You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

646 lines
20KB

  1. /*
  2. * RTMP input format
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavcodec/bytestream.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/intfloat.h"
  24. #include "avformat.h"
  25. #include "rtmppkt.h"
  26. #include "flv.h"
  27. #include "url.h"
  28. void ff_amf_write_bool(uint8_t **dst, int val)
  29. {
  30. bytestream_put_byte(dst, AMF_DATA_TYPE_BOOL);
  31. bytestream_put_byte(dst, val);
  32. }
  33. void ff_amf_write_number(uint8_t **dst, double val)
  34. {
  35. bytestream_put_byte(dst, AMF_DATA_TYPE_NUMBER);
  36. bytestream_put_be64(dst, av_double2int(val));
  37. }
  38. void ff_amf_write_string(uint8_t **dst, const char *str)
  39. {
  40. bytestream_put_byte(dst, AMF_DATA_TYPE_STRING);
  41. bytestream_put_be16(dst, strlen(str));
  42. bytestream_put_buffer(dst, str, strlen(str));
  43. }
  44. void ff_amf_write_string2(uint8_t **dst, const char *str1, const char *str2)
  45. {
  46. int len1 = 0, len2 = 0;
  47. if (str1)
  48. len1 = strlen(str1);
  49. if (str2)
  50. len2 = strlen(str2);
  51. bytestream_put_byte(dst, AMF_DATA_TYPE_STRING);
  52. bytestream_put_be16(dst, len1 + len2);
  53. bytestream_put_buffer(dst, str1, len1);
  54. bytestream_put_buffer(dst, str2, len2);
  55. }
  56. void ff_amf_write_null(uint8_t **dst)
  57. {
  58. bytestream_put_byte(dst, AMF_DATA_TYPE_NULL);
  59. }
  60. void ff_amf_write_object_start(uint8_t **dst)
  61. {
  62. bytestream_put_byte(dst, AMF_DATA_TYPE_OBJECT);
  63. }
  64. void ff_amf_write_field_name(uint8_t **dst, const char *str)
  65. {
  66. bytestream_put_be16(dst, strlen(str));
  67. bytestream_put_buffer(dst, str, strlen(str));
  68. }
  69. void ff_amf_write_object_end(uint8_t **dst)
  70. {
  71. /* first two bytes are field name length = 0,
  72. * AMF object should end with it and end marker
  73. */
  74. bytestream_put_be24(dst, AMF_DATA_TYPE_OBJECT_END);
  75. }
  76. int ff_amf_read_bool(GetByteContext *bc, int *val)
  77. {
  78. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_BOOL)
  79. return AVERROR_INVALIDDATA;
  80. *val = bytestream2_get_byte(bc);
  81. return 0;
  82. }
  83. int ff_amf_read_number(GetByteContext *bc, double *val)
  84. {
  85. uint64_t read;
  86. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_NUMBER)
  87. return AVERROR_INVALIDDATA;
  88. read = bytestream2_get_be64(bc);
  89. *val = av_int2double(read);
  90. return 0;
  91. }
  92. int ff_amf_read_string(GetByteContext *bc, uint8_t *str,
  93. int strsize, int *length)
  94. {
  95. int stringlen = 0;
  96. int readsize;
  97. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_STRING)
  98. return AVERROR_INVALIDDATA;
  99. stringlen = bytestream2_get_be16(bc);
  100. if (stringlen + 1 > strsize)
  101. return AVERROR(EINVAL);
  102. readsize = bytestream2_get_buffer(bc, str, stringlen);
  103. if (readsize != stringlen) {
  104. av_log(NULL, AV_LOG_WARNING,
  105. "Unable to read as many bytes as AMF string signaled\n");
  106. }
  107. str[readsize] = '\0';
  108. *length = FFMIN(stringlen, readsize);
  109. return 0;
  110. }
  111. int ff_amf_read_null(GetByteContext *bc)
  112. {
  113. if (bytestream2_get_byte(bc) != AMF_DATA_TYPE_NULL)
  114. return AVERROR_INVALIDDATA;
  115. return 0;
  116. }
  117. int ff_rtmp_check_alloc_array(RTMPPacket **prev_pkt, int *nb_prev_pkt,
  118. int channel)
  119. {
  120. int nb_alloc;
  121. RTMPPacket *ptr;
  122. if (channel < *nb_prev_pkt)
  123. return 0;
  124. nb_alloc = channel + 16;
  125. // This can't use the av_reallocp family of functions, since we
  126. // would need to free each element in the array before the array
  127. // itself is freed.
  128. ptr = av_realloc_array(*prev_pkt, nb_alloc, sizeof(**prev_pkt));
  129. if (!ptr)
  130. return AVERROR(ENOMEM);
  131. memset(ptr + *nb_prev_pkt, 0, (nb_alloc - *nb_prev_pkt) * sizeof(*ptr));
  132. *prev_pkt = ptr;
  133. *nb_prev_pkt = nb_alloc;
  134. return 0;
  135. }
  136. int ff_rtmp_packet_read(URLContext *h, RTMPPacket *p,
  137. int chunk_size, RTMPPacket **prev_pkt, int *nb_prev_pkt)
  138. {
  139. uint8_t hdr;
  140. if (ffurl_read(h, &hdr, 1) != 1)
  141. return AVERROR(EIO);
  142. return ff_rtmp_packet_read_internal(h, p, chunk_size, prev_pkt,
  143. nb_prev_pkt, hdr);
  144. }
  145. static int rtmp_packet_read_one_chunk(URLContext *h, RTMPPacket *p,
  146. int chunk_size, RTMPPacket **prev_pkt_ptr,
  147. int *nb_prev_pkt, uint8_t hdr)
  148. {
  149. uint8_t buf[16];
  150. int channel_id, timestamp, size;
  151. uint32_t extra = 0;
  152. enum RTMPPacketType type;
  153. int written = 0;
  154. int ret, toread;
  155. RTMPPacket *prev_pkt;
  156. written++;
  157. channel_id = hdr & 0x3F;
  158. if (channel_id < 2) { //special case for channel number >= 64
  159. buf[1] = 0;
  160. if (ffurl_read_complete(h, buf, channel_id + 1) != channel_id + 1)
  161. return AVERROR(EIO);
  162. written += channel_id + 1;
  163. channel_id = AV_RL16(buf) + 64;
  164. }
  165. if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr, nb_prev_pkt,
  166. channel_id)) < 0)
  167. return ret;
  168. prev_pkt = *prev_pkt_ptr;
  169. size = prev_pkt[channel_id].size;
  170. type = prev_pkt[channel_id].type;
  171. extra = prev_pkt[channel_id].extra;
  172. hdr >>= 6;
  173. if (hdr == RTMP_PS_ONEBYTE) {
  174. timestamp = prev_pkt[channel_id].ts_delta;
  175. } else {
  176. if (ffurl_read_complete(h, buf, 3) != 3)
  177. return AVERROR(EIO);
  178. written += 3;
  179. timestamp = AV_RB24(buf);
  180. if (hdr != RTMP_PS_FOURBYTES) {
  181. if (ffurl_read_complete(h, buf, 3) != 3)
  182. return AVERROR(EIO);
  183. written += 3;
  184. size = AV_RB24(buf);
  185. if (ffurl_read_complete(h, buf, 1) != 1)
  186. return AVERROR(EIO);
  187. written++;
  188. type = buf[0];
  189. if (hdr == RTMP_PS_TWELVEBYTES) {
  190. if (ffurl_read_complete(h, buf, 4) != 4)
  191. return AVERROR(EIO);
  192. written += 4;
  193. extra = AV_RL32(buf);
  194. }
  195. }
  196. if (timestamp == 0xFFFFFF) {
  197. if (ffurl_read_complete(h, buf, 4) != 4)
  198. return AVERROR(EIO);
  199. timestamp = AV_RB32(buf);
  200. }
  201. }
  202. if (hdr != RTMP_PS_TWELVEBYTES)
  203. timestamp += prev_pkt[channel_id].timestamp;
  204. if (!prev_pkt[channel_id].read) {
  205. if ((ret = ff_rtmp_packet_create(p, channel_id, type, timestamp,
  206. size)) < 0)
  207. return ret;
  208. p->read = written;
  209. p->offset = 0;
  210. prev_pkt[channel_id].ts_delta = timestamp -
  211. prev_pkt[channel_id].timestamp;
  212. prev_pkt[channel_id].timestamp = timestamp;
  213. } else {
  214. // previous packet in this channel hasn't completed reading
  215. RTMPPacket *prev = &prev_pkt[channel_id];
  216. p->data = prev->data;
  217. p->size = prev->size;
  218. p->channel_id = prev->channel_id;
  219. p->type = prev->type;
  220. p->ts_delta = prev->ts_delta;
  221. p->extra = prev->extra;
  222. p->offset = prev->offset;
  223. p->read = prev->read + written;
  224. p->timestamp = prev->timestamp;
  225. prev->data = NULL;
  226. }
  227. p->extra = extra;
  228. // save history
  229. prev_pkt[channel_id].channel_id = channel_id;
  230. prev_pkt[channel_id].type = type;
  231. prev_pkt[channel_id].size = size;
  232. prev_pkt[channel_id].extra = extra;
  233. size = size - p->offset;
  234. toread = FFMIN(size, chunk_size);
  235. if (ffurl_read_complete(h, p->data + p->offset, toread) != toread) {
  236. ff_rtmp_packet_destroy(p);
  237. return AVERROR(EIO);
  238. }
  239. size -= toread;
  240. p->read += toread;
  241. p->offset += toread;
  242. if (size > 0) {
  243. RTMPPacket *prev = &prev_pkt[channel_id];
  244. prev->data = p->data;
  245. prev->read = p->read;
  246. prev->offset = p->offset;
  247. return AVERROR(EAGAIN);
  248. }
  249. prev_pkt[channel_id].read = 0; // read complete; reset if needed
  250. return p->read;
  251. }
  252. int ff_rtmp_packet_read_internal(URLContext *h, RTMPPacket *p, int chunk_size,
  253. RTMPPacket **prev_pkt, int *nb_prev_pkt,
  254. uint8_t hdr)
  255. {
  256. while (1) {
  257. int ret = rtmp_packet_read_one_chunk(h, p, chunk_size, prev_pkt,
  258. nb_prev_pkt, hdr);
  259. if (ret > 0 || ret != AVERROR(EAGAIN))
  260. return ret;
  261. if (ffurl_read(h, &hdr, 1) != 1)
  262. return AVERROR(EIO);
  263. }
  264. }
  265. int ff_rtmp_packet_write(URLContext *h, RTMPPacket *pkt,
  266. int chunk_size, RTMPPacket **prev_pkt_ptr,
  267. int *nb_prev_pkt)
  268. {
  269. uint8_t pkt_hdr[16], *p = pkt_hdr;
  270. int mode = RTMP_PS_TWELVEBYTES;
  271. int off = 0;
  272. int written = 0;
  273. int ret;
  274. RTMPPacket *prev_pkt;
  275. if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr, nb_prev_pkt,
  276. pkt->channel_id)) < 0)
  277. return ret;
  278. prev_pkt = *prev_pkt_ptr;
  279. pkt->ts_delta = pkt->timestamp - prev_pkt[pkt->channel_id].timestamp;
  280. //if channel_id = 0, this is first presentation of prev_pkt, send full hdr.
  281. if (prev_pkt[pkt->channel_id].channel_id &&
  282. pkt->extra == prev_pkt[pkt->channel_id].extra &&
  283. pkt->timestamp >= prev_pkt[pkt->channel_id].timestamp) {
  284. if (pkt->type == prev_pkt[pkt->channel_id].type &&
  285. pkt->size == prev_pkt[pkt->channel_id].size) {
  286. mode = RTMP_PS_FOURBYTES;
  287. if (pkt->ts_delta == prev_pkt[pkt->channel_id].ts_delta)
  288. mode = RTMP_PS_ONEBYTE;
  289. } else {
  290. mode = RTMP_PS_EIGHTBYTES;
  291. }
  292. }
  293. if (pkt->channel_id < 64) {
  294. bytestream_put_byte(&p, pkt->channel_id | (mode << 6));
  295. } else if (pkt->channel_id < 64 + 256) {
  296. bytestream_put_byte(&p, 0 | (mode << 6));
  297. bytestream_put_byte(&p, pkt->channel_id - 64);
  298. } else {
  299. bytestream_put_byte(&p, 1 | (mode << 6));
  300. bytestream_put_le16(&p, pkt->channel_id - 64);
  301. }
  302. if (mode != RTMP_PS_ONEBYTE) {
  303. uint32_t timestamp = pkt->timestamp;
  304. if (mode != RTMP_PS_TWELVEBYTES)
  305. timestamp = pkt->ts_delta;
  306. bytestream_put_be24(&p, timestamp >= 0xFFFFFF ? 0xFFFFFF : timestamp);
  307. if (mode != RTMP_PS_FOURBYTES) {
  308. bytestream_put_be24(&p, pkt->size);
  309. bytestream_put_byte(&p, pkt->type);
  310. if (mode == RTMP_PS_TWELVEBYTES)
  311. bytestream_put_le32(&p, pkt->extra);
  312. }
  313. if (timestamp >= 0xFFFFFF)
  314. bytestream_put_be32(&p, timestamp);
  315. }
  316. // save history
  317. prev_pkt[pkt->channel_id].channel_id = pkt->channel_id;
  318. prev_pkt[pkt->channel_id].type = pkt->type;
  319. prev_pkt[pkt->channel_id].size = pkt->size;
  320. prev_pkt[pkt->channel_id].timestamp = pkt->timestamp;
  321. if (mode != RTMP_PS_TWELVEBYTES) {
  322. prev_pkt[pkt->channel_id].ts_delta = pkt->ts_delta;
  323. } else {
  324. prev_pkt[pkt->channel_id].ts_delta = pkt->timestamp;
  325. }
  326. prev_pkt[pkt->channel_id].extra = pkt->extra;
  327. if ((ret = ffurl_write(h, pkt_hdr, p - pkt_hdr)) < 0)
  328. return ret;
  329. written = p - pkt_hdr + pkt->size;
  330. while (off < pkt->size) {
  331. int towrite = FFMIN(chunk_size, pkt->size - off);
  332. if ((ret = ffurl_write(h, pkt->data + off, towrite)) < 0)
  333. return ret;
  334. off += towrite;
  335. if (off < pkt->size) {
  336. uint8_t marker = 0xC0 | pkt->channel_id;
  337. if ((ret = ffurl_write(h, &marker, 1)) < 0)
  338. return ret;
  339. written++;
  340. }
  341. }
  342. return written;
  343. }
  344. int ff_rtmp_packet_create(RTMPPacket *pkt, int channel_id, RTMPPacketType type,
  345. int timestamp, int size)
  346. {
  347. if (size) {
  348. pkt->data = av_malloc(size);
  349. if (!pkt->data)
  350. return AVERROR(ENOMEM);
  351. }
  352. pkt->size = size;
  353. pkt->channel_id = channel_id;
  354. pkt->type = type;
  355. pkt->timestamp = timestamp;
  356. pkt->extra = 0;
  357. pkt->ts_delta = 0;
  358. return 0;
  359. }
  360. void ff_rtmp_packet_destroy(RTMPPacket *pkt)
  361. {
  362. if (!pkt)
  363. return;
  364. av_freep(&pkt->data);
  365. pkt->size = 0;
  366. }
  367. int ff_amf_tag_size(const uint8_t *data, const uint8_t *data_end)
  368. {
  369. const uint8_t *base = data;
  370. AMFDataType type;
  371. unsigned nb = -1;
  372. int parse_key = 1;
  373. if (data >= data_end)
  374. return -1;
  375. switch ((type = *data++)) {
  376. case AMF_DATA_TYPE_NUMBER: return 9;
  377. case AMF_DATA_TYPE_BOOL: return 2;
  378. case AMF_DATA_TYPE_STRING: return 3 + AV_RB16(data);
  379. case AMF_DATA_TYPE_LONG_STRING: return 5 + AV_RB32(data);
  380. case AMF_DATA_TYPE_NULL: return 1;
  381. case AMF_DATA_TYPE_ARRAY:
  382. parse_key = 0;
  383. case AMF_DATA_TYPE_MIXEDARRAY:
  384. nb = bytestream_get_be32(&data);
  385. case AMF_DATA_TYPE_OBJECT:
  386. while (nb-- > 0 || type != AMF_DATA_TYPE_ARRAY) {
  387. int t;
  388. if (parse_key) {
  389. int size = bytestream_get_be16(&data);
  390. if (!size) {
  391. data++;
  392. break;
  393. }
  394. if (size < 0 || size >= data_end - data)
  395. return -1;
  396. data += size;
  397. }
  398. t = ff_amf_tag_size(data, data_end);
  399. if (t < 0 || t >= data_end - data)
  400. return -1;
  401. data += t;
  402. }
  403. return data - base;
  404. case AMF_DATA_TYPE_OBJECT_END: return 1;
  405. default: return -1;
  406. }
  407. }
  408. int ff_amf_get_field_value(const uint8_t *data, const uint8_t *data_end,
  409. const uint8_t *name, uint8_t *dst, int dst_size)
  410. {
  411. int namelen = strlen(name);
  412. int len;
  413. while (*data != AMF_DATA_TYPE_OBJECT && data < data_end) {
  414. len = ff_amf_tag_size(data, data_end);
  415. if (len < 0)
  416. len = data_end - data;
  417. data += len;
  418. }
  419. if (data_end - data < 3)
  420. return -1;
  421. data++;
  422. for (;;) {
  423. int size = bytestream_get_be16(&data);
  424. if (!size)
  425. break;
  426. if (size < 0 || size >= data_end - data)
  427. return -1;
  428. data += size;
  429. if (size == namelen && !memcmp(data-size, name, namelen)) {
  430. switch (*data++) {
  431. case AMF_DATA_TYPE_NUMBER:
  432. snprintf(dst, dst_size, "%g", av_int2double(AV_RB64(data)));
  433. break;
  434. case AMF_DATA_TYPE_BOOL:
  435. snprintf(dst, dst_size, "%s", *data ? "true" : "false");
  436. break;
  437. case AMF_DATA_TYPE_STRING:
  438. len = bytestream_get_be16(&data);
  439. av_strlcpy(dst, data, FFMIN(len+1, dst_size));
  440. break;
  441. default:
  442. return -1;
  443. }
  444. return 0;
  445. }
  446. len = ff_amf_tag_size(data, data_end);
  447. if (len < 0 || len >= data_end - data)
  448. return -1;
  449. data += len;
  450. }
  451. return -1;
  452. }
  453. static const char* rtmp_packet_type(int type)
  454. {
  455. switch (type) {
  456. case RTMP_PT_CHUNK_SIZE: return "chunk size";
  457. case RTMP_PT_BYTES_READ: return "bytes read";
  458. case RTMP_PT_PING: return "ping";
  459. case RTMP_PT_SERVER_BW: return "server bandwidth";
  460. case RTMP_PT_CLIENT_BW: return "client bandwidth";
  461. case RTMP_PT_AUDIO: return "audio packet";
  462. case RTMP_PT_VIDEO: return "video packet";
  463. case RTMP_PT_FLEX_STREAM: return "Flex shared stream";
  464. case RTMP_PT_FLEX_OBJECT: return "Flex shared object";
  465. case RTMP_PT_FLEX_MESSAGE: return "Flex shared message";
  466. case RTMP_PT_NOTIFY: return "notification";
  467. case RTMP_PT_SHARED_OBJ: return "shared object";
  468. case RTMP_PT_INVOKE: return "invoke";
  469. case RTMP_PT_METADATA: return "metadata";
  470. default: return "unknown";
  471. }
  472. }
  473. static void amf_tag_contents(void *ctx, const uint8_t *data,
  474. const uint8_t *data_end)
  475. {
  476. unsigned int size, nb = -1;
  477. char buf[1024];
  478. AMFDataType type;
  479. int parse_key = 1;
  480. if (data >= data_end)
  481. return;
  482. switch ((type = *data++)) {
  483. case AMF_DATA_TYPE_NUMBER:
  484. av_log(ctx, AV_LOG_DEBUG, " number %g\n", av_int2double(AV_RB64(data)));
  485. return;
  486. case AMF_DATA_TYPE_BOOL:
  487. av_log(ctx, AV_LOG_DEBUG, " bool %d\n", *data);
  488. return;
  489. case AMF_DATA_TYPE_STRING:
  490. case AMF_DATA_TYPE_LONG_STRING:
  491. if (type == AMF_DATA_TYPE_STRING) {
  492. size = bytestream_get_be16(&data);
  493. } else {
  494. size = bytestream_get_be32(&data);
  495. }
  496. size = FFMIN(size, sizeof(buf) - 1);
  497. memcpy(buf, data, size);
  498. buf[size] = 0;
  499. av_log(ctx, AV_LOG_DEBUG, " string '%s'\n", buf);
  500. return;
  501. case AMF_DATA_TYPE_NULL:
  502. av_log(ctx, AV_LOG_DEBUG, " NULL\n");
  503. return;
  504. case AMF_DATA_TYPE_ARRAY:
  505. parse_key = 0;
  506. case AMF_DATA_TYPE_MIXEDARRAY:
  507. nb = bytestream_get_be32(&data);
  508. case AMF_DATA_TYPE_OBJECT:
  509. av_log(ctx, AV_LOG_DEBUG, " {\n");
  510. while (nb-- > 0 || type != AMF_DATA_TYPE_ARRAY) {
  511. int t;
  512. if (parse_key) {
  513. size = bytestream_get_be16(&data);
  514. size = FFMIN(size, sizeof(buf) - 1);
  515. if (!size) {
  516. av_log(ctx, AV_LOG_DEBUG, " }\n");
  517. data++;
  518. break;
  519. }
  520. memcpy(buf, data, size);
  521. buf[size] = 0;
  522. if (size >= data_end - data)
  523. return;
  524. data += size;
  525. av_log(ctx, AV_LOG_DEBUG, " %s: ", buf);
  526. }
  527. amf_tag_contents(ctx, data, data_end);
  528. t = ff_amf_tag_size(data, data_end);
  529. if (t < 0 || t >= data_end - data)
  530. return;
  531. data += t;
  532. }
  533. return;
  534. case AMF_DATA_TYPE_OBJECT_END:
  535. av_log(ctx, AV_LOG_DEBUG, " }\n");
  536. return;
  537. default:
  538. return;
  539. }
  540. }
  541. void ff_rtmp_packet_dump(void *ctx, RTMPPacket *p)
  542. {
  543. av_log(ctx, AV_LOG_DEBUG, "RTMP packet type '%s'(%d) for channel %d, timestamp %d, extra field %d size %d\n",
  544. rtmp_packet_type(p->type), p->type, p->channel_id, p->timestamp, p->extra, p->size);
  545. if (p->type == RTMP_PT_INVOKE || p->type == RTMP_PT_NOTIFY) {
  546. uint8_t *src = p->data, *src_end = p->data + p->size;
  547. while (src < src_end) {
  548. int sz;
  549. amf_tag_contents(ctx, src, src_end);
  550. sz = ff_amf_tag_size(src, src_end);
  551. if (sz < 0)
  552. break;
  553. src += sz;
  554. }
  555. } else if (p->type == RTMP_PT_SERVER_BW){
  556. av_log(ctx, AV_LOG_DEBUG, "Server BW = %d\n", AV_RB32(p->data));
  557. } else if (p->type == RTMP_PT_CLIENT_BW){
  558. av_log(ctx, AV_LOG_DEBUG, "Client BW = %d\n", AV_RB32(p->data));
  559. } else if (p->type != RTMP_PT_AUDIO && p->type != RTMP_PT_VIDEO && p->type != RTMP_PT_METADATA) {
  560. int i;
  561. for (i = 0; i < p->size; i++)
  562. av_log(ctx, AV_LOG_DEBUG, " %02X", p->data[i]);
  563. av_log(ctx, AV_LOG_DEBUG, "\n");
  564. }
  565. }
  566. int ff_amf_match_string(const uint8_t *data, int size, const char *str)
  567. {
  568. int len = strlen(str);
  569. int amf_len, type;
  570. if (size < 1)
  571. return 0;
  572. type = *data++;
  573. if (type != AMF_DATA_TYPE_LONG_STRING &&
  574. type != AMF_DATA_TYPE_STRING)
  575. return 0;
  576. if (type == AMF_DATA_TYPE_LONG_STRING) {
  577. if ((size -= 4 + 1) < 0)
  578. return 0;
  579. amf_len = bytestream_get_be32(&data);
  580. } else {
  581. if ((size -= 2 + 1) < 0)
  582. return 0;
  583. amf_len = bytestream_get_be16(&data);
  584. }
  585. if (amf_len > size)
  586. return 0;
  587. if (amf_len != len)
  588. return 0;
  589. return !memcmp(data, str, len);
  590. }