You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2665 lines
100KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "dcadata.h"
  39. #include "dcahuff.h"
  40. #include "dca.h"
  41. #include "mathops.h"
  42. #include "synth_filter.h"
  43. #include "dcadsp.h"
  44. #include "fmtconvert.h"
  45. #include "internal.h"
  46. #if ARCH_ARM
  47. # include "arm/dca.h"
  48. #endif
  49. //#define TRACE
  50. #define DCA_PRIM_CHANNELS_MAX (7)
  51. #define DCA_ABITS_MAX (32) /* Should be 28 */
  52. #define DCA_SUBSUBFRAMES_MAX (4)
  53. #define DCA_SUBFRAMES_MAX (16)
  54. #define DCA_BLOCKS_MAX (16)
  55. #define DCA_LFE_MAX (3)
  56. #define DCA_CHSETS_MAX (4)
  57. #define DCA_CHSET_CHANS_MAX (8)
  58. enum DCAMode {
  59. DCA_MONO = 0,
  60. DCA_CHANNEL,
  61. DCA_STEREO,
  62. DCA_STEREO_SUMDIFF,
  63. DCA_STEREO_TOTAL,
  64. DCA_3F,
  65. DCA_2F1R,
  66. DCA_3F1R,
  67. DCA_2F2R,
  68. DCA_3F2R,
  69. DCA_4F2R
  70. };
  71. /* these are unconfirmed but should be mostly correct */
  72. enum DCAExSSSpeakerMask {
  73. DCA_EXSS_FRONT_CENTER = 0x0001,
  74. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  75. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  76. DCA_EXSS_LFE = 0x0008,
  77. DCA_EXSS_REAR_CENTER = 0x0010,
  78. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  79. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  80. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  81. DCA_EXSS_OVERHEAD = 0x0100,
  82. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  83. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  84. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  85. DCA_EXSS_LFE2 = 0x1000,
  86. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  87. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  88. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  89. };
  90. enum DCAXxchSpeakerMask {
  91. DCA_XXCH_FRONT_CENTER = 0x0000001,
  92. DCA_XXCH_FRONT_LEFT = 0x0000002,
  93. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  94. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  95. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  96. DCA_XXCH_LFE1 = 0x0000020,
  97. DCA_XXCH_REAR_CENTER = 0x0000040,
  98. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  99. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  100. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  101. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  102. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  103. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  104. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  105. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  106. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  107. DCA_XXCH_LFE2 = 0x0010000,
  108. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  109. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  110. DCA_XXCH_OVERHEAD = 0x0080000,
  111. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  112. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  113. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  114. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  115. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  116. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  117. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  118. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  119. };
  120. static const uint32_t map_xxch_to_native[28] = {
  121. AV_CH_FRONT_CENTER,
  122. AV_CH_FRONT_LEFT,
  123. AV_CH_FRONT_RIGHT,
  124. AV_CH_SIDE_LEFT,
  125. AV_CH_SIDE_RIGHT,
  126. AV_CH_LOW_FREQUENCY,
  127. AV_CH_BACK_CENTER,
  128. AV_CH_BACK_LEFT,
  129. AV_CH_BACK_RIGHT,
  130. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  131. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  132. AV_CH_FRONT_LEFT_OF_CENTER,
  133. AV_CH_FRONT_RIGHT_OF_CENTER,
  134. AV_CH_TOP_FRONT_LEFT,
  135. AV_CH_TOP_FRONT_CENTER,
  136. AV_CH_TOP_FRONT_RIGHT,
  137. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  138. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  139. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  140. AV_CH_TOP_CENTER, /* overhead */
  141. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  142. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  143. AV_CH_TOP_BACK_CENTER,
  144. AV_CH_TOP_BACK_LEFT,
  145. AV_CH_TOP_BACK_RIGHT,
  146. AV_CH_BACK_CENTER, /* rear low center -- dup */
  147. AV_CH_BACK_LEFT, /* rear low left -- dup */
  148. AV_CH_BACK_RIGHT /* read low right -- dup */
  149. };
  150. enum DCAExtensionMask {
  151. DCA_EXT_CORE = 0x001, ///< core in core substream
  152. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  153. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  154. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  155. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  156. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  157. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  158. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  159. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  160. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  161. };
  162. /* -1 are reserved or unknown */
  163. static const int dca_ext_audio_descr_mask[] = {
  164. DCA_EXT_XCH,
  165. -1,
  166. DCA_EXT_X96,
  167. DCA_EXT_XCH | DCA_EXT_X96,
  168. -1,
  169. -1,
  170. DCA_EXT_XXCH,
  171. -1,
  172. };
  173. /* extensions that reside in core substream */
  174. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  175. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  176. * Some compromises have been made for special configurations. Most configurations
  177. * are never used so complete accuracy is not needed.
  178. *
  179. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  180. * S -> side, when both rear and back are configured move one of them to the side channel
  181. * OV -> center back
  182. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  183. */
  184. static const uint64_t dca_core_channel_layout[] = {
  185. AV_CH_FRONT_CENTER, ///< 1, A
  186. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  187. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  188. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  189. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  190. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  191. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  192. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  193. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  194. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  195. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  196. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  197. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  198. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  199. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  200. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  201. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  202. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  203. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  204. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  205. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  206. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  207. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  208. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  209. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  210. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  211. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  212. };
  213. static const int8_t dca_lfe_index[] = {
  214. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  215. };
  216. static const int8_t dca_channel_reorder_lfe[][9] = {
  217. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  218. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  219. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  220. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  221. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  222. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  223. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  224. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  225. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  226. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  227. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  228. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  229. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  230. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  231. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  232. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  233. };
  234. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  235. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  236. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  237. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  238. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  239. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  240. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  241. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  242. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  243. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  244. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  245. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  246. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  247. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  248. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  249. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  250. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  251. };
  252. static const int8_t dca_channel_reorder_nolfe[][9] = {
  253. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  254. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  255. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  256. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  257. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  258. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  259. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  260. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  261. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  262. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  263. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  264. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  265. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  266. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  267. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  268. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  269. };
  270. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  271. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  272. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  273. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  274. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  275. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  276. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  277. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  278. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  279. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  280. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  281. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  282. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  283. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  284. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  285. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  286. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  287. };
  288. #define DCA_DOLBY 101 /* FIXME */
  289. #define DCA_CHANNEL_BITS 6
  290. #define DCA_CHANNEL_MASK 0x3F
  291. #define DCA_LFE 0x80
  292. #define HEADER_SIZE 14
  293. #define DCA_MAX_FRAME_SIZE 16384
  294. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  295. #define DCA_BUFFER_PADDING_SIZE 1024
  296. #define DCA_NSYNCAUX 0x9A1105A0
  297. /** Bit allocation */
  298. typedef struct {
  299. int offset; ///< code values offset
  300. int maxbits[8]; ///< max bits in VLC
  301. int wrap; ///< wrap for get_vlc2()
  302. VLC vlc[8]; ///< actual codes
  303. } BitAlloc;
  304. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  305. static BitAlloc dca_tmode; ///< transition mode VLCs
  306. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  307. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  308. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  309. int idx)
  310. {
  311. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  312. ba->offset;
  313. }
  314. typedef struct {
  315. const AVClass *class; ///< class for AVOptions
  316. AVCodecContext *avctx;
  317. /* Frame header */
  318. int frame_type; ///< type of the current frame
  319. int samples_deficit; ///< deficit sample count
  320. int crc_present; ///< crc is present in the bitstream
  321. int sample_blocks; ///< number of PCM sample blocks
  322. int frame_size; ///< primary frame byte size
  323. int amode; ///< audio channels arrangement
  324. int sample_rate; ///< audio sampling rate
  325. int bit_rate; ///< transmission bit rate
  326. int bit_rate_index; ///< transmission bit rate index
  327. int dynrange; ///< embedded dynamic range flag
  328. int timestamp; ///< embedded time stamp flag
  329. int aux_data; ///< auxiliary data flag
  330. int hdcd; ///< source material is mastered in HDCD
  331. int ext_descr; ///< extension audio descriptor flag
  332. int ext_coding; ///< extended coding flag
  333. int aspf; ///< audio sync word insertion flag
  334. int lfe; ///< low frequency effects flag
  335. int predictor_history; ///< predictor history flag
  336. int header_crc; ///< header crc check bytes
  337. int multirate_inter; ///< multirate interpolator switch
  338. int version; ///< encoder software revision
  339. int copy_history; ///< copy history
  340. int source_pcm_res; ///< source pcm resolution
  341. int front_sum; ///< front sum/difference flag
  342. int surround_sum; ///< surround sum/difference flag
  343. int dialog_norm; ///< dialog normalisation parameter
  344. /* Primary audio coding header */
  345. int subframes; ///< number of subframes
  346. int total_channels; ///< number of channels including extensions
  347. int prim_channels; ///< number of primary audio channels
  348. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  349. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  350. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  351. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  352. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  353. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  354. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  355. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  356. /* Primary audio coding side information */
  357. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  358. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  359. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  360. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  361. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  362. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  363. int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale factors (2 if transient)
  364. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  365. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  366. float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
  367. int dynrange_coef; ///< dynamic range coefficient
  368. /* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
  369. * Input: primary audio channels (incl. LFE if present)
  370. * Output: downmix audio channels (up to 4, no LFE) */
  371. uint8_t core_downmix; ///< embedded downmix coefficients available
  372. uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
  373. uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
  374. int32_t high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  375. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  376. int lfe_scale_factor;
  377. /* Subband samples history (for ADPCM) */
  378. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  379. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  380. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  381. int hist_index[DCA_PRIM_CHANNELS_MAX];
  382. DECLARE_ALIGNED(32, float, raXin)[32];
  383. int output; ///< type of output
  384. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  385. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  386. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  387. uint8_t *extra_channels_buffer;
  388. unsigned int extra_channels_buffer_size;
  389. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  390. int dca_buffer_size; ///< how much data is in the dca_buffer
  391. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  392. GetBitContext gb;
  393. /* Current position in DCA frame */
  394. int current_subframe;
  395. int current_subsubframe;
  396. int core_ext_mask; ///< present extensions in the core substream
  397. /* XCh extension information */
  398. int xch_present; ///< XCh extension present and valid
  399. int xch_base_channel; ///< index of first (only) channel containing XCH data
  400. int xch_disable; ///< whether the XCh extension should be decoded or not
  401. /* XXCH extension information */
  402. int xxch_chset;
  403. int xxch_nbits_spk_mask;
  404. uint32_t xxch_core_spkmask;
  405. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  406. int xxch_chset_nch[4];
  407. float xxch_dmix_sf[DCA_CHSETS_MAX];
  408. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  409. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  410. int8_t xxch_order_tab[32];
  411. int8_t lfe_index;
  412. /* ExSS header parser */
  413. int static_fields; ///< static fields present
  414. int mix_metadata; ///< mixing metadata present
  415. int num_mix_configs; ///< number of mix out configurations
  416. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  417. int profile;
  418. int debug_flag; ///< used for suppressing repeated error messages output
  419. AVFloatDSPContext fdsp;
  420. FFTContext imdct;
  421. SynthFilterContext synth;
  422. DCADSPContext dcadsp;
  423. FmtConvertContext fmt_conv;
  424. } DCAContext;
  425. static float dca_dmix_code(unsigned code);
  426. static const uint16_t dca_vlc_offs[] = {
  427. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  428. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  429. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  430. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  431. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  432. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  433. };
  434. static av_cold void dca_init_vlcs(void)
  435. {
  436. static int vlcs_initialized = 0;
  437. int i, j, c = 14;
  438. static VLC_TYPE dca_table[23622][2];
  439. if (vlcs_initialized)
  440. return;
  441. dca_bitalloc_index.offset = 1;
  442. dca_bitalloc_index.wrap = 2;
  443. for (i = 0; i < 5; i++) {
  444. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  445. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  446. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  447. bitalloc_12_bits[i], 1, 1,
  448. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  449. }
  450. dca_scalefactor.offset = -64;
  451. dca_scalefactor.wrap = 2;
  452. for (i = 0; i < 5; i++) {
  453. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  454. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  455. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  456. scales_bits[i], 1, 1,
  457. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  458. }
  459. dca_tmode.offset = 0;
  460. dca_tmode.wrap = 1;
  461. for (i = 0; i < 4; i++) {
  462. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  463. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  464. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  465. tmode_bits[i], 1, 1,
  466. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  467. }
  468. for (i = 0; i < 10; i++)
  469. for (j = 0; j < 7; j++) {
  470. if (!bitalloc_codes[i][j])
  471. break;
  472. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  473. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  474. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  475. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  476. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  477. bitalloc_sizes[i],
  478. bitalloc_bits[i][j], 1, 1,
  479. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  480. c++;
  481. }
  482. vlcs_initialized = 1;
  483. }
  484. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  485. {
  486. while (len--)
  487. *dst++ = get_bits(gb, bits);
  488. }
  489. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  490. {
  491. int i, base, mask;
  492. /* locate channel set containing the channel */
  493. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  494. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  495. base += av_popcount(mask);
  496. return base + av_popcount(mask & (xxch_ch - 1));
  497. }
  498. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  499. int xxch)
  500. {
  501. int i, j;
  502. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  503. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  504. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  505. int hdr_pos = 0, hdr_size = 0;
  506. float scale_factor;
  507. int this_chans, acc_mask;
  508. int embedded_downmix;
  509. int nchans, mask[8];
  510. int coeff, ichan;
  511. /* xxch has arbitrary sized audio coding headers */
  512. if (xxch) {
  513. hdr_pos = get_bits_count(&s->gb);
  514. hdr_size = get_bits(&s->gb, 7) + 1;
  515. }
  516. nchans = get_bits(&s->gb, 3) + 1;
  517. s->total_channels = nchans + base_channel;
  518. s->prim_channels = s->total_channels;
  519. /* obtain speaker layout mask & downmix coefficients for XXCH */
  520. if (xxch) {
  521. acc_mask = s->xxch_core_spkmask;
  522. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  523. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  524. s->xxch_chset_nch[s->xxch_chset] = nchans;
  525. for (i = 0; i <= s->xxch_chset; i++)
  526. acc_mask |= s->xxch_spk_masks[i];
  527. /* check for downmixing information */
  528. if (get_bits1(&s->gb)) {
  529. embedded_downmix = get_bits1(&s->gb);
  530. coeff = get_bits(&s->gb, 6);
  531. scale_factor = -1.0f / dca_dmix_code(FFMAX(coeff<<2, 4)-3);
  532. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  533. for (i = base_channel; i < s->prim_channels; i++) {
  534. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  535. }
  536. for (j = base_channel; j < s->prim_channels; j++) {
  537. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  538. s->xxch_dmix_embedded |= (embedded_downmix << j);
  539. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  540. if (mask[j] & (1 << i)) {
  541. if ((1 << i) == DCA_XXCH_LFE1) {
  542. av_log(s->avctx, AV_LOG_WARNING,
  543. "DCA-XXCH: dmix to LFE1 not supported.\n");
  544. continue;
  545. }
  546. coeff = get_bits(&s->gb, 7);
  547. ichan = dca_xxch2index(s, 1 << i);
  548. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code(FFMAX(coeff<<2, 3)-3);
  549. }
  550. }
  551. }
  552. }
  553. }
  554. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  555. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  556. for (i = base_channel; i < s->prim_channels; i++) {
  557. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  558. if (s->subband_activity[i] > DCA_SUBBANDS)
  559. s->subband_activity[i] = DCA_SUBBANDS;
  560. }
  561. for (i = base_channel; i < s->prim_channels; i++) {
  562. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  563. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  564. s->vq_start_subband[i] = DCA_SUBBANDS;
  565. }
  566. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  567. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  568. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  569. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  570. /* Get codebooks quantization indexes */
  571. if (!base_channel)
  572. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  573. for (j = 1; j < 11; j++)
  574. for (i = base_channel; i < s->prim_channels; i++)
  575. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  576. /* Get scale factor adjustment */
  577. for (j = 0; j < 11; j++)
  578. for (i = base_channel; i < s->prim_channels; i++)
  579. s->scalefactor_adj[i][j] = 1;
  580. for (j = 1; j < 11; j++)
  581. for (i = base_channel; i < s->prim_channels; i++)
  582. if (s->quant_index_huffman[i][j] < thr[j])
  583. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  584. if (!xxch) {
  585. if (s->crc_present) {
  586. /* Audio header CRC check */
  587. get_bits(&s->gb, 16);
  588. }
  589. } else {
  590. /* Skip to the end of the header, also ignore CRC if present */
  591. i = get_bits_count(&s->gb);
  592. if (hdr_pos + 8 * hdr_size > i)
  593. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  594. }
  595. s->current_subframe = 0;
  596. s->current_subsubframe = 0;
  597. #ifdef TRACE
  598. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  599. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  600. for (i = base_channel; i < s->prim_channels; i++) {
  601. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  602. s->subband_activity[i]);
  603. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  604. s->vq_start_subband[i]);
  605. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  606. s->joint_intensity[i]);
  607. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  608. s->transient_huffman[i]);
  609. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  610. s->scalefactor_huffman[i]);
  611. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  612. s->bitalloc_huffman[i]);
  613. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  614. for (j = 0; j < 11; j++)
  615. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  616. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  617. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  618. for (j = 0; j < 11; j++)
  619. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  620. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  621. }
  622. #endif
  623. return 0;
  624. }
  625. static int dca_parse_frame_header(DCAContext *s)
  626. {
  627. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  628. /* Sync code */
  629. skip_bits_long(&s->gb, 32);
  630. /* Frame header */
  631. s->frame_type = get_bits(&s->gb, 1);
  632. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  633. s->crc_present = get_bits(&s->gb, 1);
  634. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  635. s->frame_size = get_bits(&s->gb, 14) + 1;
  636. if (s->frame_size < 95)
  637. return AVERROR_INVALIDDATA;
  638. s->amode = get_bits(&s->gb, 6);
  639. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  640. if (!s->sample_rate)
  641. return AVERROR_INVALIDDATA;
  642. s->bit_rate_index = get_bits(&s->gb, 5);
  643. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  644. if (!s->bit_rate)
  645. return AVERROR_INVALIDDATA;
  646. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  647. s->dynrange = get_bits(&s->gb, 1);
  648. s->timestamp = get_bits(&s->gb, 1);
  649. s->aux_data = get_bits(&s->gb, 1);
  650. s->hdcd = get_bits(&s->gb, 1);
  651. s->ext_descr = get_bits(&s->gb, 3);
  652. s->ext_coding = get_bits(&s->gb, 1);
  653. s->aspf = get_bits(&s->gb, 1);
  654. s->lfe = get_bits(&s->gb, 2);
  655. s->predictor_history = get_bits(&s->gb, 1);
  656. if (s->lfe > 2) {
  657. s->lfe = 0;
  658. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  659. return AVERROR_INVALIDDATA;
  660. }
  661. /* TODO: check CRC */
  662. if (s->crc_present)
  663. s->header_crc = get_bits(&s->gb, 16);
  664. s->multirate_inter = get_bits(&s->gb, 1);
  665. s->version = get_bits(&s->gb, 4);
  666. s->copy_history = get_bits(&s->gb, 2);
  667. s->source_pcm_res = get_bits(&s->gb, 3);
  668. s->front_sum = get_bits(&s->gb, 1);
  669. s->surround_sum = get_bits(&s->gb, 1);
  670. s->dialog_norm = get_bits(&s->gb, 4);
  671. /* FIXME: channels mixing levels */
  672. s->output = s->amode;
  673. if (s->lfe)
  674. s->output |= DCA_LFE;
  675. #ifdef TRACE
  676. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  677. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  678. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  679. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  680. s->sample_blocks, s->sample_blocks * 32);
  681. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  682. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  683. s->amode, dca_channels[s->amode]);
  684. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  685. s->sample_rate);
  686. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  687. s->bit_rate);
  688. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  689. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  690. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  691. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  692. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  693. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  694. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  695. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  696. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  697. s->predictor_history);
  698. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  699. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  700. s->multirate_inter);
  701. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  702. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  703. av_log(s->avctx, AV_LOG_DEBUG,
  704. "source pcm resolution: %i (%i bits/sample)\n",
  705. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  706. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  707. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  708. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  709. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  710. #endif
  711. /* Primary audio coding header */
  712. s->subframes = get_bits(&s->gb, 4) + 1;
  713. return dca_parse_audio_coding_header(s, 0, 0);
  714. }
  715. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  716. {
  717. if (level < 5) {
  718. /* huffman encoded */
  719. value += get_bitalloc(gb, &dca_scalefactor, level);
  720. value = av_clip(value, 0, (1 << log2range) - 1);
  721. } else if (level < 8) {
  722. if (level + 1 > log2range) {
  723. skip_bits(gb, level + 1 - log2range);
  724. value = get_bits(gb, log2range);
  725. } else {
  726. value = get_bits(gb, level + 1);
  727. }
  728. }
  729. return value;
  730. }
  731. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  732. {
  733. /* Primary audio coding side information */
  734. int j, k;
  735. if (get_bits_left(&s->gb) < 0)
  736. return AVERROR_INVALIDDATA;
  737. if (!base_channel) {
  738. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  739. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  740. }
  741. for (j = base_channel; j < s->prim_channels; j++) {
  742. for (k = 0; k < s->subband_activity[j]; k++)
  743. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  744. }
  745. /* Get prediction codebook */
  746. for (j = base_channel; j < s->prim_channels; j++) {
  747. for (k = 0; k < s->subband_activity[j]; k++) {
  748. if (s->prediction_mode[j][k] > 0) {
  749. /* (Prediction coefficient VQ address) */
  750. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  751. }
  752. }
  753. }
  754. /* Bit allocation index */
  755. for (j = base_channel; j < s->prim_channels; j++) {
  756. for (k = 0; k < s->vq_start_subband[j]; k++) {
  757. if (s->bitalloc_huffman[j] == 6)
  758. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  759. else if (s->bitalloc_huffman[j] == 5)
  760. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  761. else if (s->bitalloc_huffman[j] == 7) {
  762. av_log(s->avctx, AV_LOG_ERROR,
  763. "Invalid bit allocation index\n");
  764. return AVERROR_INVALIDDATA;
  765. } else {
  766. s->bitalloc[j][k] =
  767. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  768. }
  769. if (s->bitalloc[j][k] > 26) {
  770. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  771. j, k, s->bitalloc[j][k]);
  772. return AVERROR_INVALIDDATA;
  773. }
  774. }
  775. }
  776. /* Transition mode */
  777. for (j = base_channel; j < s->prim_channels; j++) {
  778. for (k = 0; k < s->subband_activity[j]; k++) {
  779. s->transition_mode[j][k] = 0;
  780. if (s->subsubframes[s->current_subframe] > 1 &&
  781. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  782. s->transition_mode[j][k] =
  783. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  784. }
  785. }
  786. }
  787. if (get_bits_left(&s->gb) < 0)
  788. return AVERROR_INVALIDDATA;
  789. for (j = base_channel; j < s->prim_channels; j++) {
  790. const uint32_t *scale_table;
  791. int scale_sum, log_size;
  792. memset(s->scale_factor[j], 0,
  793. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  794. if (s->scalefactor_huffman[j] == 6) {
  795. scale_table = scale_factor_quant7;
  796. log_size = 7;
  797. } else {
  798. scale_table = scale_factor_quant6;
  799. log_size = 6;
  800. }
  801. /* When huffman coded, only the difference is encoded */
  802. scale_sum = 0;
  803. for (k = 0; k < s->subband_activity[j]; k++) {
  804. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  805. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  806. s->scale_factor[j][k][0] = scale_table[scale_sum];
  807. }
  808. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  809. /* Get second scale factor */
  810. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  811. s->scale_factor[j][k][1] = scale_table[scale_sum];
  812. }
  813. }
  814. }
  815. /* Joint subband scale factor codebook select */
  816. for (j = base_channel; j < s->prim_channels; j++) {
  817. /* Transmitted only if joint subband coding enabled */
  818. if (s->joint_intensity[j] > 0)
  819. s->joint_huff[j] = get_bits(&s->gb, 3);
  820. }
  821. if (get_bits_left(&s->gb) < 0)
  822. return AVERROR_INVALIDDATA;
  823. /* Scale factors for joint subband coding */
  824. for (j = base_channel; j < s->prim_channels; j++) {
  825. int source_channel;
  826. /* Transmitted only if joint subband coding enabled */
  827. if (s->joint_intensity[j] > 0) {
  828. int scale = 0;
  829. source_channel = s->joint_intensity[j] - 1;
  830. /* When huffman coded, only the difference is encoded
  831. * (is this valid as well for joint scales ???) */
  832. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  833. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  834. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  835. }
  836. if (!(s->debug_flag & 0x02)) {
  837. av_log(s->avctx, AV_LOG_DEBUG,
  838. "Joint stereo coding not supported\n");
  839. s->debug_flag |= 0x02;
  840. }
  841. }
  842. }
  843. /* Dynamic range coefficient */
  844. if (!base_channel && s->dynrange)
  845. s->dynrange_coef = get_bits(&s->gb, 8);
  846. /* Side information CRC check word */
  847. if (s->crc_present) {
  848. get_bits(&s->gb, 16);
  849. }
  850. /*
  851. * Primary audio data arrays
  852. */
  853. /* VQ encoded high frequency subbands */
  854. for (j = base_channel; j < s->prim_channels; j++)
  855. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  856. /* 1 vector -> 32 samples */
  857. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  858. /* Low frequency effect data */
  859. if (!base_channel && s->lfe) {
  860. int quant7;
  861. /* LFE samples */
  862. int lfe_samples = 2 * s->lfe * (4 + block_index);
  863. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  864. float lfe_scale;
  865. for (j = lfe_samples; j < lfe_end_sample; j++) {
  866. /* Signed 8 bits int */
  867. s->lfe_data[j] = get_sbits(&s->gb, 8);
  868. }
  869. /* Scale factor index */
  870. quant7 = get_bits(&s->gb, 8);
  871. if (quant7 > 127) {
  872. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  873. return AVERROR_INVALIDDATA;
  874. }
  875. s->lfe_scale_factor = scale_factor_quant7[quant7];
  876. /* Quantization step size * scale factor */
  877. lfe_scale = 0.035 * s->lfe_scale_factor;
  878. for (j = lfe_samples; j < lfe_end_sample; j++)
  879. s->lfe_data[j] *= lfe_scale;
  880. }
  881. #ifdef TRACE
  882. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  883. s->subsubframes[s->current_subframe]);
  884. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  885. s->partial_samples[s->current_subframe]);
  886. for (j = base_channel; j < s->prim_channels; j++) {
  887. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  888. for (k = 0; k < s->subband_activity[j]; k++)
  889. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  890. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  891. }
  892. for (j = base_channel; j < s->prim_channels; j++) {
  893. for (k = 0; k < s->subband_activity[j]; k++)
  894. av_log(s->avctx, AV_LOG_DEBUG,
  895. "prediction coefs: %f, %f, %f, %f\n",
  896. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  897. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  898. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  899. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  900. }
  901. for (j = base_channel; j < s->prim_channels; j++) {
  902. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  903. for (k = 0; k < s->vq_start_subband[j]; k++)
  904. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  905. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  906. }
  907. for (j = base_channel; j < s->prim_channels; j++) {
  908. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  909. for (k = 0; k < s->subband_activity[j]; k++)
  910. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  911. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  912. }
  913. for (j = base_channel; j < s->prim_channels; j++) {
  914. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  915. for (k = 0; k < s->subband_activity[j]; k++) {
  916. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  917. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  918. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  919. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  920. }
  921. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  922. }
  923. for (j = base_channel; j < s->prim_channels; j++) {
  924. if (s->joint_intensity[j] > 0) {
  925. int source_channel = s->joint_intensity[j] - 1;
  926. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  927. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  928. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  929. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  930. }
  931. }
  932. for (j = base_channel; j < s->prim_channels; j++)
  933. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  934. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  935. if (!base_channel && s->lfe) {
  936. int lfe_samples = 2 * s->lfe * (4 + block_index);
  937. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  938. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  939. for (j = lfe_samples; j < lfe_end_sample; j++)
  940. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  941. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  942. }
  943. #endif
  944. return 0;
  945. }
  946. static void qmf_32_subbands(DCAContext *s, int chans,
  947. float samples_in[32][8], float *samples_out,
  948. float scale)
  949. {
  950. const float *prCoeff;
  951. int sb_act = s->subband_activity[chans];
  952. scale *= sqrt(1 / 8.0);
  953. /* Select filter */
  954. if (!s->multirate_inter) /* Non-perfect reconstruction */
  955. prCoeff = fir_32bands_nonperfect;
  956. else /* Perfect reconstruction */
  957. prCoeff = fir_32bands_perfect;
  958. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  959. s->subband_fir_hist[chans],
  960. &s->hist_index[chans],
  961. s->subband_fir_noidea[chans], prCoeff,
  962. samples_out, s->raXin, scale);
  963. }
  964. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  965. int num_deci_sample, float *samples_in,
  966. float *samples_out)
  967. {
  968. /* samples_in: An array holding decimated samples.
  969. * Samples in current subframe starts from samples_in[0],
  970. * while samples_in[-1], samples_in[-2], ..., stores samples
  971. * from last subframe as history.
  972. *
  973. * samples_out: An array holding interpolated samples
  974. */
  975. int idx;
  976. const float *prCoeff;
  977. int deciindex;
  978. /* Select decimation filter */
  979. if (decimation_select == 1) {
  980. idx = 1;
  981. prCoeff = lfe_fir_128;
  982. } else {
  983. idx = 0;
  984. prCoeff = lfe_fir_64;
  985. }
  986. /* Interpolation */
  987. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  988. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  989. samples_in++;
  990. samples_out += 2 * 32 * (1 + idx);
  991. }
  992. }
  993. /* downmixing routines */
  994. #define MIX_REAR1(samples, s1, rs, coef) \
  995. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  996. samples[1][i] += samples[s1][i] * coef[rs][1];
  997. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  998. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  999. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1000. #define MIX_FRONT3(samples, coef) \
  1001. t = samples[c][i]; \
  1002. u = samples[l][i]; \
  1003. v = samples[r][i]; \
  1004. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1005. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1006. #define DOWNMIX_TO_STEREO(op1, op2) \
  1007. for (i = 0; i < 256; i++) { \
  1008. op1 \
  1009. op2 \
  1010. }
  1011. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  1012. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  1013. const int8_t *channel_mapping)
  1014. {
  1015. int c, l, r, sl, sr, s;
  1016. int i;
  1017. float t, u, v;
  1018. switch (srcfmt) {
  1019. case DCA_MONO:
  1020. case DCA_4F2R:
  1021. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  1022. break;
  1023. case DCA_CHANNEL:
  1024. case DCA_STEREO:
  1025. case DCA_STEREO_TOTAL:
  1026. case DCA_STEREO_SUMDIFF:
  1027. break;
  1028. case DCA_3F:
  1029. c = channel_mapping[0];
  1030. l = channel_mapping[1];
  1031. r = channel_mapping[2];
  1032. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1033. break;
  1034. case DCA_2F1R:
  1035. s = channel_mapping[2];
  1036. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1037. break;
  1038. case DCA_3F1R:
  1039. c = channel_mapping[0];
  1040. l = channel_mapping[1];
  1041. r = channel_mapping[2];
  1042. s = channel_mapping[3];
  1043. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1044. MIX_REAR1(samples, s, 3, coef));
  1045. break;
  1046. case DCA_2F2R:
  1047. sl = channel_mapping[2];
  1048. sr = channel_mapping[3];
  1049. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1050. break;
  1051. case DCA_3F2R:
  1052. c = channel_mapping[0];
  1053. l = channel_mapping[1];
  1054. r = channel_mapping[2];
  1055. sl = channel_mapping[3];
  1056. sr = channel_mapping[4];
  1057. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1058. MIX_REAR2(samples, sl, sr, 3, coef));
  1059. break;
  1060. }
  1061. if (lfe_present) {
  1062. int lf_buf = dca_lfe_index[srcfmt];
  1063. int lf_idx = dca_channels [srcfmt];
  1064. for (i = 0; i < 256; i++) {
  1065. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  1066. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  1067. }
  1068. }
  1069. }
  1070. #ifndef decode_blockcodes
  1071. /* Very compact version of the block code decoder that does not use table
  1072. * look-up but is slightly slower */
  1073. static int decode_blockcode(int code, int levels, int32_t *values)
  1074. {
  1075. int i;
  1076. int offset = (levels - 1) >> 1;
  1077. for (i = 0; i < 4; i++) {
  1078. int div = FASTDIV(code, levels);
  1079. values[i] = code - offset - div * levels;
  1080. code = div;
  1081. }
  1082. return code;
  1083. }
  1084. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  1085. {
  1086. return decode_blockcode(code1, levels, values) |
  1087. decode_blockcode(code2, levels, values + 4);
  1088. }
  1089. #endif
  1090. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1091. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1092. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1093. {
  1094. int k, l;
  1095. int subsubframe = s->current_subsubframe;
  1096. const float *quant_step_table;
  1097. /* FIXME */
  1098. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1099. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  1100. /*
  1101. * Audio data
  1102. */
  1103. /* Select quantization step size table */
  1104. if (s->bit_rate_index == 0x1f)
  1105. quant_step_table = lossless_quant_d;
  1106. else
  1107. quant_step_table = lossy_quant_d;
  1108. for (k = base_channel; k < s->prim_channels; k++) {
  1109. float rscale[DCA_SUBBANDS];
  1110. if (get_bits_left(&s->gb) < 0)
  1111. return AVERROR_INVALIDDATA;
  1112. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1113. int m;
  1114. /* Select the mid-tread linear quantizer */
  1115. int abits = s->bitalloc[k][l];
  1116. float quant_step_size = quant_step_table[abits];
  1117. /*
  1118. * Determine quantization index code book and its type
  1119. */
  1120. /* Select quantization index code book */
  1121. int sel = s->quant_index_huffman[k][abits];
  1122. /*
  1123. * Extract bits from the bit stream
  1124. */
  1125. if (!abits) {
  1126. rscale[l] = 0;
  1127. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  1128. } else {
  1129. /* Deal with transients */
  1130. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1131. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  1132. s->scalefactor_adj[k][sel];
  1133. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1134. if (abits <= 7) {
  1135. /* Block code */
  1136. int block_code1, block_code2, size, levels, err;
  1137. size = abits_sizes[abits - 1];
  1138. levels = abits_levels[abits - 1];
  1139. block_code1 = get_bits(&s->gb, size);
  1140. block_code2 = get_bits(&s->gb, size);
  1141. err = decode_blockcodes(block_code1, block_code2,
  1142. levels, block + 8 * l);
  1143. if (err) {
  1144. av_log(s->avctx, AV_LOG_ERROR,
  1145. "ERROR: block code look-up failed\n");
  1146. return AVERROR_INVALIDDATA;
  1147. }
  1148. } else {
  1149. /* no coding */
  1150. for (m = 0; m < 8; m++)
  1151. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  1152. }
  1153. } else {
  1154. /* Huffman coded */
  1155. for (m = 0; m < 8; m++)
  1156. block[8 * l + m] = get_bitalloc(&s->gb,
  1157. &dca_smpl_bitalloc[abits], sel);
  1158. }
  1159. }
  1160. }
  1161. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  1162. block, rscale, 8 * s->vq_start_subband[k]);
  1163. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1164. int m;
  1165. /*
  1166. * Inverse ADPCM if in prediction mode
  1167. */
  1168. if (s->prediction_mode[k][l]) {
  1169. int n;
  1170. if (s->predictor_history)
  1171. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  1172. s->subband_samples_hist[k][l][3] +
  1173. adpcm_vb[s->prediction_vq[k][l]][1] *
  1174. s->subband_samples_hist[k][l][2] +
  1175. adpcm_vb[s->prediction_vq[k][l]][2] *
  1176. s->subband_samples_hist[k][l][1] +
  1177. adpcm_vb[s->prediction_vq[k][l]][3] *
  1178. s->subband_samples_hist[k][l][0]) *
  1179. (1.0f / 8192);
  1180. for (m = 1; m < 8; m++) {
  1181. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  1182. subband_samples[k][l][m - 1];
  1183. for (n = 2; n <= 4; n++)
  1184. if (m >= n)
  1185. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1186. subband_samples[k][l][m - n];
  1187. else if (s->predictor_history)
  1188. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1189. s->subband_samples_hist[k][l][m - n + 4];
  1190. subband_samples[k][l][m] += sum * (1.0f / 8192);
  1191. }
  1192. }
  1193. }
  1194. /*
  1195. * Decode VQ encoded high frequencies
  1196. */
  1197. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  1198. if (!(s->debug_flag & 0x01)) {
  1199. av_log(s->avctx, AV_LOG_DEBUG,
  1200. "Stream with high frequencies VQ coding\n");
  1201. s->debug_flag |= 0x01;
  1202. }
  1203. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  1204. high_freq_vq, subsubframe * 8,
  1205. s->scale_factor[k], s->vq_start_subband[k],
  1206. s->subband_activity[k]);
  1207. }
  1208. }
  1209. /* Check for DSYNC after subsubframe */
  1210. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1211. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1212. #ifdef TRACE
  1213. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1214. #endif
  1215. } else {
  1216. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1217. return AVERROR_INVALIDDATA;
  1218. }
  1219. }
  1220. /* Backup predictor history for adpcm */
  1221. for (k = base_channel; k < s->prim_channels; k++)
  1222. for (l = 0; l < s->vq_start_subband[k]; l++)
  1223. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  1224. return 0;
  1225. }
  1226. static int dca_filter_channels(DCAContext *s, int block_index)
  1227. {
  1228. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1229. int k;
  1230. /* 32 subbands QMF */
  1231. for (k = 0; k < s->prim_channels; k++) {
  1232. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1233. 0, 8388608.0, 8388608.0 };*/
  1234. if (s->channel_order_tab[k] >= 0)
  1235. qmf_32_subbands(s, k, subband_samples[k],
  1236. s->samples_chanptr[s->channel_order_tab[k]],
  1237. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1238. }
  1239. /* Generate LFE samples for this subsubframe FIXME!!! */
  1240. if (s->lfe) {
  1241. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1242. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1243. s->samples_chanptr[s->lfe_index]);
  1244. /* Outputs 20bits pcm samples */
  1245. }
  1246. /* Downmixing to Stereo */
  1247. if (s->prim_channels + !!s->lfe > 2 &&
  1248. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1249. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  1250. s->channel_order_tab);
  1251. }
  1252. return 0;
  1253. }
  1254. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1255. {
  1256. int in, out, aux_data_count, aux_data_end, reserved;
  1257. uint32_t nsyncaux;
  1258. /*
  1259. * Unpack optional information
  1260. */
  1261. /* presumably optional information only appears in the core? */
  1262. if (!base_channel) {
  1263. if (s->timestamp)
  1264. skip_bits_long(&s->gb, 32);
  1265. if (s->aux_data) {
  1266. aux_data_count = get_bits(&s->gb, 6);
  1267. // align (32-bit)
  1268. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1269. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  1270. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  1271. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  1272. nsyncaux);
  1273. return AVERROR_INVALIDDATA;
  1274. }
  1275. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  1276. avpriv_request_sample(s->avctx,
  1277. "Auxiliary Decode Time Stamp Flag");
  1278. // align (4-bit)
  1279. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  1280. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  1281. skip_bits_long(&s->gb, 44);
  1282. }
  1283. if ((s->core_downmix = get_bits1(&s->gb))) {
  1284. int am = get_bits(&s->gb, 3);
  1285. switch (am) {
  1286. case 0:
  1287. s->core_downmix_amode = DCA_MONO;
  1288. break;
  1289. case 1:
  1290. s->core_downmix_amode = DCA_STEREO;
  1291. break;
  1292. case 2:
  1293. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1294. break;
  1295. case 3:
  1296. s->core_downmix_amode = DCA_3F;
  1297. break;
  1298. case 4:
  1299. s->core_downmix_amode = DCA_2F1R;
  1300. break;
  1301. case 5:
  1302. s->core_downmix_amode = DCA_2F2R;
  1303. break;
  1304. case 6:
  1305. s->core_downmix_amode = DCA_3F1R;
  1306. break;
  1307. default:
  1308. av_log(s->avctx, AV_LOG_ERROR,
  1309. "Invalid mode %d for embedded downmix coefficients\n",
  1310. am);
  1311. return AVERROR_INVALIDDATA;
  1312. }
  1313. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1314. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1315. uint16_t tmp = get_bits(&s->gb, 9);
  1316. if ((tmp & 0xFF) > 241) {
  1317. av_log(s->avctx, AV_LOG_ERROR,
  1318. "Invalid downmix coefficient code %"PRIu16"\n",
  1319. tmp);
  1320. return AVERROR_INVALIDDATA;
  1321. }
  1322. s->core_downmix_codes[in][out] = tmp;
  1323. }
  1324. }
  1325. }
  1326. align_get_bits(&s->gb); // byte align
  1327. skip_bits(&s->gb, 16); // nAUXCRC16
  1328. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1329. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1330. av_log(s->avctx, AV_LOG_ERROR,
  1331. "Overread auxiliary data by %d bits\n", -reserved);
  1332. return AVERROR_INVALIDDATA;
  1333. } else if (reserved) {
  1334. avpriv_request_sample(s->avctx,
  1335. "Core auxiliary data reserved content");
  1336. skip_bits_long(&s->gb, reserved);
  1337. }
  1338. }
  1339. if (s->crc_present && s->dynrange)
  1340. get_bits(&s->gb, 16);
  1341. }
  1342. return 0;
  1343. }
  1344. /**
  1345. * Decode a dca frame block
  1346. *
  1347. * @param s pointer to the DCAContext
  1348. */
  1349. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1350. {
  1351. int ret;
  1352. /* Sanity check */
  1353. if (s->current_subframe >= s->subframes) {
  1354. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1355. s->current_subframe, s->subframes);
  1356. return AVERROR_INVALIDDATA;
  1357. }
  1358. if (!s->current_subsubframe) {
  1359. #ifdef TRACE
  1360. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1361. #endif
  1362. /* Read subframe header */
  1363. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1364. return ret;
  1365. }
  1366. /* Read subsubframe */
  1367. #ifdef TRACE
  1368. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1369. #endif
  1370. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1371. return ret;
  1372. /* Update state */
  1373. s->current_subsubframe++;
  1374. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1375. s->current_subsubframe = 0;
  1376. s->current_subframe++;
  1377. }
  1378. if (s->current_subframe >= s->subframes) {
  1379. #ifdef TRACE
  1380. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1381. #endif
  1382. /* Read subframe footer */
  1383. if ((ret = dca_subframe_footer(s, base_channel)))
  1384. return ret;
  1385. }
  1386. return 0;
  1387. }
  1388. /**
  1389. * Return the number of channels in an ExSS speaker mask (HD)
  1390. */
  1391. static int dca_exss_mask2count(int mask)
  1392. {
  1393. /* count bits that mean speaker pairs twice */
  1394. return av_popcount(mask) +
  1395. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1396. DCA_EXSS_FRONT_LEFT_RIGHT |
  1397. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1398. DCA_EXSS_WIDE_LEFT_RIGHT |
  1399. DCA_EXSS_SIDE_LEFT_RIGHT |
  1400. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1401. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1402. DCA_EXSS_REAR_LEFT_RIGHT |
  1403. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1404. }
  1405. /**
  1406. * Skip mixing coefficients of a single mix out configuration (HD)
  1407. */
  1408. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1409. {
  1410. int i;
  1411. for (i = 0; i < channels; i++) {
  1412. int mix_map_mask = get_bits(gb, out_ch);
  1413. int num_coeffs = av_popcount(mix_map_mask);
  1414. skip_bits_long(gb, num_coeffs * 6);
  1415. }
  1416. }
  1417. /**
  1418. * Parse extension substream asset header (HD)
  1419. */
  1420. static int dca_exss_parse_asset_header(DCAContext *s)
  1421. {
  1422. int header_pos = get_bits_count(&s->gb);
  1423. int header_size;
  1424. int channels = 0;
  1425. int embedded_stereo = 0;
  1426. int embedded_6ch = 0;
  1427. int drc_code_present;
  1428. int av_uninit(extensions_mask);
  1429. int i, j;
  1430. if (get_bits_left(&s->gb) < 16)
  1431. return -1;
  1432. /* We will parse just enough to get to the extensions bitmask with which
  1433. * we can set the profile value. */
  1434. header_size = get_bits(&s->gb, 9) + 1;
  1435. skip_bits(&s->gb, 3); // asset index
  1436. if (s->static_fields) {
  1437. if (get_bits1(&s->gb))
  1438. skip_bits(&s->gb, 4); // asset type descriptor
  1439. if (get_bits1(&s->gb))
  1440. skip_bits_long(&s->gb, 24); // language descriptor
  1441. if (get_bits1(&s->gb)) {
  1442. /* How can one fit 1024 bytes of text here if the maximum value
  1443. * for the asset header size field above was 512 bytes? */
  1444. int text_length = get_bits(&s->gb, 10) + 1;
  1445. if (get_bits_left(&s->gb) < text_length * 8)
  1446. return -1;
  1447. skip_bits_long(&s->gb, text_length * 8); // info text
  1448. }
  1449. skip_bits(&s->gb, 5); // bit resolution - 1
  1450. skip_bits(&s->gb, 4); // max sample rate code
  1451. channels = get_bits(&s->gb, 8) + 1;
  1452. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1453. int spkr_remap_sets;
  1454. int spkr_mask_size = 16;
  1455. int num_spkrs[7];
  1456. if (channels > 2)
  1457. embedded_stereo = get_bits1(&s->gb);
  1458. if (channels > 6)
  1459. embedded_6ch = get_bits1(&s->gb);
  1460. if (get_bits1(&s->gb)) {
  1461. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1462. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1463. }
  1464. spkr_remap_sets = get_bits(&s->gb, 3);
  1465. for (i = 0; i < spkr_remap_sets; i++) {
  1466. /* std layout mask for each remap set */
  1467. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1468. }
  1469. for (i = 0; i < spkr_remap_sets; i++) {
  1470. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1471. if (get_bits_left(&s->gb) < 0)
  1472. return -1;
  1473. for (j = 0; j < num_spkrs[i]; j++) {
  1474. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1475. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1476. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1477. }
  1478. }
  1479. } else {
  1480. skip_bits(&s->gb, 3); // representation type
  1481. }
  1482. }
  1483. drc_code_present = get_bits1(&s->gb);
  1484. if (drc_code_present)
  1485. get_bits(&s->gb, 8); // drc code
  1486. if (get_bits1(&s->gb))
  1487. skip_bits(&s->gb, 5); // dialog normalization code
  1488. if (drc_code_present && embedded_stereo)
  1489. get_bits(&s->gb, 8); // drc stereo code
  1490. if (s->mix_metadata && get_bits1(&s->gb)) {
  1491. skip_bits(&s->gb, 1); // external mix
  1492. skip_bits(&s->gb, 6); // post mix gain code
  1493. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1494. skip_bits(&s->gb, 3); // drc limit
  1495. else
  1496. skip_bits(&s->gb, 8); // custom drc code
  1497. if (get_bits1(&s->gb)) // channel specific scaling
  1498. for (i = 0; i < s->num_mix_configs; i++)
  1499. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1500. else
  1501. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1502. for (i = 0; i < s->num_mix_configs; i++) {
  1503. if (get_bits_left(&s->gb) < 0)
  1504. return -1;
  1505. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1506. if (embedded_6ch)
  1507. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1508. if (embedded_stereo)
  1509. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1510. }
  1511. }
  1512. switch (get_bits(&s->gb, 2)) {
  1513. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1514. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1515. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1516. case 3: extensions_mask = 0; /* aux coding */ break;
  1517. }
  1518. /* not parsed further, we were only interested in the extensions mask */
  1519. if (get_bits_left(&s->gb) < 0)
  1520. return -1;
  1521. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1522. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1523. return -1;
  1524. }
  1525. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1526. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1527. s->profile = FF_PROFILE_DTS_HD_MA;
  1528. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1529. DCA_EXT_EXSS_XXCH))
  1530. s->profile = FF_PROFILE_DTS_HD_HRA;
  1531. if (!(extensions_mask & DCA_EXT_CORE))
  1532. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1533. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1534. av_log(s->avctx, AV_LOG_WARNING,
  1535. "DTS extensions detection mismatch (%d, %d)\n",
  1536. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1537. return 0;
  1538. }
  1539. static int dca_xbr_parse_frame(DCAContext *s)
  1540. {
  1541. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1542. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1543. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1544. int anctemp[DCA_CHSET_CHANS_MAX];
  1545. int chset_fsize[DCA_CHSETS_MAX];
  1546. int n_xbr_ch[DCA_CHSETS_MAX];
  1547. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1548. int i, j, k, l, chset, chan_base;
  1549. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1550. /* get bit position of sync header */
  1551. hdr_pos = get_bits_count(&s->gb) - 32;
  1552. hdr_size = get_bits(&s->gb, 6) + 1;
  1553. num_chsets = get_bits(&s->gb, 2) + 1;
  1554. for(i = 0; i < num_chsets; i++)
  1555. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1556. xbr_tmode = get_bits1(&s->gb);
  1557. for(i = 0; i < num_chsets; i++) {
  1558. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1559. k = get_bits(&s->gb, 2) + 5;
  1560. for(j = 0; j < n_xbr_ch[i]; j++)
  1561. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1562. }
  1563. /* skip to the end of the header */
  1564. i = get_bits_count(&s->gb);
  1565. if(hdr_pos + hdr_size * 8 > i)
  1566. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1567. /* loop over the channel data sets */
  1568. /* only decode as many channels as we've decoded base data for */
  1569. for(chset = 0, chan_base = 0;
  1570. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1571. chan_base += n_xbr_ch[chset++]) {
  1572. int start_posn = get_bits_count(&s->gb);
  1573. int subsubframe = 0;
  1574. int subframe = 0;
  1575. /* loop over subframes */
  1576. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1577. /* parse header if we're on first subsubframe of a block */
  1578. if(subsubframe == 0) {
  1579. /* Parse subframe header */
  1580. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1581. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1582. }
  1583. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1584. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1585. }
  1586. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1587. anctemp[i] = get_bits(&s->gb, 3);
  1588. if(anctemp[i] < 1) {
  1589. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1590. return AVERROR_INVALIDDATA;
  1591. }
  1592. }
  1593. /* generate scale factors */
  1594. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1595. const uint32_t *scale_table;
  1596. int nbits;
  1597. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1598. scale_table = scale_factor_quant7;
  1599. } else {
  1600. scale_table = scale_factor_quant6;
  1601. }
  1602. nbits = anctemp[i];
  1603. for(j = 0; j < active_bands[chset][i]; j++) {
  1604. if(abits_high[i][j] > 0) {
  1605. scale_table_high[i][j][0] =
  1606. scale_table[get_bits(&s->gb, nbits)];
  1607. if(xbr_tmode && s->transition_mode[i][j]) {
  1608. scale_table_high[i][j][1] =
  1609. scale_table[get_bits(&s->gb, nbits)];
  1610. }
  1611. }
  1612. }
  1613. }
  1614. }
  1615. /* decode audio array for this block */
  1616. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1617. for(j = 0; j < active_bands[chset][i]; j++) {
  1618. const int xbr_abits = abits_high[i][j];
  1619. const float quant_step_size = lossless_quant_d[xbr_abits];
  1620. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1621. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1622. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1623. int block[8];
  1624. if(xbr_abits <= 0)
  1625. continue;
  1626. if(xbr_abits > 7) {
  1627. get_array(&s->gb, block, 8, xbr_abits - 3);
  1628. } else {
  1629. int block_code1, block_code2, size, levels, err;
  1630. size = abits_sizes[xbr_abits - 1];
  1631. levels = abits_levels[xbr_abits - 1];
  1632. block_code1 = get_bits(&s->gb, size);
  1633. block_code2 = get_bits(&s->gb, size);
  1634. err = decode_blockcodes(block_code1, block_code2,
  1635. levels, block);
  1636. if (err) {
  1637. av_log(s->avctx, AV_LOG_ERROR,
  1638. "ERROR: DTS-XBR: block code look-up failed\n");
  1639. return AVERROR_INVALIDDATA;
  1640. }
  1641. }
  1642. /* scale & sum into subband */
  1643. for(l = 0; l < 8; l++)
  1644. subband_samples[l] += (float)block[l] * rscale;
  1645. }
  1646. }
  1647. /* check DSYNC marker */
  1648. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1649. if(get_bits(&s->gb, 16) != 0xffff) {
  1650. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1651. return AVERROR_INVALIDDATA;
  1652. }
  1653. }
  1654. /* advance sub-sub-frame index */
  1655. if(++subsubframe >= s->subsubframes[subframe]) {
  1656. subsubframe = 0;
  1657. subframe++;
  1658. }
  1659. }
  1660. /* skip to next channel set */
  1661. i = get_bits_count(&s->gb);
  1662. if(start_posn + chset_fsize[chset] * 8 != i) {
  1663. j = start_posn + chset_fsize[chset] * 8 - i;
  1664. if(j < 0 || j >= 8)
  1665. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1666. " skipping further than expected (%d bits)\n", j);
  1667. skip_bits_long(&s->gb, j);
  1668. }
  1669. }
  1670. return 0;
  1671. }
  1672. /* parse initial header for XXCH and dump details */
  1673. static int dca_xxch_decode_frame(DCAContext *s)
  1674. {
  1675. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1676. int i, chset, base_channel, chstart, fsize[8];
  1677. /* assume header word has already been parsed */
  1678. hdr_pos = get_bits_count(&s->gb) - 32;
  1679. hdr_size = get_bits(&s->gb, 6) + 1;
  1680. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1681. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1682. num_chsets = get_bits(&s->gb, 2) + 1;
  1683. for (i = 0; i < num_chsets; i++)
  1684. fsize[i] = get_bits(&s->gb, 14) + 1;
  1685. core_spk = get_bits(&s->gb, spkmsk_bits);
  1686. s->xxch_core_spkmask = core_spk;
  1687. s->xxch_nbits_spk_mask = spkmsk_bits;
  1688. s->xxch_dmix_embedded = 0;
  1689. /* skip to the end of the header */
  1690. i = get_bits_count(&s->gb);
  1691. if (hdr_pos + hdr_size * 8 > i)
  1692. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1693. for (chset = 0; chset < num_chsets; chset++) {
  1694. chstart = get_bits_count(&s->gb);
  1695. base_channel = s->prim_channels;
  1696. s->xxch_chset = chset;
  1697. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1698. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1699. dca_parse_audio_coding_header(s, base_channel, 1);
  1700. /* decode channel data */
  1701. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1702. if (dca_decode_block(s, base_channel, i)) {
  1703. av_log(s->avctx, AV_LOG_ERROR,
  1704. "Error decoding DTS-XXCH extension\n");
  1705. continue;
  1706. }
  1707. }
  1708. /* skip to end of this section */
  1709. i = get_bits_count(&s->gb);
  1710. if (chstart + fsize[chset] * 8 > i)
  1711. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1712. }
  1713. s->xxch_chset = num_chsets;
  1714. return 0;
  1715. }
  1716. /**
  1717. * Parse extension substream header (HD)
  1718. */
  1719. static void dca_exss_parse_header(DCAContext *s)
  1720. {
  1721. int asset_size[8];
  1722. int ss_index;
  1723. int blownup;
  1724. int num_audiop = 1;
  1725. int num_assets = 1;
  1726. int active_ss_mask[8];
  1727. int i, j;
  1728. int start_posn;
  1729. int hdrsize;
  1730. uint32_t mkr;
  1731. if (get_bits_left(&s->gb) < 52)
  1732. return;
  1733. start_posn = get_bits_count(&s->gb) - 32;
  1734. skip_bits(&s->gb, 8); // user data
  1735. ss_index = get_bits(&s->gb, 2);
  1736. blownup = get_bits1(&s->gb);
  1737. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1738. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1739. s->static_fields = get_bits1(&s->gb);
  1740. if (s->static_fields) {
  1741. skip_bits(&s->gb, 2); // reference clock code
  1742. skip_bits(&s->gb, 3); // frame duration code
  1743. if (get_bits1(&s->gb))
  1744. skip_bits_long(&s->gb, 36); // timestamp
  1745. /* a single stream can contain multiple audio assets that can be
  1746. * combined to form multiple audio presentations */
  1747. num_audiop = get_bits(&s->gb, 3) + 1;
  1748. if (num_audiop > 1) {
  1749. avpriv_request_sample(s->avctx,
  1750. "Multiple DTS-HD audio presentations");
  1751. /* ignore such streams for now */
  1752. return;
  1753. }
  1754. num_assets = get_bits(&s->gb, 3) + 1;
  1755. if (num_assets > 1) {
  1756. avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
  1757. /* ignore such streams for now */
  1758. return;
  1759. }
  1760. for (i = 0; i < num_audiop; i++)
  1761. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1762. for (i = 0; i < num_audiop; i++)
  1763. for (j = 0; j <= ss_index; j++)
  1764. if (active_ss_mask[i] & (1 << j))
  1765. skip_bits(&s->gb, 8); // active asset mask
  1766. s->mix_metadata = get_bits1(&s->gb);
  1767. if (s->mix_metadata) {
  1768. int mix_out_mask_size;
  1769. skip_bits(&s->gb, 2); // adjustment level
  1770. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1771. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1772. for (i = 0; i < s->num_mix_configs; i++) {
  1773. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1774. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1775. }
  1776. }
  1777. }
  1778. av_assert0(num_assets > 0); // silence a warning
  1779. for (i = 0; i < num_assets; i++)
  1780. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1781. for (i = 0; i < num_assets; i++) {
  1782. if (dca_exss_parse_asset_header(s))
  1783. return;
  1784. }
  1785. /* not parsed further, we were only interested in the extensions mask
  1786. * from the asset header */
  1787. j = get_bits_count(&s->gb);
  1788. if (start_posn + hdrsize * 8 > j)
  1789. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1790. for (i = 0; i < num_assets; i++) {
  1791. start_posn = get_bits_count(&s->gb);
  1792. mkr = get_bits_long(&s->gb, 32);
  1793. /* parse extensions that we know about */
  1794. if (mkr == 0x655e315e) {
  1795. dca_xbr_parse_frame(s);
  1796. } else if (mkr == 0x47004a03) {
  1797. dca_xxch_decode_frame(s);
  1798. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1799. } else {
  1800. av_log(s->avctx, AV_LOG_DEBUG,
  1801. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1802. }
  1803. /* skip to end of block */
  1804. j = get_bits_count(&s->gb);
  1805. if (start_posn + asset_size[i] * 8 > j)
  1806. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1807. }
  1808. }
  1809. static float dca_dmix_code(unsigned code)
  1810. {
  1811. int sign = (code >> 8) - 1;
  1812. code &= 0xff;
  1813. #define POW2_MINUS15 .000030517578125
  1814. return ((dca_dmixtable[code] ^ sign) - sign) * POW2_MINUS15;
  1815. }
  1816. /**
  1817. * Main frame decoding function
  1818. * FIXME add arguments
  1819. */
  1820. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1821. int *got_frame_ptr, AVPacket *avpkt)
  1822. {
  1823. AVFrame *frame = data;
  1824. const uint8_t *buf = avpkt->data;
  1825. int buf_size = avpkt->size;
  1826. int channel_mask;
  1827. int channel_layout;
  1828. int lfe_samples;
  1829. int num_core_channels = 0;
  1830. int i, ret;
  1831. float **samples_flt;
  1832. float *src_chan;
  1833. float *dst_chan;
  1834. DCAContext *s = avctx->priv_data;
  1835. int core_ss_end;
  1836. int channels, full_channels;
  1837. float scale;
  1838. int achan;
  1839. int chset;
  1840. int mask;
  1841. int lavc;
  1842. int posn;
  1843. int j, k;
  1844. int endch;
  1845. s->xch_present = 0;
  1846. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1847. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1848. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1849. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1850. return AVERROR_INVALIDDATA;
  1851. }
  1852. if ((ret = dca_parse_frame_header(s)) < 0) {
  1853. //seems like the frame is corrupt, try with the next one
  1854. return ret;
  1855. }
  1856. //set AVCodec values with parsed data
  1857. avctx->sample_rate = s->sample_rate;
  1858. avctx->bit_rate = s->bit_rate;
  1859. s->profile = FF_PROFILE_DTS;
  1860. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1861. if ((ret = dca_decode_block(s, 0, i))) {
  1862. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1863. return ret;
  1864. }
  1865. }
  1866. /* record number of core channels incase less than max channels are requested */
  1867. num_core_channels = s->prim_channels;
  1868. if (s->prim_channels + !!s->lfe > 2 &&
  1869. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1870. /* Stereo downmix coefficients
  1871. *
  1872. * The decoder can only downmix to 2-channel, so we need to ensure
  1873. * embedded downmix coefficients are actually targeting 2-channel.
  1874. */
  1875. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1876. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1877. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1878. /* Range checked earlier */
  1879. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1880. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1881. }
  1882. s->output = s->core_downmix_amode;
  1883. } else {
  1884. int am = s->amode & DCA_CHANNEL_MASK;
  1885. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1886. av_log(s->avctx, AV_LOG_ERROR,
  1887. "Invalid channel mode %d\n", am);
  1888. return AVERROR_INVALIDDATA;
  1889. }
  1890. if (num_core_channels + !!s->lfe >
  1891. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1892. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1893. s->prim_channels + !!s->lfe);
  1894. return AVERROR_PATCHWELCOME;
  1895. }
  1896. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1897. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1898. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1899. }
  1900. }
  1901. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1902. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1903. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1904. s->downmix_coef[i][0]);
  1905. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1906. s->downmix_coef[i][1]);
  1907. }
  1908. av_dlog(s->avctx, "\n");
  1909. }
  1910. if (s->ext_coding)
  1911. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1912. else
  1913. s->core_ext_mask = 0;
  1914. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1915. /* only scan for extensions if ext_descr was unknown or indicated a
  1916. * supported XCh extension */
  1917. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1918. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1919. * extensions scan can fill it up */
  1920. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1921. /* extensions start at 32-bit boundaries into bitstream */
  1922. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1923. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1924. uint32_t bits = get_bits_long(&s->gb, 32);
  1925. switch (bits) {
  1926. case 0x5a5a5a5a: {
  1927. int ext_amode, xch_fsize;
  1928. s->xch_base_channel = s->prim_channels;
  1929. /* validate sync word using XCHFSIZE field */
  1930. xch_fsize = show_bits(&s->gb, 10);
  1931. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1932. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1933. continue;
  1934. /* skip length-to-end-of-frame field for the moment */
  1935. skip_bits(&s->gb, 10);
  1936. s->core_ext_mask |= DCA_EXT_XCH;
  1937. /* extension amode(number of channels in extension) should be 1 */
  1938. /* AFAIK XCh is not used for more channels */
  1939. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1940. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1941. " supported!\n", ext_amode);
  1942. continue;
  1943. }
  1944. if (s->xch_base_channel < 2) {
  1945. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1946. continue;
  1947. }
  1948. /* much like core primary audio coding header */
  1949. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1950. for (i = 0; i < (s->sample_blocks / 8); i++)
  1951. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1952. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1953. continue;
  1954. }
  1955. s->xch_present = 1;
  1956. break;
  1957. }
  1958. case 0x47004a03:
  1959. /* XXCh: extended channels */
  1960. /* usually found either in core or HD part in DTS-HD HRA streams,
  1961. * but not in DTS-ES which contains XCh extensions instead */
  1962. s->core_ext_mask |= DCA_EXT_XXCH;
  1963. dca_xxch_decode_frame(s);
  1964. break;
  1965. case 0x1d95f262: {
  1966. int fsize96 = show_bits(&s->gb, 12) + 1;
  1967. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1968. continue;
  1969. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1970. get_bits_count(&s->gb));
  1971. skip_bits(&s->gb, 12);
  1972. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1973. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1974. s->core_ext_mask |= DCA_EXT_X96;
  1975. break;
  1976. }
  1977. }
  1978. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1979. }
  1980. } else {
  1981. /* no supported extensions, skip the rest of the core substream */
  1982. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1983. }
  1984. if (s->core_ext_mask & DCA_EXT_X96)
  1985. s->profile = FF_PROFILE_DTS_96_24;
  1986. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1987. s->profile = FF_PROFILE_DTS_ES;
  1988. /* check for ExSS (HD part) */
  1989. if (s->dca_buffer_size - s->frame_size > 32 &&
  1990. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1991. dca_exss_parse_header(s);
  1992. avctx->profile = s->profile;
  1993. full_channels = channels = s->prim_channels + !!s->lfe;
  1994. /* If we have XXCH then the channel layout is managed differently */
  1995. /* note that XLL will also have another way to do things */
  1996. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1997. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1998. && avctx->request_channels
  1999. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  2000. { /* xxx should also do MA extensions */
  2001. if (s->amode < 16) {
  2002. avctx->channel_layout = dca_core_channel_layout[s->amode];
  2003. if (s->prim_channels + !!s->lfe > 2 &&
  2004. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2005. /*
  2006. * Neither the core's auxiliary data nor our default tables contain
  2007. * downmix coefficients for the additional channel coded in the XCh
  2008. * extension, so when we're doing a Stereo downmix, don't decode it.
  2009. */
  2010. s->xch_disable = 1;
  2011. }
  2012. #if FF_API_REQUEST_CHANNELS
  2013. FF_DISABLE_DEPRECATION_WARNINGS
  2014. if (s->xch_present && !s->xch_disable &&
  2015. (!avctx->request_channels ||
  2016. avctx->request_channels > num_core_channels + !!s->lfe)) {
  2017. FF_ENABLE_DEPRECATION_WARNINGS
  2018. #else
  2019. if (s->xch_present && !s->xch_disable) {
  2020. #endif
  2021. avctx->channel_layout |= AV_CH_BACK_CENTER;
  2022. if (s->lfe) {
  2023. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2024. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  2025. } else {
  2026. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  2027. }
  2028. if (s->channel_order_tab[s->xch_base_channel] < 0)
  2029. return AVERROR_INVALIDDATA;
  2030. } else {
  2031. channels = num_core_channels + !!s->lfe;
  2032. s->xch_present = 0; /* disable further xch processing */
  2033. if (s->lfe) {
  2034. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2035. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  2036. } else
  2037. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  2038. }
  2039. if (channels > !!s->lfe &&
  2040. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  2041. return AVERROR_INVALIDDATA;
  2042. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  2043. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  2044. return AVERROR_INVALIDDATA;
  2045. }
  2046. if (num_core_channels + !!s->lfe > 2 &&
  2047. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2048. channels = 2;
  2049. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  2050. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  2051. }
  2052. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  2053. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  2054. s->channel_order_tab = dca_channel_order_native;
  2055. }
  2056. s->lfe_index = dca_lfe_index[s->amode];
  2057. } else {
  2058. av_log(avctx, AV_LOG_ERROR,
  2059. "Non standard configuration %d !\n", s->amode);
  2060. return AVERROR_INVALIDDATA;
  2061. }
  2062. s->xxch_dmix_embedded = 0;
  2063. } else {
  2064. /* we only get here if an XXCH channel set can be added to the mix */
  2065. channel_mask = s->xxch_core_spkmask;
  2066. if (avctx->request_channels > 0
  2067. && avctx->request_channels < s->prim_channels) {
  2068. channels = num_core_channels + !!s->lfe;
  2069. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  2070. <= avctx->request_channels; i++) {
  2071. channels += s->xxch_chset_nch[i];
  2072. channel_mask |= s->xxch_spk_masks[i];
  2073. }
  2074. } else {
  2075. channels = s->prim_channels + !!s->lfe;
  2076. for (i = 0; i < s->xxch_chset; i++) {
  2077. channel_mask |= s->xxch_spk_masks[i];
  2078. }
  2079. }
  2080. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  2081. channel_layout = 0;
  2082. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  2083. if (channel_mask & (1 << i)) {
  2084. channel_layout |= map_xxch_to_native[i];
  2085. }
  2086. }
  2087. /* make sure that we have managed to get equivalent dts/avcodec channel
  2088. * masks in some sense -- unfortunately some channels could overlap */
  2089. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  2090. av_log(avctx, AV_LOG_DEBUG,
  2091. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  2092. return AVERROR_INVALIDDATA;
  2093. }
  2094. avctx->channel_layout = channel_layout;
  2095. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  2096. /* Estimate DTS --> avcodec ordering table */
  2097. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  2098. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  2099. : s->xxch_core_spkmask;
  2100. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  2101. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  2102. lavc = map_xxch_to_native[i];
  2103. posn = av_popcount(channel_layout & (lavc - 1));
  2104. s->xxch_order_tab[j++] = posn;
  2105. }
  2106. }
  2107. }
  2108. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  2109. } else { /* native ordering */
  2110. for (i = 0; i < channels; i++)
  2111. s->xxch_order_tab[i] = i;
  2112. s->lfe_index = channels - 1;
  2113. }
  2114. s->channel_order_tab = s->xxch_order_tab;
  2115. }
  2116. if (avctx->channels != channels) {
  2117. if (avctx->channels)
  2118. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2119. avctx->channels = channels;
  2120. }
  2121. /* get output buffer */
  2122. frame->nb_samples = 256 * (s->sample_blocks / 8);
  2123. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  2124. return ret;
  2125. samples_flt = (float **)frame->extended_data;
  2126. /* allocate buffer for extra channels if downmixing */
  2127. if (avctx->channels < full_channels) {
  2128. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2129. frame->nb_samples,
  2130. avctx->sample_fmt, 0);
  2131. if (ret < 0)
  2132. return ret;
  2133. av_fast_malloc(&s->extra_channels_buffer,
  2134. &s->extra_channels_buffer_size, ret);
  2135. if (!s->extra_channels_buffer)
  2136. return AVERROR(ENOMEM);
  2137. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2138. s->extra_channels_buffer,
  2139. full_channels - channels,
  2140. frame->nb_samples, avctx->sample_fmt, 0);
  2141. if (ret < 0)
  2142. return ret;
  2143. }
  2144. /* filter to get final output */
  2145. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2146. int ch;
  2147. for (ch = 0; ch < channels; ch++)
  2148. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2149. for (; ch < full_channels; ch++)
  2150. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2151. dca_filter_channels(s, i);
  2152. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2153. /* channel from SL & SR to remove matrixed back-channel signal */
  2154. if ((s->source_pcm_res & 1) && s->xch_present) {
  2155. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2156. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2157. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2158. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2159. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2160. }
  2161. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2162. if (s->xxch_dmix_embedded) {
  2163. /* Loop over channel sets in turn */
  2164. ch = num_core_channels;
  2165. for (chset = 0; chset < s->xxch_chset; chset++) {
  2166. endch = ch + s->xxch_chset_nch[chset];
  2167. mask = s->xxch_dmix_embedded;
  2168. /* undo downmix */
  2169. for (j = ch; j < endch; j++) {
  2170. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2171. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2172. for (k = 0; k < endch; k++) {
  2173. achan = s->channel_order_tab[k];
  2174. scale = s->xxch_dmix_coeff[j][k];
  2175. if (scale != 0.0) {
  2176. dst_chan = s->samples_chanptr[achan];
  2177. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2178. -scale, 256);
  2179. }
  2180. }
  2181. }
  2182. }
  2183. /* if a downmix has been embedded then undo the pre-scaling */
  2184. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2185. scale = s->xxch_dmix_sf[chset];
  2186. for (j = 0; j < ch; j++) {
  2187. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2188. for (k = 0; k < 256; k++)
  2189. src_chan[k] *= scale;
  2190. }
  2191. /* LFE channel is always part of core, scale if it exists */
  2192. if (s->lfe) {
  2193. src_chan = s->samples_chanptr[s->lfe_index];
  2194. for (k = 0; k < 256; k++)
  2195. src_chan[k] *= scale;
  2196. }
  2197. }
  2198. ch = endch;
  2199. }
  2200. }
  2201. }
  2202. /* update lfe history */
  2203. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2204. for (i = 0; i < 2 * s->lfe * 4; i++)
  2205. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2206. /* AVMatrixEncoding
  2207. *
  2208. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  2209. ret = ff_side_data_update_matrix_encoding(frame,
  2210. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  2211. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  2212. if (ret < 0)
  2213. return ret;
  2214. *got_frame_ptr = 1;
  2215. return buf_size;
  2216. }
  2217. /**
  2218. * DCA initialization
  2219. *
  2220. * @param avctx pointer to the AVCodecContext
  2221. */
  2222. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2223. {
  2224. DCAContext *s = avctx->priv_data;
  2225. s->avctx = avctx;
  2226. dca_init_vlcs();
  2227. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2228. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2229. ff_synth_filter_init(&s->synth);
  2230. ff_dcadsp_init(&s->dcadsp);
  2231. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2232. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2233. /* allow downmixing to stereo */
  2234. #if FF_API_REQUEST_CHANNELS
  2235. FF_DISABLE_DEPRECATION_WARNINGS
  2236. if (avctx->request_channels == 2)
  2237. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  2238. FF_ENABLE_DEPRECATION_WARNINGS
  2239. #endif
  2240. if (avctx->channels > 2 &&
  2241. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  2242. avctx->channels = 2;
  2243. return 0;
  2244. }
  2245. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2246. {
  2247. DCAContext *s = avctx->priv_data;
  2248. ff_mdct_end(&s->imdct);
  2249. av_freep(&s->extra_channels_buffer);
  2250. return 0;
  2251. }
  2252. static const AVProfile profiles[] = {
  2253. { FF_PROFILE_DTS, "DTS" },
  2254. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2255. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2256. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2257. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2258. { FF_PROFILE_UNKNOWN },
  2259. };
  2260. static const AVOption options[] = {
  2261. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
  2262. { NULL },
  2263. };
  2264. static const AVClass dca_decoder_class = {
  2265. .class_name = "DCA decoder",
  2266. .item_name = av_default_item_name,
  2267. .option = options,
  2268. .version = LIBAVUTIL_VERSION_INT,
  2269. .category = AV_CLASS_CATEGORY_DECODER,
  2270. };
  2271. AVCodec ff_dca_decoder = {
  2272. .name = "dca",
  2273. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2274. .type = AVMEDIA_TYPE_AUDIO,
  2275. .id = AV_CODEC_ID_DTS,
  2276. .priv_data_size = sizeof(DCAContext),
  2277. .init = dca_decode_init,
  2278. .decode = dca_decode_frame,
  2279. .close = dca_decode_end,
  2280. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2281. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2282. AV_SAMPLE_FMT_NONE },
  2283. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2284. .priv_class = &dca_decoder_class,
  2285. };