  82. int i;
  83. block += 32;
  84. for (i = 0; i < 4; i++) {
  85. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  86. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  87. }
  88. }
  89. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  90. int n, int qscale, int *overflow)
  91. {
  92. const uint8_t *scantable= ctx->intra_scantable.scantable;
  93. const int *qmat = ctx->q_intra_matrix[qscale];
  94. int last_non_zero = 0;
  95. int i;
  96. ctx->fdsp.fdct(block);
  97. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  98. block[0] = (block[0] + 2) >> 2;
  99. for (i = 1; i < 64; ++i) {
  100. int j = scantable[i];
  101. int sign = FF_SIGNBIT(block[j]);
  102. int level = (block[j] ^ sign) - sign;
  103. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  104. block[j] = (level ^ sign) - sign;
  105. if (level)
  106. last_non_zero = i;
  107. }
  108. return last_non_zero;
  109. }
  110. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  111. {
  112. int i, j, level, run;
  113. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  114. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  115. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  116. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  117. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  118. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  119. 63 * 2, fail);
  120. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  121. 63, fail);
  122. ctx->vlc_codes += max_level * 2;
  123. ctx->vlc_bits += max_level * 2;
  124. for (level = -max_level; level < max_level; level++) {
  125. for (run = 0; run < 2; run++) {
  126. int index = (level << 1) | run;
  127. int sign, offset = 0, alevel = level;
  128. MASK_ABS(sign, alevel);
  129. if (alevel > 64) {
  130. offset = (alevel - 1) >> 6;
  131. alevel -= offset << 6;
  132. }
  133. for (j = 0; j < 257; j++) {
  134. if (ctx->cid_table->ac_level[j] == alevel &&
  135. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  136. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  137. assert(!ctx->vlc_codes[index]);
  138. if (alevel) {
  139. ctx->vlc_codes[index] =
  140. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  141. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  142. } else {
  143. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  144. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  145. }
  146. break;
  147. }
  148. }
  149. assert(!alevel || j < 257);
  150. if (offset) {
  151. ctx->vlc_codes[index] =
  152. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  153. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  154. }
  155. }
  156. }
  157. for (i = 0; i < 62; i++) {
  158. int run = ctx->cid_table->run[i];
  159. assert(run < 63);
  160. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  161. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  162. }
  163. return 0;
  164. fail:
  165. return AVERROR(ENOMEM);
  166. }
  167. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  168. {
  169. // init first elem to 1 to avoid div by 0 in convert_matrix
  170. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  171. int qscale, i;
  172. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  173. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  174. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  175. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  176. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  177. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  178. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  179. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  180. fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  182. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  183. fail);
  184. if (ctx->cid_table->bit_depth == 8) {
  185. for (i = 1; i < 64; i++) {
  186. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  187. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  188. }
  189. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  190. weight_matrix, ctx->intra_quant_bias, 1,
  191. ctx->m.avctx->qmax, 1);
  192. for (i = 1; i < 64; i++) {
  193. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  194. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  195. }
  196. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  197. weight_matrix, ctx->intra_quant_bias, 1,
  198. ctx->m.avctx->qmax, 1);
  199. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  200. for (i = 0; i < 64; i++) {
  201. ctx->qmatrix_l[qscale][i] <<= 2;
  202. ctx->qmatrix_c[qscale][i] <<= 2;
  203. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  204. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  205. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  206. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  207. }
  208. }
  209. } else {
  210. // 10-bit
  211. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  212. for (i = 1; i < 64; i++) {
  213. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  214. /* The quantization formula from the VC-3 standard is:
  215. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  216. * (qscale * weight_table[i]))
  217. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  218. * The s factor compensates scaling of DCT coefficients done by
  219. * the DCT routines, and therefore is not present in standard.
  220. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  221. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  222. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  223. * (qscale * weight_table[i])
  224. * For 10-bit samples, p / s == 2 */
  225. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  226. (qscale * luma_weight_table[i]);
  227. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  228. (qscale * chroma_weight_table[i]);
  229. }
  230. }
  231. }
  232. return 0;
  233. fail:
  234. return AVERROR(ENOMEM);
  235. }
  236. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  237. {
  238. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  239. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  240. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  241. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  242. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  243. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  244. 640 - 4 - ctx->min_padding) * 8;
  245. ctx->qscale = 1;
  246. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  247. return 0;
  248. fail:
  249. return AVERROR(ENOMEM);
  250. }
  251. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  252. {
  253. DNXHDEncContext *ctx = avctx->priv_data;
  254. int i, index, bit_depth, ret;
  255. switch (avctx->pix_fmt) {
  256. case AV_PIX_FMT_YUV422P:
  257. bit_depth = 8;
  258. break;
  259. case AV_PIX_FMT_YUV422P10:
  260. bit_depth = 10;
  261. break;
  262. default:
  263. av_log(avctx, AV_LOG_ERROR,
  264. "Pixel format is incompatible with DNxHD, use yuv422p or yuv422p10.\n");
  265. return AVERROR(EINVAL);
  266. }
  267. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  268. if (!ctx->cid) {
  269. av_log(avctx, AV_LOG_ERROR,
  270. "Video parameters incompatible with DNxHD, available CIDs:\n");
  271. ff_dnxhd_list_cid(avctx);
  272. return AVERROR(EINVAL);
  273. }
  274. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  275. index = ff_dnxhd_get_cid_table(ctx->cid);
  276. if (index < 0)
  277. return index;
  278. ctx->cid_table = &ff_dnxhd_cid_table[index];
  279. ctx->m.avctx = avctx;
  280. ctx->m.mb_intra = 1;
  281. ctx->m.h263_aic = 1;
  282. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  283. ff_blockdsp_init(&ctx->bdsp);
  284. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  285. ff_mpv_idct_init(&ctx->m);
  286. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  287. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  288. if (!ctx->m.dct_quantize)
  289. ctx->m.dct_quantize = ff_dct_quantize_c;
  290. if (ctx->cid_table->bit_depth == 10) {
  291. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  292. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  293. ctx->block_width_l2 = 4;
  294. } else {
  295. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  296. ctx->block_width_l2 = 3;
  297. }
  298. if (ARCH_X86)
  299. ff_dnxhdenc_init_x86(ctx);
  300. ctx->m.mb_height = (avctx->height + 15) / 16;
  301. ctx->m.mb_width = (avctx->width + 15) / 16;
  302. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  303. ctx->interlaced = 1;
  304. ctx->m.mb_height /= 2;
  305. }
  306. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  307. // XXX tune lbias/cbias
  308. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  309. return ret;
  310. /* Avid Nitris hardware decoder requires a minimum amount of padding
  311. * in the coding unit payload */
  312. if (ctx->nitris_compat)
  313. ctx->min_padding = 1600;
  314. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  315. return ret;
  316. if ((ret = dnxhd_init_rc(ctx)) < 0)
  317. return ret;
  318. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  319. ctx->m.mb_height * sizeof(uint32_t), fail);
  320. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  321. ctx->m.mb_height * sizeof(uint32_t), fail);
  322. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  323. ctx->m.mb_num * sizeof(uint16_t), fail);
  324. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  325. ctx->m.mb_num * sizeof(uint8_t), fail);
  326. #if FF_API_CODED_FRAME
  327. FF_DISABLE_DEPRECATION_WARNINGS
  328. avctx->coded_frame->key_frame = 1;
  329. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  330. FF_ENABLE_DEPRECATION_WARNINGS
  331. #endif
  332. if (avctx->thread_count > MAX_THREADS) {
  333. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  334. return AVERROR(EINVAL);
  335. }
  336. ctx->thread[0] = ctx;
  337. for (i = 1; i < avctx->thread_count; i++) {
  338. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  339. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  340. }
  341. return 0;
  342. fail: // for FF_ALLOCZ_OR_GOTO
  343. return AVERROR(ENOMEM);
  344. }
  345. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  346. {
  347. DNXHDEncContext *ctx = avctx->priv_data;
  348. static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  349. memset(buf, 0, 640);
  350. memcpy(buf, header_prefix, 5);
  351. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  352. buf[6] = 0x80; // crc flag off
  353. buf[7] = 0xa0; // reserved
  354. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  355. AV_WB16(buf + 0x1a, avctx->width); // SPL
  356. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  357. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  358. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  359. AV_WB32(buf + 0x28, ctx->cid); // CID
  360. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  361. buf[0x5f] = 0x01; // UDL
  362. buf[0x167] = 0x02; // reserved
  363. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  364. buf[0x16d] = ctx->m.mb_height; // Ns
  365. buf[0x16f] = 0x10; // reserved
  366. ctx->msip = buf + 0x170;
  367. return 0;
  368. }
  369. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  370. {
  371. int nbits;
  372. if (diff < 0) {
  373. nbits = av_log2_16bit(-2 * diff);
  374. diff--;
  375. } else {
  376. nbits = av_log2_16bit(2 * diff);
  377. }
  378. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  379. (ctx->cid_table->dc_codes[nbits] << nbits) +
  380. (diff & ((1 << nbits) - 1)));
  381. }
  382. static av_always_inline
  383. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  384. int last_index, int n)
  385. {
  386. int last_non_zero = 0;
  387. int slevel, i, j;
  388. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  389. ctx->m.last_dc[n] = block[0];
  390. for (i = 1; i <= last_index; i++) {
  391. j = ctx->m.intra_scantable.permutated[i];
  392. slevel = block[j];
  393. if (slevel) {
  394. int run_level = i - last_non_zero - 1;
  395. int rlevel = (slevel << 1) | !!run_level;
  396. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  397. if (run_level)
  398. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  399. ctx->run_codes[run_level]);
  400. last_non_zero = i;
  401. }
  402. }
  403. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  404. }
  405. static av_always_inline
  406. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  407. int qscale, int last_index)
  408. {
  409. const uint8_t *weight_matrix;
  410. int level;
  411. int i;
  412. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  413. : ctx->cid_table->luma_weight;
  414. for (i = 1; i <= last_index; i++) {
  415. int j = ctx->m.intra_scantable.permutated[i];
  416. level = block[j];
  417. if (level) {
  418. if (level < 0) {
  419. level = (1 - 2 * level) * qscale * weight_matrix[i];
  420. if (ctx->cid_table->bit_depth == 10) {
  421. if (weight_matrix[i] != 8)
  422. level += 8;
  423. level >>= 4;
  424. } else {
  425. if (weight_matrix[i] != 32)
  426. level += 32;
  427. level >>= 6;
  428. }
  429. level = -level;
  430. } else {
  431. level = (2 * level + 1) * qscale * weight_matrix[i];
  432. if (ctx->cid_table->bit_depth == 10) {
  433. if (weight_matrix[i] != 8)
  434. level += 8;
  435. level >>= 4;
  436. } else {
  437. if (weight_matrix[i] != 32)
  438. level += 32;
  439. level >>= 6;
  440. }
  441. }
  442. block[j] = level;
  443. }
  444. }
  445. }
  446. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  447. {
  448. int score = 0;
  449. int i;
  450. for (i = 0; i < 64; i++)
  451. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  452. return score;
  453. }
  454. static av_always_inline
  455. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  456. {
  457. int last_non_zero = 0;
  458. int bits = 0;
  459. int i, j, level;
  460. for (i = 1; i <= last_index; i++) {
  461. j = ctx->m.intra_scantable.permutated[i];
  462. level = block[j];
  463. if (level) {
  464. int run_level = i - last_non_zero - 1;
  465. bits += ctx->vlc_bits[(level << 1) |
  466. !!run_level] + ctx->run_bits[run_level];
  467. last_non_zero = i;
  468. }
  469. }
  470. return bits;
  471. }
  472. static av_always_inline
  473. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  474. {
  475. const int bs = ctx->block_width_l2;
  476. const int bw = 1 << bs;
  477. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  478. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  479. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  480. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  481. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  482. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  483. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  484. pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  485. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  486. pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  487. pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  488. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  489. if (ctx->interlaced) {
  490. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  491. ptr_y + ctx->dct_y_offset,
  492. ctx->m.linesize);
  493. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  494. ptr_y + ctx->dct_y_offset + bw,
  495. ctx->m.linesize);
  496. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  497. ptr_u + ctx->dct_uv_offset,
  498. ctx->m.uvlinesize);
  499. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  500. ptr_v + ctx->dct_uv_offset,
  501. ctx->m.uvlinesize);
  502. } else {
  503. ctx->bdsp.clear_block(ctx->blocks[4]);
  504. ctx->bdsp.clear_block(ctx->blocks[5]);
  505. ctx->bdsp.clear_block(ctx->blocks[6]);
  506. ctx->bdsp.clear_block(ctx->blocks[7]);
  507. }
  508. } else {
  509. pdsp->get_pixels(ctx->blocks[4],
  510. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  511. pdsp->get_pixels(ctx->blocks[5],
  512. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  513. pdsp->get_pixels(ctx->blocks[6],
  514. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  515. pdsp->get_pixels(ctx->blocks[7],
  516. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  517. }
  518. }
  519. static av_always_inline
  520. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  521. {
  522. if (i & 2) {
  523. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  524. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  525. return 1 + (i & 1);
  526. } else {
  527. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  528. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  529. return 0;
  530. }
  531. }
  532. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  533. int jobnr, int threadnr)
  534. {
  535. DNXHDEncContext *ctx = avctx->priv_data;
  536. int mb_y = jobnr, mb_x;
  537. int qscale = ctx->qscale;
  538. LOCAL_ALIGNED_16(int16_t, block, [64]);
  539. ctx = ctx->thread[threadnr];
  540. ctx->m.last_dc[0] =
  541. ctx->m.last_dc[1] =
  542. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  543. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  544. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  545. int ssd = 0;
  546. int ac_bits = 0;
  547. int dc_bits = 0;
  548. int i;
  549. dnxhd_get_blocks(ctx, mb_x, mb_y);
  550. for (i = 0; i < 8; i++) {
  551. int16_t *src_block = ctx->blocks[i];
  552. int overflow, nbits, diff, last_index;
  553. int n = dnxhd_switch_matrix(ctx, i);
  554. memcpy(block, src_block, 64 * sizeof(*block));
  555. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  556. qscale, &overflow);
  557. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  558. diff = block[0] - ctx->m.last_dc[n];
  559. if (diff < 0)
  560. nbits = av_log2_16bit(-2 * diff);
  561. else
  562. nbits = av_log2_16bit(2 * diff);
  563. assert(nbits < ctx->cid_table->bit_depth + 4);
  564. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  565. ctx->m.last_dc[n] = block[0];
  566. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  567. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  568. ctx->m.idsp.idct(block);
  569. ssd += dnxhd_ssd_block(block, src_block);
  570. }
  571. }
  572. ctx->mb_rc[qscale][mb].ssd = ssd;
  573. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  574. 8 * ctx->vlc_bits[0];
  575. }
  576. return 0;
  577. }
  578. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  579. int jobnr, int threadnr)
  580. {
  581. DNXHDEncContext *ctx = avctx->priv_data;
  582. int mb_y = jobnr, mb_x;
  583. ctx = ctx->thread[threadnr];
  584. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  585. ctx->slice_size[jobnr]);
  586. ctx->m.last_dc[0] =
  587. ctx->m.last_dc[1] =
  588. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  589. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  590. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  591. int qscale = ctx->mb_qscale[mb];
  592. int i;
  593. put_bits(&ctx->m.pb, 12, qscale << 1);
  594. dnxhd_get_blocks(ctx, mb_x, mb_y);
  595. for (i = 0; i < 8; i++) {
  596. int16_t *block = ctx->blocks[i];
  597. int overflow, n = dnxhd_switch_matrix(ctx, i);
  598. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  599. qscale, &overflow);
  600. // START_TIMER;
  601. dnxhd_encode_block(ctx, block, last_index, n);
  602. // STOP_TIMER("encode_block");
  603. }
  604. }
  605. if (put_bits_count(&ctx->m.pb) & 31)
  606. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  607. flush_put_bits(&ctx->m.pb);
  608. return 0;
  609. }
  610. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  611. {
  612. int mb_y, mb_x;
  613. int offset = 0;
  614. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  615. int thread_size;
  616. ctx->slice_offs[mb_y] = offset;
  617. ctx->slice_size[mb_y] = 0;
  618. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  619. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  620. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  621. }
  622. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  623. ctx->slice_size[mb_y] >>= 3;
  624. thread_size = ctx->slice_size[mb_y];
  625. offset += thread_size;
  626. }
  627. }
  628. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  629. int jobnr, int threadnr)
  630. {
  631. DNXHDEncContext *ctx = avctx->priv_data;
  632. int mb_y = jobnr, mb_x, x, y;
  633. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  634. ((avctx->height >> ctx->interlaced) & 0xF);
  635. ctx = ctx->thread[threadnr];
  636. if (ctx->cid_table->bit_depth == 8) {
  637. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  638. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  639. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  640. int sum;
  641. int varc;
  642. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  643. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  644. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  645. } else {
  646. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  647. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  648. sum = varc = 0;
  649. for (y = 0; y < bh; y++) {
  650. for (x = 0; x < bw; x++) {
  651. uint8_t val = pix[x + y * ctx->m.linesize];
  652. sum += val;
  653. varc += val * val;
  654. }
  655. }
  656. }
  657. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  658. ctx->mb_cmp[mb].value = varc;
  659. ctx->mb_cmp[mb].mb = mb;
  660. }
  661. } else { // 10-bit
  662. const int linesize = ctx->m.linesize >> 1;
  663. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  664. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  665. ((mb_y << 4) * linesize) + (mb_x << 4);
  666. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  667. int sum = 0;
  668. int sqsum = 0;
  669. int mean, sqmean;
  670. int i, j;
  671. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  672. for (i = 0; i < 16; ++i) {
  673. for (j = 0; j < 16; ++j) {
  674. // Turn 16-bit pixels into 10-bit ones.
  675. const int sample = (unsigned) pix[j] >> 6;
  676. sum += sample;
  677. sqsum += sample * sample;
  678. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  679. }
  680. pix += linesize;
  681. }
  682. mean = sum >> 8; // 16*16 == 2^8
  683. sqmean = sqsum >> 8;
  684. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  685. ctx->mb_cmp[mb].mb = mb;
  686. }
  687. }
  688. return 0;
  689. }
  690. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  691. {
  692. int lambda, up_step, down_step;
  693. int last_lower = INT_MAX, last_higher = 0;
  694. int x, y, q;
  695. for (q = 1; q < avctx->qmax; q++) {
  696. ctx->qscale = q;
  697. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  698. NULL, NULL, ctx->m.mb_height);
  699. }
  700. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  701. lambda = ctx->lambda;
  702. for (;;) {
  703. int bits = 0;
  704. int end = 0;
  705. if (lambda == last_higher) {
  706. lambda++;
  707. end = 1; // need to set final qscales/bits
  708. }
  709. for (y = 0; y < ctx->m.mb_height; y++) {
  710. for (x = 0; x < ctx->m.mb_width; x++) {
  711. unsigned min = UINT_MAX;
  712. int qscale = 1;
  713. int mb = y * ctx->m.mb_width + x;
  714. for (q = 1; q < avctx->qmax; q++) {
  715. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  716. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  717. if (score < min) {
  718. min = score;
  719. qscale = q;
  720. }
  721. }
  722. bits += ctx->mb_rc[qscale][mb].bits;
  723. ctx->mb_qscale[mb] = qscale;
  724. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  725. }
  726. bits = (bits + 31) & ~31; // padding
  727. if (bits > ctx->frame_bits)
  728. break;
  729. }
  730. if (end) {
  731. if (bits > ctx->frame_bits)
  732. return AVERROR(EINVAL);
  733. break;
  734. }
  735. if (bits < ctx->frame_bits) {
  736. last_lower = FFMIN(lambda, last_lower);
  737. if (last_higher != 0)
  738. lambda = (lambda+last_higher)>>1;
  739. else
  740. lambda -= down_step;
  741. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  742. up_step = 1<<LAMBDA_FRAC_BITS;
  743. lambda = FFMAX(1, lambda);
  744. if (lambda == last_lower)
  745. break;
  746. } else {
  747. last_higher = FFMAX(lambda, last_higher);
  748. if (last_lower != INT_MAX)
  749. lambda = (lambda+last_lower)>>1;
  750. else if ((int64_t)lambda + up_step > INT_MAX)
  751. return AVERROR(EINVAL);
  752. else
  753. lambda += up_step;
  754. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  755. down_step = 1<<LAMBDA_FRAC_BITS;
  756. }
  757. }
  758. ctx->lambda = lambda;
  759. return 0;
  760. }
  761. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  762. {
  763. int bits = 0;
  764. int up_step = 1;
  765. int down_step = 1;
  766. int last_higher = 0;
  767. int last_lower = INT_MAX;
  768. int qscale;
  769. int x, y;
  770. qscale = ctx->qscale;
  771. for (;;) {
  772. bits = 0;
  773. ctx->qscale = qscale;
  774. // XXX avoid recalculating bits
  775. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  776. NULL, NULL, ctx->m.mb_height);
  777. for (y = 0; y < ctx->m.mb_height; y++) {
  778. for (x = 0; x < ctx->m.mb_width; x++)
  779. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  780. bits = (bits+31)&~31; // padding
  781. if (bits > ctx->frame_bits)
  782. break;
  783. }
  784. if (bits < ctx->frame_bits) {
  785. if (qscale == 1)
  786. return 1;
  787. if (last_higher == qscale - 1) {
  788. qscale = last_higher;
  789. break;
  790. }
  791. last_lower = FFMIN(qscale, last_lower);
  792. if (last_higher != 0)
  793. qscale = (qscale + last_higher) >> 1;
  794. else
  795. qscale -= down_step++;
  796. if (qscale < 1)
  797. qscale = 1;
  798. up_step = 1;
  799. } else {
  800. if (last_lower == qscale + 1)
  801. break;
  802. last_higher = FFMAX(qscale, last_higher);
  803. if (last_lower != INT_MAX)
  804. qscale = (qscale + last_lower) >> 1;
  805. else
  806. qscale += up_step++;
  807. down_step = 1;
  808. if (qscale >= ctx->m.avctx->qmax)
  809. return AVERROR(EINVAL);
  810. }
  811. }
  812. ctx->qscale = qscale;
  813. return 0;
  814. }
  815. #define BUCKET_BITS 8
  816. #define RADIX_PASSES 4
  817. #define NBUCKETS (1 << BUCKET_BITS)
  818. static inline int get_bucket(int value, int shift)
  819. {
  820. value >>= shift;
  821. value &= NBUCKETS - 1;
  822. return NBUCKETS - 1 - value;
  823. }
  824. static void radix_count(const RCCMPEntry *data, int size,
  825. int buckets[RADIX_PASSES][NBUCKETS])
  826. {
  827. int i, j;
  828. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  829. for (i = 0; i < size; i++) {
  830. int v = data[i].value;
  831. for (j = 0; j < RADIX_PASSES; j++) {
  832. buckets[j][get_bucket(v, 0)]++;
  833. v >>= BUCKET_BITS;
  834. }
  835. assert(!v);
  836. }
  837. for (j = 0; j < RADIX_PASSES; j++) {
  838. int offset = size;
  839. for (i = NBUCKETS - 1; i >= 0; i--)
  840. buckets[j][i] = offset -= buckets[j][i];
  841. assert(!buckets[j][0]);
  842. }
  843. }
  844. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  845. int size, int buckets[NBUCKETS], int pass)
  846. {
  847. int shift = pass * BUCKET_BITS;
  848. int i;
  849. for (i = 0; i < size; i++) {
  850. int v = get_bucket(data[i].value, shift);
  851. int pos = buckets[v]++;
  852. dst[pos] = data[i];
  853. }
  854. }
  855. static void radix_sort(RCCMPEntry *data, int size)
  856. {
  857. int buckets[RADIX_PASSES][NBUCKETS];
  858. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  859. radix_count(data, size, buckets);
  860. radix_sort_pass(tmp, data, size, buckets[0], 0);
  861. radix_sort_pass(data, tmp, size, buckets[1], 1);
  862. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  863. radix_sort_pass(tmp, data, size, buckets[2], 2);
  864. radix_sort_pass(data, tmp, size, buckets[3], 3);
  865. }
  866. av_free(tmp);
  867. }
  868. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  869. {
  870. int max_bits = 0;
  871. int ret, x, y;
  872. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  873. return ret;
  874. for (y = 0; y < ctx->m.mb_height; y++) {
  875. for (x = 0; x < ctx->m.mb_width; x++) {
  876. int mb = y * ctx->m.mb_width + x;
  877. int delta_bits;
  878. ctx->mb_qscale[mb] = ctx->qscale;
  879. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  880. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  881. if (!RC_VARIANCE) {
  882. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  883. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  884. ctx->mb_cmp[mb].mb = mb;
  885. ctx->mb_cmp[mb].value =
  886. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  887. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  888. delta_bits
  889. : INT_MIN; // avoid increasing qscale
  890. }
  891. }
  892. max_bits += 31; // worst padding
  893. }
  894. if (!ret) {
  895. if (RC_VARIANCE)
  896. avctx->execute2(avctx, dnxhd_mb_var_thread,
  897. NULL, NULL, ctx->m.mb_height);
  898. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  899. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  900. int mb = ctx->mb_cmp[x].mb;
  901. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  902. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  903. ctx->mb_qscale[mb] = ctx->qscale + 1;
  904. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  905. }
  906. }
  907. return 0;
  908. }
  909. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  910. {
  911. int i;
  912. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  913. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  914. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  915. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  916. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  917. }
  918. #if FF_API_CODED_FRAME
  919. FF_DISABLE_DEPRECATION_WARNINGS
  920. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  921. FF_ENABLE_DEPRECATION_WARNINGS
  922. #endif
  923. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  924. }
  925. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  926. const AVFrame *frame, int *got_packet)
  927. {
  928. DNXHDEncContext *ctx = avctx->priv_data;
  929. int first_field = 1;
  930. int offset, i, ret;
  931. uint8_t *buf, *sd;
  932. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  933. av_log(avctx, AV_LOG_ERROR,
  934. "output buffer is too small to compress picture\n");
  935. return ret;
  936. }
  937. buf = pkt->data;
  938. dnxhd_load_picture(ctx, frame);
  939. encode_coding_unit:
  940. for (i = 0; i < 3; i++) {
  941. ctx->src[i] = frame->data[i];
  942. if (ctx->interlaced && ctx->cur_field)
  943. ctx->src[i] += frame->linesize[i];
  944. }
  945. dnxhd_write_header(avctx, buf);
  946. if (avctx->mb_decision == FF_MB_DECISION_RD)
  947. ret = dnxhd_encode_rdo(avctx, ctx);
  948. else
  949. ret = dnxhd_encode_fast(avctx, ctx);
  950. if (ret < 0) {
  951. av_log(avctx, AV_LOG_ERROR,
  952. "picture could not fit ratecontrol constraints, increase qmax\n");
  953. return ret;
  954. }
  955. dnxhd_setup_threads_slices(ctx);
  956. offset = 0;
  957. for (i = 0; i < ctx->m.mb_height; i++) {
  958. AV_WB32(ctx->msip + i * 4, offset);
  959. offset += ctx->slice_size[i];
  960. assert(!(ctx->slice_size[i] & 3));
  961. }
  962. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  963. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  964. memset(buf + 640 + offset, 0,
  965. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  966. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  967. if (ctx->interlaced && first_field) {
  968. first_field = 0;
  969. ctx->cur_field ^= 1;
  970. buf += ctx->cid_table->coding_unit_size;
  971. goto encode_coding_unit;
  972. }
  973. #if FF_API_CODED_FRAME
  974. FF_DISABLE_DEPRECATION_WARNINGS
  975. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  976. FF_ENABLE_DEPRECATION_WARNINGS
  977. #endif
  978. sd = av_packet_new_side_data(pkt, AV_PKT_DATA_QUALITY_FACTOR, sizeof(int));
  979. if (!sd)
  980. return AVERROR(ENOMEM);
  981. *(int *)sd = ctx->qscale * FF_QP2LAMBDA;
  982. pkt->flags |= AV_PKT_FLAG_KEY;
  983. *got_packet = 1;
  984. return 0;
  985. }
  986. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  987. {
  988. DNXHDEncContext *ctx = avctx->priv_data;
  989. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  990. int i;
  991. av_free(ctx->vlc_codes - max_level * 2);
  992. av_free(ctx->vlc_bits - max_level * 2);
  993. av_freep(&ctx->run_codes);
  994. av_freep(&ctx->run_bits);
  995. av_freep(&ctx->mb_bits);
  996. av_freep(&ctx->mb_qscale);
  997. av_freep(&ctx->mb_rc);
  998. av_freep(&ctx->mb_cmp);
  999. av_freep(&ctx->slice_size);
  1000. av_freep(&ctx->slice_offs);
  1001. av_freep(&ctx->qmatrix_c);
  1002. av_freep(&ctx->qmatrix_l);
  1003. av_freep(&ctx->qmatrix_c16);
  1004. av_freep(&ctx->qmatrix_l16);
  1005. for (i = 1; i < avctx->thread_count; i++)
  1006. av_freep(&ctx->thread[i]);
  1007. return 0;
  1008. }
  1009. AVCodec ff_dnxhd_encoder = {
  1010. .name = "dnxhd",
  1011. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1012. .type = AVMEDIA_TYPE_VIDEO,
  1013. .id = AV_CODEC_ID_DNXHD,
  1014. .priv_data_size = sizeof(DNXHDEncContext),
  1015. .init = dnxhd_encode_init,
  1016. .encode2 = dnxhd_encode_picture,
  1017. .close = dnxhd_encode_end,
  1018. .capabilities = AV_CODEC_CAP_SLICE_THREADS,
  1019. .pix_fmts = (const enum AVPixelFormat[]) {
  1020. AV_PIX_FMT_YUV422P,
  1021. AV_PIX_FMT_YUV422P10,
  1022. AV_PIX_FMT_NONE
  1023. },
  1024. .priv_class = &class,
  1025. };