You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1760 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/aacsbr.c
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include <stdint.h>
  32. #include <float.h>
  33. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  34. #define NOISE_FLOOR_OFFSET 6.0f
  35. /**
  36. * SBR VLC tables
  37. */
  38. enum {
  39. T_HUFFMAN_ENV_1_5DB,
  40. F_HUFFMAN_ENV_1_5DB,
  41. T_HUFFMAN_ENV_BAL_1_5DB,
  42. F_HUFFMAN_ENV_BAL_1_5DB,
  43. T_HUFFMAN_ENV_3_0DB,
  44. F_HUFFMAN_ENV_3_0DB,
  45. T_HUFFMAN_ENV_BAL_3_0DB,
  46. F_HUFFMAN_ENV_BAL_3_0DB,
  47. T_HUFFMAN_NOISE_3_0DB,
  48. T_HUFFMAN_NOISE_BAL_3_0DB,
  49. };
  50. /**
  51. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  52. */
  53. enum {
  54. FIXFIX,
  55. FIXVAR,
  56. VARFIX,
  57. VARVAR,
  58. };
  59. enum {
  60. EXTENSION_ID_PS = 2,
  61. };
  62. static VLC vlc_sbr[10];
  63. static const int8_t vlc_sbr_lav[10] =
  64. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  65. static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
  66. static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
  67. static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
  68. static const DECLARE_ALIGNED(16, float, zero64)[64];
  69. #define SBR_INIT_VLC_STATIC(num, size) \
  70. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  71. sbr_tmp[num].sbr_bits , 1, 1, \
  72. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  73. size)
  74. #define SBR_VLC_ROW(name) \
  75. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  76. av_cold void ff_aac_sbr_init(void)
  77. {
  78. int n, k;
  79. static const struct {
  80. const void *sbr_codes, *sbr_bits;
  81. const unsigned int table_size, elem_size;
  82. } sbr_tmp[] = {
  83. SBR_VLC_ROW(t_huffman_env_1_5dB),
  84. SBR_VLC_ROW(f_huffman_env_1_5dB),
  85. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_3_0dB),
  88. SBR_VLC_ROW(f_huffman_env_3_0dB),
  89. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  93. };
  94. // SBR VLC table initialization
  95. SBR_INIT_VLC_STATIC(0, 1098);
  96. SBR_INIT_VLC_STATIC(1, 1092);
  97. SBR_INIT_VLC_STATIC(2, 768);
  98. SBR_INIT_VLC_STATIC(3, 1026);
  99. SBR_INIT_VLC_STATIC(4, 1058);
  100. SBR_INIT_VLC_STATIC(5, 1052);
  101. SBR_INIT_VLC_STATIC(6, 544);
  102. SBR_INIT_VLC_STATIC(7, 544);
  103. SBR_INIT_VLC_STATIC(8, 592);
  104. SBR_INIT_VLC_STATIC(9, 512);
  105. for (n = 0; n < 64; n++) {
  106. float pre = M_PI * n / 64;
  107. analysis_cos_pre[n] = cosf(pre);
  108. analysis_sin_pre[n] = sinf(pre);
  109. }
  110. for (k = 0; k < 32; k++) {
  111. float post = M_PI * (k + 0.5) / 128;
  112. analysis_cossin_post[k][0] = 4.0 * cosf(post);
  113. analysis_cossin_post[k][1] = -4.0 * sinf(post);
  114. }
  115. for (n = 1; n < 320; n++)
  116. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  117. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  118. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  119. for (n = 0; n < 320; n++)
  120. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  121. }
  122. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  123. {
  124. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  125. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  126. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  127. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  128. ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
  129. }
  130. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  131. {
  132. ff_mdct_end(&sbr->mdct);
  133. ff_rdft_end(&sbr->rdft);
  134. }
  135. static int qsort_comparison_function_int16(const void *a, const void *b)
  136. {
  137. return *(const int16_t *)a - *(const int16_t *)b;
  138. }
  139. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  140. {
  141. int i;
  142. for (i = 0; i <= last_el; i++)
  143. if (table[i] == needle)
  144. return 1;
  145. return 0;
  146. }
  147. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  148. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  149. {
  150. int k;
  151. if (sbr->bs_limiter_bands > 0) {
  152. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  153. 1.18509277094158210129f, //2^(0.49/2)
  154. 1.11987160404675912501f }; //2^(0.49/3)
  155. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  156. int16_t patch_borders[5];
  157. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  158. patch_borders[0] = sbr->kx[1];
  159. for (k = 1; k <= sbr->num_patches; k++)
  160. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  161. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  162. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  163. if (sbr->num_patches > 1)
  164. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  165. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  166. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  167. sizeof(sbr->f_tablelim[0]),
  168. qsort_comparison_function_int16);
  169. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  170. while (out < sbr->f_tablelim + sbr->n_lim) {
  171. if (*in >= *out * lim_bands_per_octave_warped) {
  172. *++out = *in++;
  173. } else if (*in == *out ||
  174. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  175. in++;
  176. sbr->n_lim--;
  177. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  178. *out = *in++;
  179. sbr->n_lim--;
  180. } else {
  181. *++out = *in++;
  182. }
  183. }
  184. } else {
  185. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  186. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  187. sbr->n_lim = 1;
  188. }
  189. }
  190. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  191. {
  192. unsigned int cnt = get_bits_count(gb);
  193. uint8_t bs_header_extra_1;
  194. uint8_t bs_header_extra_2;
  195. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  196. SpectrumParameters old_spectrum_params;
  197. sbr->start = 1;
  198. // Save last spectrum parameters variables to compare to new ones
  199. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  200. sbr->bs_amp_res_header = get_bits1(gb);
  201. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  202. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  203. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  204. skip_bits(gb, 2); // bs_reserved
  205. bs_header_extra_1 = get_bits1(gb);
  206. bs_header_extra_2 = get_bits1(gb);
  207. if (bs_header_extra_1) {
  208. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  209. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  210. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  211. } else {
  212. sbr->spectrum_params.bs_freq_scale = 2;
  213. sbr->spectrum_params.bs_alter_scale = 1;
  214. sbr->spectrum_params.bs_noise_bands = 2;
  215. }
  216. // Check if spectrum parameters changed
  217. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  218. sbr->reset = 1;
  219. if (bs_header_extra_2) {
  220. sbr->bs_limiter_bands = get_bits(gb, 2);
  221. sbr->bs_limiter_gains = get_bits(gb, 2);
  222. sbr->bs_interpol_freq = get_bits1(gb);
  223. sbr->bs_smoothing_mode = get_bits1(gb);
  224. } else {
  225. sbr->bs_limiter_bands = 2;
  226. sbr->bs_limiter_gains = 2;
  227. sbr->bs_interpol_freq = 1;
  228. sbr->bs_smoothing_mode = 1;
  229. }
  230. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  231. sbr_make_f_tablelim(sbr);
  232. return get_bits_count(gb) - cnt;
  233. }
  234. static int array_min_int16(const int16_t *array, int nel)
  235. {
  236. int i, min = array[0];
  237. for (i = 1; i < nel; i++)
  238. min = FFMIN(array[i], min);
  239. return min;
  240. }
  241. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  242. {
  243. int k, previous, present;
  244. float base, prod;
  245. base = powf((float)stop / start, 1.0f / num_bands);
  246. prod = start;
  247. previous = start;
  248. for (k = 0; k < num_bands-1; k++) {
  249. prod *= base;
  250. present = lrintf(prod);
  251. bands[k] = present - previous;
  252. previous = present;
  253. }
  254. bands[num_bands-1] = stop - previous;
  255. }
  256. static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
  257. {
  258. // Requirements (14496-3 sp04 p205)
  259. if (n_master <= 0) {
  260. av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  261. return -1;
  262. }
  263. if (bs_xover_band >= n_master) {
  264. av_log(avccontext, AV_LOG_ERROR,
  265. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  266. bs_xover_band);
  267. return -1;
  268. }
  269. return 0;
  270. }
  271. /// Master Frequency Band Table (14496-3 sp04 p194)
  272. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  273. SpectrumParameters *spectrum)
  274. {
  275. unsigned int temp, max_qmf_subbands;
  276. unsigned int start_min, stop_min;
  277. int k;
  278. const int8_t *sbr_offset_ptr;
  279. int16_t stop_dk[13];
  280. if (sbr->sample_rate < 32000) {
  281. temp = 3000;
  282. } else if (sbr->sample_rate < 64000) {
  283. temp = 4000;
  284. } else
  285. temp = 5000;
  286. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  287. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  288. switch (sbr->sample_rate) {
  289. case 16000:
  290. sbr_offset_ptr = sbr_offset[0];
  291. break;
  292. case 22050:
  293. sbr_offset_ptr = sbr_offset[1];
  294. break;
  295. case 24000:
  296. sbr_offset_ptr = sbr_offset[2];
  297. break;
  298. case 32000:
  299. sbr_offset_ptr = sbr_offset[3];
  300. break;
  301. case 44100: case 48000: case 64000:
  302. sbr_offset_ptr = sbr_offset[4];
  303. break;
  304. case 88200: case 96000: case 128000: case 176400: case 192000:
  305. sbr_offset_ptr = sbr_offset[5];
  306. break;
  307. default:
  308. av_log(ac->avccontext, AV_LOG_ERROR,
  309. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  310. return -1;
  311. }
  312. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  313. if (spectrum->bs_stop_freq < 14) {
  314. sbr->k[2] = stop_min;
  315. make_bands(stop_dk, stop_min, 64, 13);
  316. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  317. for (k = 0; k < spectrum->bs_stop_freq; k++)
  318. sbr->k[2] += stop_dk[k];
  319. } else if (spectrum->bs_stop_freq == 14) {
  320. sbr->k[2] = 2*sbr->k[0];
  321. } else if (spectrum->bs_stop_freq == 15) {
  322. sbr->k[2] = 3*sbr->k[0];
  323. } else {
  324. av_log(ac->avccontext, AV_LOG_ERROR,
  325. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  326. return -1;
  327. }
  328. sbr->k[2] = FFMIN(64, sbr->k[2]);
  329. // Requirements (14496-3 sp04 p205)
  330. if (sbr->sample_rate <= 32000) {
  331. max_qmf_subbands = 48;
  332. } else if (sbr->sample_rate == 44100) {
  333. max_qmf_subbands = 35;
  334. } else if (sbr->sample_rate >= 48000)
  335. max_qmf_subbands = 32;
  336. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  337. av_log(ac->avccontext, AV_LOG_ERROR,
  338. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  339. return -1;
  340. }
  341. if (!spectrum->bs_freq_scale) {
  342. unsigned int dk;
  343. int k2diff;
  344. dk = spectrum->bs_alter_scale + 1;
  345. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  346. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  347. return -1;
  348. for (k = 1; k <= sbr->n_master; k++)
  349. sbr->f_master[k] = dk;
  350. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  351. if (k2diff < 0) {
  352. sbr->f_master[1]--;
  353. sbr->f_master[2]-= (k2diff < 1);
  354. } else if (k2diff) {
  355. sbr->f_master[sbr->n_master]++;
  356. }
  357. sbr->f_master[0] = sbr->k[0];
  358. for (k = 1; k <= sbr->n_master; k++)
  359. sbr->f_master[k] += sbr->f_master[k - 1];
  360. } else {
  361. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  362. int two_regions, num_bands_0;
  363. int vdk0_max, vdk1_min;
  364. int16_t vk0[49];
  365. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  366. two_regions = 1;
  367. sbr->k[1] = 2 * sbr->k[0];
  368. } else {
  369. two_regions = 0;
  370. sbr->k[1] = sbr->k[2];
  371. }
  372. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  373. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  374. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  375. return -1;
  376. }
  377. vk0[0] = 0;
  378. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  379. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  380. vdk0_max = vk0[num_bands_0];
  381. vk0[0] = sbr->k[0];
  382. for (k = 1; k <= num_bands_0; k++) {
  383. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  384. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  385. return -1;
  386. }
  387. vk0[k] += vk0[k-1];
  388. }
  389. if (two_regions) {
  390. int16_t vk1[49];
  391. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  392. : 1.0f; // bs_alter_scale = {0,1}
  393. int num_bands_1 = lrintf(half_bands * invwarp *
  394. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  395. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  396. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  397. if (vdk1_min < vdk0_max) {
  398. int change;
  399. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  400. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  401. vk1[1] += change;
  402. vk1[num_bands_1] -= change;
  403. }
  404. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  405. vk1[0] = sbr->k[1];
  406. for (k = 1; k <= num_bands_1; k++) {
  407. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  408. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  409. return -1;
  410. }
  411. vk1[k] += vk1[k-1];
  412. }
  413. sbr->n_master = num_bands_0 + num_bands_1;
  414. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  415. return -1;
  416. memcpy(&sbr->f_master[0], vk0,
  417. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  418. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  419. num_bands_1 * sizeof(sbr->f_master[0]));
  420. } else {
  421. sbr->n_master = num_bands_0;
  422. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  423. return -1;
  424. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  425. }
  426. }
  427. return 0;
  428. }
  429. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  430. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  431. {
  432. int i, k, sb = 0;
  433. int msb = sbr->k[0];
  434. int usb = sbr->kx[1];
  435. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  436. sbr->num_patches = 0;
  437. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  438. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  439. } else
  440. k = sbr->n_master;
  441. do {
  442. int odd = 0;
  443. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  444. sb = sbr->f_master[i];
  445. odd = (sb + sbr->k[0]) & 1;
  446. }
  447. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  448. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  449. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  450. usb = sb;
  451. msb = sb;
  452. sbr->num_patches++;
  453. } else
  454. msb = sbr->kx[1];
  455. if (sbr->f_master[k] - sb < 3)
  456. k = sbr->n_master;
  457. } while (sb != sbr->kx[1] + sbr->m[1]);
  458. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  459. sbr->num_patches--;
  460. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
  461. // However the Coding Technologies decoder check uses 6 patches
  462. if (sbr->num_patches > 6) {
  463. av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  464. return -1;
  465. }
  466. return 0;
  467. }
  468. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  469. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  470. {
  471. int k, temp;
  472. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  473. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  474. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  475. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  476. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  477. sbr->kx[1] = sbr->f_tablehigh[0];
  478. // Requirements (14496-3 sp04 p205)
  479. if (sbr->kx[1] + sbr->m[1] > 64) {
  480. av_log(ac->avccontext, AV_LOG_ERROR,
  481. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  482. return -1;
  483. }
  484. if (sbr->kx[1] > 32) {
  485. av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  486. return -1;
  487. }
  488. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  489. temp = sbr->n[1] & 1;
  490. for (k = 1; k <= sbr->n[0]; k++)
  491. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  492. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  493. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  494. if (sbr->n_q > 5) {
  495. av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  496. return -1;
  497. }
  498. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  499. temp = 0;
  500. for (k = 1; k <= sbr->n_q; k++) {
  501. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  502. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  503. }
  504. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  505. return -1;
  506. sbr_make_f_tablelim(sbr);
  507. sbr->data[0].f_indexnoise = 0;
  508. sbr->data[1].f_indexnoise = 0;
  509. return 0;
  510. }
  511. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  512. int elements)
  513. {
  514. int i;
  515. for (i = 0; i < elements; i++) {
  516. vec[i] = get_bits1(gb);
  517. }
  518. }
  519. /** ceil(log2(index+1)) */
  520. static const int8_t ceil_log2[] = {
  521. 0, 1, 2, 2, 3, 3,
  522. };
  523. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  524. GetBitContext *gb, SBRData *ch_data)
  525. {
  526. int i;
  527. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
  528. ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
  529. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  530. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  531. case FIXFIX:
  532. ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
  533. if (ch_data->bs_num_env[1] == 1)
  534. ch_data->bs_amp_res = 0;
  535. ch_data->bs_freq_res[1] = get_bits1(gb);
  536. for (i = 1; i < ch_data->bs_num_env[1]; i++)
  537. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  538. break;
  539. case FIXVAR:
  540. ch_data->bs_var_bord[1] = get_bits(gb, 2);
  541. ch_data->bs_num_rel[1] = get_bits(gb, 2);
  542. ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
  543. for (i = 0; i < ch_data->bs_num_rel[1]; i++)
  544. ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
  545. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  546. for (i = 0; i < ch_data->bs_num_env[1]; i++)
  547. ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
  548. break;
  549. case VARFIX:
  550. ch_data->bs_var_bord[0] = get_bits(gb, 2);
  551. ch_data->bs_num_rel[0] = get_bits(gb, 2);
  552. ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
  553. for (i = 0; i < ch_data->bs_num_rel[0]; i++)
  554. ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
  555. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  556. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
  557. break;
  558. case VARVAR:
  559. ch_data->bs_var_bord[0] = get_bits(gb, 2);
  560. ch_data->bs_var_bord[1] = get_bits(gb, 2);
  561. ch_data->bs_num_rel[0] = get_bits(gb, 2);
  562. ch_data->bs_num_rel[1] = get_bits(gb, 2);
  563. ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
  564. for (i = 0; i < ch_data->bs_num_rel[0]; i++)
  565. ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
  566. for (i = 0; i < ch_data->bs_num_rel[1]; i++)
  567. ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
  568. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  569. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
  570. break;
  571. }
  572. if (ch_data->bs_frame_class == FIXFIX && ch_data->bs_num_env[1] > 4) {
  573. av_log(ac->avccontext, AV_LOG_ERROR,
  574. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  575. ch_data->bs_num_env[1]);
  576. return -1;
  577. }
  578. if (ch_data->bs_frame_class == VARVAR && ch_data->bs_num_env[1] > 5) {
  579. av_log(ac->avccontext, AV_LOG_ERROR,
  580. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  581. ch_data->bs_num_env[1]);
  582. return -1;
  583. }
  584. ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
  585. return 0;
  586. }
  587. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  588. //These variables are saved from the previous frame rather than copied
  589. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
  590. dst->bs_num_env[0] = dst->bs_num_env[1];
  591. //These variables are read from the bitstream and therefore copied
  592. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  593. memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
  594. memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
  595. memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
  596. memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
  597. dst->bs_amp_res = src->bs_amp_res;
  598. dst->bs_num_noise = src->bs_num_noise;
  599. dst->bs_pointer = src->bs_pointer;
  600. dst->bs_frame_class = src->bs_frame_class;
  601. }
  602. /// Read how the envelope and noise floor data is delta coded
  603. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  604. SBRData *ch_data)
  605. {
  606. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
  607. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  608. }
  609. /// Read inverse filtering data
  610. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  611. SBRData *ch_data)
  612. {
  613. int i;
  614. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  615. for (i = 0; i < sbr->n_q; i++)
  616. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  617. }
  618. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  619. SBRData *ch_data, int ch)
  620. {
  621. int bits;
  622. int i, j, k;
  623. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  624. int t_lav, f_lav;
  625. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  626. const int odd = sbr->n[1] & 1;
  627. if (sbr->bs_coupling && ch) {
  628. if (ch_data->bs_amp_res) {
  629. bits = 5;
  630. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  631. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  632. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  633. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  634. } else {
  635. bits = 6;
  636. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  637. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  638. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  639. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  640. }
  641. } else {
  642. if (ch_data->bs_amp_res) {
  643. bits = 6;
  644. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  645. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  646. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  647. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  648. } else {
  649. bits = 7;
  650. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  651. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  652. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  653. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  654. }
  655. }
  656. for (i = 0; i < ch_data->bs_num_env[1]; i++) {
  657. if (ch_data->bs_df_env[i]) {
  658. // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
  659. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  660. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  661. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  662. } else if (ch_data->bs_freq_res[i + 1]) {
  663. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  664. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  665. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  666. }
  667. } else {
  668. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  669. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  670. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  671. }
  672. }
  673. } else {
  674. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  675. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  676. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  677. }
  678. }
  679. //assign 0th elements of env_facs from last elements
  680. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
  681. sizeof(ch_data->env_facs[0]));
  682. }
  683. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  684. SBRData *ch_data, int ch)
  685. {
  686. int i, j;
  687. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  688. int t_lav, f_lav;
  689. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  690. if (sbr->bs_coupling && ch) {
  691. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  692. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  693. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  694. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  695. } else {
  696. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  697. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  698. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  699. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  700. }
  701. for (i = 0; i < ch_data->bs_num_noise; i++) {
  702. if (ch_data->bs_df_noise[i]) {
  703. for (j = 0; j < sbr->n_q; j++)
  704. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  705. } else {
  706. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  707. for (j = 1; j < sbr->n_q; j++)
  708. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  709. }
  710. }
  711. //assign 0th elements of noise_facs from last elements
  712. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  713. sizeof(ch_data->noise_facs[0]));
  714. }
  715. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  716. GetBitContext *gb,
  717. int bs_extension_id, int *num_bits_left)
  718. {
  719. //TODO - implement ps_data for parametric stereo parsing
  720. switch (bs_extension_id) {
  721. case EXTENSION_ID_PS:
  722. #if 0
  723. *num_bits_left -= ff_ps_data(gb, ps);
  724. #else
  725. av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
  726. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  727. *num_bits_left = 0;
  728. #endif
  729. break;
  730. default:
  731. av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
  732. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  733. *num_bits_left = 0;
  734. break;
  735. }
  736. }
  737. static void read_sbr_single_channel_element(AACContext *ac,
  738. SpectralBandReplication *sbr,
  739. GetBitContext *gb)
  740. {
  741. if (get_bits1(gb)) // bs_data_extra
  742. skip_bits(gb, 4); // bs_reserved
  743. read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
  744. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  745. read_sbr_invf(sbr, gb, &sbr->data[0]);
  746. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  747. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  748. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  749. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  750. }
  751. static void read_sbr_channel_pair_element(AACContext *ac,
  752. SpectralBandReplication *sbr,
  753. GetBitContext *gb)
  754. {
  755. if (get_bits1(gb)) // bs_data_extra
  756. skip_bits(gb, 8); // bs_reserved
  757. if ((sbr->bs_coupling = get_bits1(gb))) {
  758. read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
  759. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  760. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  761. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  762. read_sbr_invf(sbr, gb, &sbr->data[0]);
  763. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  764. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  765. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  766. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  767. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  768. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  769. } else {
  770. read_sbr_grid(ac, sbr, gb, &sbr->data[0]);
  771. read_sbr_grid(ac, sbr, gb, &sbr->data[1]);
  772. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  773. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  774. read_sbr_invf(sbr, gb, &sbr->data[0]);
  775. read_sbr_invf(sbr, gb, &sbr->data[1]);
  776. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  777. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  778. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  779. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  780. }
  781. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  782. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  783. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  784. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  785. }
  786. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  787. GetBitContext *gb, int id_aac)
  788. {
  789. unsigned int cnt = get_bits_count(gb);
  790. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  791. read_sbr_single_channel_element(ac, sbr, gb);
  792. } else if (id_aac == TYPE_CPE) {
  793. read_sbr_channel_pair_element(ac, sbr, gb);
  794. } else {
  795. av_log(ac->avccontext, AV_LOG_ERROR,
  796. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  797. sbr->start = 0;
  798. return get_bits_count(gb) - cnt;
  799. }
  800. if (get_bits1(gb)) { // bs_extended_data
  801. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  802. if (num_bits_left == 15)
  803. num_bits_left += get_bits(gb, 8); // bs_esc_count
  804. num_bits_left <<= 3;
  805. while (num_bits_left > 7) {
  806. num_bits_left -= 2;
  807. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  808. }
  809. }
  810. return get_bits_count(gb) - cnt;
  811. }
  812. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  813. {
  814. int err;
  815. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  816. if (err >= 0)
  817. err = sbr_make_f_derived(ac, sbr);
  818. if (err < 0) {
  819. av_log(ac->avccontext, AV_LOG_ERROR,
  820. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  821. sbr->start = 0;
  822. }
  823. }
  824. /**
  825. * Decode Spectral Band Replication extension data; reference: table 4.55.
  826. *
  827. * @param crc flag indicating the presence of CRC checksum
  828. * @param cnt length of TYPE_FIL syntactic element in bytes
  829. *
  830. * @return Returns number of bytes consumed from the TYPE_FIL element.
  831. */
  832. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  833. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  834. {
  835. unsigned int num_sbr_bits = 0, num_align_bits;
  836. unsigned bytes_read;
  837. GetBitContext gbc = *gb_host, *gb = &gbc;
  838. skip_bits_long(gb_host, cnt*8 - 4);
  839. sbr->reset = 0;
  840. if (!sbr->sample_rate)
  841. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  842. if (!ac->m4ac.ext_sample_rate)
  843. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  844. if (crc) {
  845. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  846. num_sbr_bits += 10;
  847. }
  848. //Save some state from the previous frame.
  849. sbr->kx[0] = sbr->kx[1];
  850. sbr->m[0] = sbr->m[1];
  851. num_sbr_bits++;
  852. if (get_bits1(gb)) // bs_header_flag
  853. num_sbr_bits += read_sbr_header(sbr, gb);
  854. if (sbr->reset)
  855. sbr_reset(ac, sbr);
  856. if (sbr->start)
  857. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  858. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  859. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  860. if (bytes_read > cnt) {
  861. av_log(ac->avccontext, AV_LOG_ERROR,
  862. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  863. }
  864. return cnt;
  865. }
  866. /// Time/frequency Grid (14496-3 sp04 p200)
  867. static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr,
  868. SBRData *ch_data, int ch)
  869. {
  870. int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
  871. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  872. int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
  873. int n_rel_lead;
  874. int i;
  875. if (ch_data->bs_frame_class == FIXFIX) {
  876. n_rel_lead = ch_data->bs_num_env[1] - 1;
  877. } else if (ch_data->bs_frame_class == FIXVAR) {
  878. n_rel_lead = 0;
  879. } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
  880. n_rel_lead = ch_data->bs_num_rel[0];
  881. } else {
  882. av_log(ac->avccontext, AV_LOG_ERROR,
  883. "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
  884. return -1;
  885. }
  886. ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
  887. ch_data->t_env[0] = abs_bord_lead;
  888. ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
  889. if (ch_data->bs_frame_class == FIXFIX) {
  890. int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
  891. ch_data->bs_num_env[1];
  892. for (i = 0; i < n_rel_lead; i++)
  893. ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
  894. } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
  895. for (i = 0; i < n_rel_lead; i++)
  896. ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
  897. } else { // FIXVAR
  898. for (i = 0; i < n_rel_lead; i++)
  899. ch_data->t_env[i + 1] = abs_bord_lead;
  900. }
  901. if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  902. for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
  903. ch_data->t_env[i] = ch_data->t_env[i + 1] -
  904. ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
  905. } else { // FIXFIX or VARFIX
  906. for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
  907. ch_data->t_env[i + 1] = abs_bord_trail;
  908. }
  909. ch_data->t_q[0] = ch_data->t_env[0];
  910. if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
  911. unsigned int idx;
  912. if (ch_data->bs_frame_class == FIXFIX) {
  913. idx = ch_data->bs_num_env[1] >> 1;
  914. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  915. idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
  916. } else { // VARFIX
  917. if (!ch_data->bs_pointer)
  918. idx = 1;
  919. else if (ch_data->bs_pointer == 1)
  920. idx = ch_data->bs_num_env[1] - 1;
  921. else // bs_pointer > 1
  922. idx = ch_data->bs_pointer - 1;
  923. }
  924. ch_data->t_q[1] = ch_data->t_env[idx];
  925. ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
  926. } else
  927. ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
  928. return 0;
  929. }
  930. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  931. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  932. {
  933. int k, e;
  934. int ch;
  935. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  936. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  937. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  938. for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
  939. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  940. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  941. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  942. float fac = temp1 / (1.0f + temp2);
  943. sbr->data[0].env_facs[e][k] = fac;
  944. sbr->data[1].env_facs[e][k] = fac * temp2;
  945. }
  946. }
  947. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  948. for (k = 0; k < sbr->n_q; k++) {
  949. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  950. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  951. float fac = temp1 / (1.0f + temp2);
  952. sbr->data[0].noise_facs[e][k] = fac;
  953. sbr->data[1].noise_facs[e][k] = fac * temp2;
  954. }
  955. }
  956. } else { // SCE or one non-coupled CPE
  957. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  958. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  959. for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
  960. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  961. sbr->data[ch].env_facs[e][k] =
  962. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  963. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  964. for (k = 0; k < sbr->n_q; k++)
  965. sbr->data[ch].noise_facs[e][k] =
  966. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  967. }
  968. }
  969. }
  970. /**
  971. * Analysis QMF Bank (14496-3 sp04 p206)
  972. *
  973. * @param x pointer to the beginning of the first sample window
  974. * @param W array of complex-valued samples split into subbands
  975. */
  976. static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
  977. float z[320], float W[2][32][32][2],
  978. float bias, float scale)
  979. {
  980. int i, k;
  981. memcpy(W[0], W[1], sizeof(W[0]));
  982. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  983. if (scale != 1.0f || bias != 0.0f)
  984. for (i = 0; i < 1024; i++)
  985. x[288 + i] = (in[i] - bias) * scale;
  986. else
  987. memcpy(x+288, in, 1024*sizeof(*x));
  988. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  989. // are not supported
  990. float re, im;
  991. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  992. for (k = 0; k < 64; k++) {
  993. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  994. z[k] = f * analysis_cos_pre[k];
  995. z[k+64] = f;
  996. }
  997. ff_rdft_calc(rdft, z);
  998. re = z[0] * 0.5f;
  999. im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
  1000. W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
  1001. W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
  1002. for (k = 1; k < 32; k++) {
  1003. re = z[2*k ] - re;
  1004. im = z[2*k+1] - im;
  1005. W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
  1006. W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
  1007. }
  1008. x += 32;
  1009. }
  1010. }
  1011. /**
  1012. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1013. * (14496-3 sp04 p206)
  1014. */
  1015. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1016. float *out, float X[2][32][64],
  1017. float mdct_buf[2][64],
  1018. float *v0, int *v_off, const unsigned int div,
  1019. float bias, float scale)
  1020. {
  1021. int i, n;
  1022. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1023. int scale_and_bias = scale != 1.0f || bias != 0.0f;
  1024. float *v;
  1025. for (i = 0; i < 32; i++) {
  1026. if (*v_off == 0) {
  1027. int saved_samples = (1280 - 128) >> div;
  1028. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1029. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1030. } else {
  1031. *v_off -= 128 >> div;
  1032. }
  1033. v = v0 + *v_off;
  1034. for (n = 1; n < 64 >> div; n+=2) {
  1035. X[1][i][n] = -X[1][i][n];
  1036. }
  1037. if (div) {
  1038. memset(X[0][i]+32, 0, 32*sizeof(float));
  1039. memset(X[1][i]+32, 0, 32*sizeof(float));
  1040. }
  1041. ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
  1042. ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
  1043. if (div) {
  1044. for (n = 0; n < 32; n++) {
  1045. v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
  1046. v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
  1047. }
  1048. } else {
  1049. for (n = 0; n < 64; n++) {
  1050. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1051. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1052. }
  1053. }
  1054. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1064. if (scale_and_bias)
  1065. for (n = 0; n < 64 >> div; n++)
  1066. out[n] = out[n] * scale + bias;
  1067. out += 64 >> div;
  1068. }
  1069. }
  1070. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1071. {
  1072. int i;
  1073. float real_sum = 0.0f;
  1074. float imag_sum = 0.0f;
  1075. if (lag) {
  1076. for (i = 1; i < 38; i++) {
  1077. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1078. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1079. }
  1080. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1081. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1082. if (lag == 1) {
  1083. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1084. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1085. }
  1086. } else {
  1087. for (i = 1; i < 38; i++) {
  1088. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1089. }
  1090. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1091. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1092. }
  1093. }
  1094. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1095. * (14496-3 sp04 p214)
  1096. * Warning: This routine does not seem numerically stable.
  1097. */
  1098. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1099. const float X_low[32][40][2], int k0)
  1100. {
  1101. int k;
  1102. for (k = 0; k < k0; k++) {
  1103. float phi[3][2][2], dk;
  1104. autocorrelate(X_low[k], phi, 0);
  1105. autocorrelate(X_low[k], phi, 1);
  1106. autocorrelate(X_low[k], phi, 2);
  1107. dk = phi[2][1][0] * phi[1][0][0] -
  1108. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1109. if (!dk) {
  1110. alpha1[k][0] = 0;
  1111. alpha1[k][1] = 0;
  1112. } else {
  1113. float temp_real, temp_im;
  1114. temp_real = phi[0][0][0] * phi[1][1][0] -
  1115. phi[0][0][1] * phi[1][1][1] -
  1116. phi[0][1][0] * phi[1][0][0];
  1117. temp_im = phi[0][0][0] * phi[1][1][1] +
  1118. phi[0][0][1] * phi[1][1][0] -
  1119. phi[0][1][1] * phi[1][0][0];
  1120. alpha1[k][0] = temp_real / dk;
  1121. alpha1[k][1] = temp_im / dk;
  1122. }
  1123. if (!phi[1][0][0]) {
  1124. alpha0[k][0] = 0;
  1125. alpha0[k][1] = 0;
  1126. } else {
  1127. float temp_real, temp_im;
  1128. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1129. alpha1[k][1] * phi[1][1][1];
  1130. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1131. alpha1[k][0] * phi[1][1][1];
  1132. alpha0[k][0] = -temp_real / phi[1][0][0];
  1133. alpha0[k][1] = -temp_im / phi[1][0][0];
  1134. }
  1135. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1136. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1137. alpha1[k][0] = 0;
  1138. alpha1[k][1] = 0;
  1139. alpha0[k][0] = 0;
  1140. alpha0[k][1] = 0;
  1141. }
  1142. }
  1143. }
  1144. /// Chirp Factors (14496-3 sp04 p214)
  1145. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1146. {
  1147. int i;
  1148. float new_bw;
  1149. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1150. for (i = 0; i < sbr->n_q; i++) {
  1151. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1152. new_bw = 0.6f;
  1153. } else
  1154. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1155. if (new_bw < ch_data->bw_array[i]) {
  1156. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1157. } else
  1158. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1159. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1160. }
  1161. }
  1162. /// Generate the subband filtered lowband
  1163. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1164. float X_low[32][40][2], const float W[2][32][32][2])
  1165. {
  1166. int i, k;
  1167. const int t_HFGen = 8;
  1168. const int i_f = 32;
  1169. memset(X_low, 0, 32*sizeof(*X_low));
  1170. for (k = 0; k < sbr->kx[1]; k++) {
  1171. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1172. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1173. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1174. }
  1175. }
  1176. for (k = 0; k < sbr->kx[0]; k++) {
  1177. for (i = 0; i < t_HFGen; i++) {
  1178. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1179. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1180. }
  1181. }
  1182. return 0;
  1183. }
  1184. /// High Frequency Generator (14496-3 sp04 p215)
  1185. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1186. float X_high[64][40][2], const float X_low[32][40][2],
  1187. const float (*alpha0)[2], const float (*alpha1)[2],
  1188. const float bw_array[5], const uint8_t *t_env,
  1189. int bs_num_env)
  1190. {
  1191. int i, j, x;
  1192. int g = 0;
  1193. int k = sbr->kx[1];
  1194. for (j = 0; j < sbr->num_patches; j++) {
  1195. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1196. float alpha[4];
  1197. const int p = sbr->patch_start_subband[j] + x;
  1198. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1199. g++;
  1200. g--;
  1201. if (g < 0) {
  1202. av_log(ac->avccontext, AV_LOG_ERROR,
  1203. "ERROR : no subband found for frequency %d\n", k);
  1204. return -1;
  1205. }
  1206. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1207. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1208. alpha[2] = alpha0[p][0] * bw_array[g];
  1209. alpha[3] = alpha0[p][1] * bw_array[g];
  1210. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1211. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1212. X_high[k][idx][0] =
  1213. X_low[p][idx - 2][0] * alpha[0] -
  1214. X_low[p][idx - 2][1] * alpha[1] +
  1215. X_low[p][idx - 1][0] * alpha[2] -
  1216. X_low[p][idx - 1][1] * alpha[3] +
  1217. X_low[p][idx][0];
  1218. X_high[k][idx][1] =
  1219. X_low[p][idx - 2][1] * alpha[0] +
  1220. X_low[p][idx - 2][0] * alpha[1] +
  1221. X_low[p][idx - 1][1] * alpha[2] +
  1222. X_low[p][idx - 1][0] * alpha[3] +
  1223. X_low[p][idx][1];
  1224. }
  1225. }
  1226. }
  1227. if (k < sbr->m[1] + sbr->kx[1])
  1228. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1229. return 0;
  1230. }
  1231. /// Generate the subband filtered lowband
  1232. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
  1233. const float X_low[32][40][2], const float Y[2][38][64][2],
  1234. int ch)
  1235. {
  1236. int k, i;
  1237. const int i_f = 32;
  1238. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1239. memset(X, 0, 2*sizeof(*X));
  1240. for (k = 0; k < sbr->kx[0]; k++) {
  1241. for (i = 0; i < i_Temp; i++) {
  1242. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1243. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1244. }
  1245. }
  1246. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1247. for (i = 0; i < i_Temp; i++) {
  1248. X[0][i][k] = Y[0][i + i_f][k][0];
  1249. X[1][i][k] = Y[0][i + i_f][k][1];
  1250. }
  1251. }
  1252. for (k = 0; k < sbr->kx[1]; k++) {
  1253. for (i = i_Temp; i < i_f; i++) {
  1254. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1255. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1256. }
  1257. }
  1258. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1259. for (i = i_Temp; i < i_f; i++) {
  1260. X[0][i][k] = Y[1][i][k][0];
  1261. X[1][i][k] = Y[1][i][k][1];
  1262. }
  1263. }
  1264. return 0;
  1265. }
  1266. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1267. * (14496-3 sp04 p217)
  1268. */
  1269. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1270. SBRData *ch_data, int e_a[2])
  1271. {
  1272. int e, i, m;
  1273. e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev
  1274. e_a[1] = -1;
  1275. if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  1276. e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
  1277. } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
  1278. e_a[1] = ch_data->bs_pointer - 1;
  1279. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1280. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1281. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1282. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1283. int k;
  1284. for (i = 0; i < ilim; i++)
  1285. for (m = table[i]; m < table[i + 1]; m++)
  1286. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1287. // ch_data->bs_num_noise > 1 => 2 noise floors
  1288. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1289. for (i = 0; i < sbr->n_q; i++)
  1290. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1291. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1292. for (i = 0; i < sbr->n[1]; i++) {
  1293. if (ch_data->bs_add_harmonic_flag) {
  1294. const unsigned int m_midpoint =
  1295. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1296. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1297. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1298. }
  1299. }
  1300. for (i = 0; i < ilim; i++) {
  1301. int additional_sinusoid_present = 0;
  1302. for (m = table[i]; m < table[i + 1]; m++) {
  1303. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1304. additional_sinusoid_present = 1;
  1305. break;
  1306. }
  1307. }
  1308. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1309. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1310. }
  1311. }
  1312. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
  1313. }
  1314. /// Estimation of current envelope (14496-3 sp04 p218)
  1315. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1316. SpectralBandReplication *sbr, SBRData *ch_data)
  1317. {
  1318. int e, i, m;
  1319. if (sbr->bs_interpol_freq) {
  1320. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1321. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1322. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1323. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1324. for (m = 0; m < sbr->m[1]; m++) {
  1325. float sum = 0.0f;
  1326. for (i = ilb; i < iub; i++) {
  1327. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1328. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1329. }
  1330. e_curr[e][m] = sum * recip_env_size;
  1331. }
  1332. }
  1333. } else {
  1334. int k, p;
  1335. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1336. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1337. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1338. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1339. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1340. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1341. float sum = 0.0f;
  1342. const int den = env_size * (table[p + 1] - table[p]);
  1343. for (k = table[p]; k < table[p + 1]; k++) {
  1344. for (i = ilb; i < iub; i++) {
  1345. sum += X_high[k][i][0] * X_high[k][i][0] +
  1346. X_high[k][i][1] * X_high[k][i][1];
  1347. }
  1348. }
  1349. sum /= den;
  1350. for (k = table[p]; k < table[p + 1]; k++) {
  1351. e_curr[e][k - sbr->kx[1]] = sum;
  1352. }
  1353. }
  1354. }
  1355. }
  1356. }
  1357. /**
  1358. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1359. * and Calculation of gain (14496-3 sp04 p219)
  1360. */
  1361. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1362. SBRData *ch_data, const int e_a[2])
  1363. {
  1364. int e, k, m;
  1365. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1366. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1367. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1368. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1369. for (k = 0; k < sbr->n_lim; k++) {
  1370. float gain_boost, gain_max;
  1371. float sum[2] = { 0.0f, 0.0f };
  1372. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1373. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1374. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1375. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1376. if (!sbr->s_mapped[e][m]) {
  1377. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1378. ((1.0f + sbr->e_curr[e][m]) *
  1379. (1.0f + sbr->q_mapped[e][m] * delta)));
  1380. } else {
  1381. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1382. ((1.0f + sbr->e_curr[e][m]) *
  1383. (1.0f + sbr->q_mapped[e][m])));
  1384. }
  1385. }
  1386. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1387. sum[0] += sbr->e_origmapped[e][m];
  1388. sum[1] += sbr->e_curr[e][m];
  1389. }
  1390. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1391. gain_max = FFMIN(100000, gain_max);
  1392. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1393. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1394. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1395. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1396. }
  1397. sum[0] = sum[1] = 0.0f;
  1398. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1399. sum[0] += sbr->e_origmapped[e][m];
  1400. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1401. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1402. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1403. }
  1404. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1405. gain_boost = FFMIN(1.584893192, gain_boost);
  1406. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1407. sbr->gain[e][m] *= gain_boost;
  1408. sbr->q_m[e][m] *= gain_boost;
  1409. sbr->s_m[e][m] *= gain_boost;
  1410. }
  1411. }
  1412. }
  1413. }
  1414. /// Assembling HF Signals (14496-3 sp04 p220)
  1415. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1416. SpectralBandReplication *sbr, SBRData *ch_data,
  1417. const int e_a[2])
  1418. {
  1419. int e, i, j, m;
  1420. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1421. const int kx = sbr->kx[1];
  1422. const int m_max = sbr->m[1];
  1423. static const float h_smooth[5] = {
  1424. 0.33333333333333,
  1425. 0.30150283239582,
  1426. 0.21816949906249,
  1427. 0.11516383427084,
  1428. 0.03183050093751,
  1429. };
  1430. static const int8_t phi[2][4] = {
  1431. { 1, 0, -1, 0}, // real
  1432. { 0, 1, 0, -1}, // imaginary
  1433. };
  1434. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1435. int indexnoise = ch_data->f_indexnoise;
  1436. int indexsine = ch_data->f_indexsine;
  1437. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1438. if (sbr->reset) {
  1439. for (i = 0; i < h_SL; i++) {
  1440. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1441. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1442. }
  1443. } else if (h_SL) {
  1444. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1445. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1446. }
  1447. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1448. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1449. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1450. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1451. }
  1452. }
  1453. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1454. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1455. int phi_sign = (1 - 2*(kx & 1));
  1456. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1457. for (m = 0; m < m_max; m++) {
  1458. const int idx1 = i + h_SL;
  1459. float g_filt = 0.0f;
  1460. for (j = 0; j <= h_SL; j++)
  1461. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1462. Y[1][i][m + kx][0] =
  1463. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1464. Y[1][i][m + kx][1] =
  1465. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1466. }
  1467. } else {
  1468. for (m = 0; m < m_max; m++) {
  1469. const float g_filt = g_temp[i + h_SL][m];
  1470. Y[1][i][m + kx][0] =
  1471. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1472. Y[1][i][m + kx][1] =
  1473. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1474. }
  1475. }
  1476. if (e != e_a[0] && e != e_a[1]) {
  1477. for (m = 0; m < m_max; m++) {
  1478. indexnoise = (indexnoise + 1) & 0x1ff;
  1479. if (sbr->s_m[e][m]) {
  1480. Y[1][i][m + kx][0] +=
  1481. sbr->s_m[e][m] * phi[0][indexsine];
  1482. Y[1][i][m + kx][1] +=
  1483. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1484. } else {
  1485. float q_filt;
  1486. if (h_SL) {
  1487. const int idx1 = i + h_SL;
  1488. q_filt = 0.0f;
  1489. for (j = 0; j <= h_SL; j++)
  1490. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1491. } else {
  1492. q_filt = q_temp[i][m];
  1493. }
  1494. Y[1][i][m + kx][0] +=
  1495. q_filt * sbr_noise_table[indexnoise][0];
  1496. Y[1][i][m + kx][1] +=
  1497. q_filt * sbr_noise_table[indexnoise][1];
  1498. }
  1499. phi_sign = -phi_sign;
  1500. }
  1501. } else {
  1502. indexnoise = (indexnoise + m_max) & 0x1ff;
  1503. for (m = 0; m < m_max; m++) {
  1504. Y[1][i][m + kx][0] +=
  1505. sbr->s_m[e][m] * phi[0][indexsine];
  1506. Y[1][i][m + kx][1] +=
  1507. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1508. phi_sign = -phi_sign;
  1509. }
  1510. }
  1511. indexsine = (indexsine + 1) & 3;
  1512. }
  1513. }
  1514. ch_data->f_indexnoise = indexnoise;
  1515. ch_data->f_indexsine = indexsine;
  1516. }
  1517. void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
  1518. {
  1519. int ch;
  1520. if (sbr->start) {
  1521. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  1522. sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch);
  1523. }
  1524. sbr_dequant(sbr, id_aac);
  1525. }
  1526. }
  1527. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
  1528. const float* in, float* out)
  1529. {
  1530. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1531. /* decode channel */
  1532. sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
  1533. (float*)sbr->qmf_filter_scratch,
  1534. sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
  1535. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1536. if (sbr->start) {
  1537. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1538. sbr_chirp(sbr, &sbr->data[ch]);
  1539. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1540. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1541. sbr->data[ch].bs_num_env[1]);
  1542. // hf_adj
  1543. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1544. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1545. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1546. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1547. sbr->data[ch].e_a);
  1548. }
  1549. /* synthesis */
  1550. sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
  1551. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
  1552. sbr->data[ch].synthesis_filterbank_samples,
  1553. &sbr->data[ch].synthesis_filterbank_samples_offset,
  1554. downsampled,
  1555. ac->add_bias, -1024 * ac->sf_scale);
  1556. }