You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4154 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. /**
  43. * Init VC-1 specific tables and VC1Context members
  44. * @param v The VC1Context to initialize
  45. * @return Status
  46. */
  47. static int vc1_init_common(VC1Context *v)
  48. {
  49. static int done = 0;
  50. int i = 0;
  51. v->hrd_rate = v->hrd_buffer = NULL;
  52. /* VLC tables */
  53. if(!done)
  54. {
  55. done = 1;
  56. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  57. ff_vc1_bfraction_bits, 1, 1,
  58. ff_vc1_bfraction_codes, 1, 1, 1);
  59. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  60. ff_vc1_norm2_bits, 1, 1,
  61. ff_vc1_norm2_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  63. ff_vc1_norm6_bits, 1, 1,
  64. ff_vc1_norm6_codes, 2, 2, 1);
  65. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  66. ff_vc1_imode_bits, 1, 1,
  67. ff_vc1_imode_codes, 1, 1, 1);
  68. for (i=0; i<3; i++)
  69. {
  70. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  71. ff_vc1_ttmb_bits[i], 1, 1,
  72. ff_vc1_ttmb_codes[i], 2, 2, 1);
  73. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  74. ff_vc1_ttblk_bits[i], 1, 1,
  75. ff_vc1_ttblk_codes[i], 1, 1, 1);
  76. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  77. ff_vc1_subblkpat_bits[i], 1, 1,
  78. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  79. }
  80. for(i=0; i<4; i++)
  81. {
  82. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  83. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  84. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  85. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  86. ff_vc1_cbpcy_p_bits[i], 1, 1,
  87. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  88. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  89. ff_vc1_mv_diff_bits[i], 1, 1,
  90. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  91. }
  92. for(i=0; i<8; i++)
  93. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  94. &vc1_ac_tables[i][0][1], 8, 4,
  95. &vc1_ac_tables[i][0][0], 8, 4, 1);
  96. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  97. &ff_msmp4_mb_i_table[0][1], 4, 2,
  98. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  99. }
  100. /* Other defaults */
  101. v->pq = -1;
  102. v->mvrange = 0; /* 7.1.1.18, p80 */
  103. return 0;
  104. }
  105. /***********************************************************************/
  106. /**
  107. * @defgroup bitplane VC9 Bitplane decoding
  108. * @see 8.7, p56
  109. * @{
  110. */
  111. /** @addtogroup bitplane
  112. * Imode types
  113. * @{
  114. */
  115. enum Imode {
  116. IMODE_RAW,
  117. IMODE_NORM2,
  118. IMODE_DIFF2,
  119. IMODE_NORM6,
  120. IMODE_DIFF6,
  121. IMODE_ROWSKIP,
  122. IMODE_COLSKIP
  123. };
  124. /** @} */ //imode defines
  125. /** Decode rows by checking if they are skipped
  126. * @param plane Buffer to store decoded bits
  127. * @param[in] width Width of this buffer
  128. * @param[in] height Height of this buffer
  129. * @param[in] stride of this buffer
  130. */
  131. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  132. int x, y;
  133. for (y=0; y<height; y++){
  134. if (!get_bits1(gb)) //rowskip
  135. memset(plane, 0, width);
  136. else
  137. for (x=0; x<width; x++)
  138. plane[x] = get_bits1(gb);
  139. plane += stride;
  140. }
  141. }
  142. /** Decode columns by checking if they are skipped
  143. * @param plane Buffer to store decoded bits
  144. * @param[in] width Width of this buffer
  145. * @param[in] height Height of this buffer
  146. * @param[in] stride of this buffer
  147. * @todo FIXME: Optimize
  148. */
  149. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  150. int x, y;
  151. for (x=0; x<width; x++){
  152. if (!get_bits1(gb)) //colskip
  153. for (y=0; y<height; y++)
  154. plane[y*stride] = 0;
  155. else
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = get_bits1(gb);
  158. plane ++;
  159. }
  160. }
  161. /** Decode a bitplane's bits
  162. * @param bp Bitplane where to store the decode bits
  163. * @param v VC-1 context for bit reading and logging
  164. * @return Status
  165. * @todo FIXME: Optimize
  166. */
  167. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  168. {
  169. GetBitContext *gb = &v->s.gb;
  170. int imode, x, y, code, offset;
  171. uint8_t invert, *planep = data;
  172. int width, height, stride;
  173. width = v->s.mb_width;
  174. height = v->s.mb_height;
  175. stride = v->s.mb_stride;
  176. invert = get_bits1(gb);
  177. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  178. *raw_flag = 0;
  179. switch (imode)
  180. {
  181. case IMODE_RAW:
  182. //Data is actually read in the MB layer (same for all tests == "raw")
  183. *raw_flag = 1; //invert ignored
  184. return invert;
  185. case IMODE_DIFF2:
  186. case IMODE_NORM2:
  187. if ((height * width) & 1)
  188. {
  189. *planep++ = get_bits1(gb);
  190. offset = 1;
  191. }
  192. else offset = 0;
  193. // decode bitplane as one long line
  194. for (y = offset; y < height * width; y += 2) {
  195. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  196. *planep++ = code & 1;
  197. offset++;
  198. if(offset == width) {
  199. offset = 0;
  200. planep += stride - width;
  201. }
  202. *planep++ = code >> 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. }
  209. break;
  210. case IMODE_DIFF6:
  211. case IMODE_NORM6:
  212. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  213. for(y = 0; y < height; y+= 3) {
  214. for(x = width & 1; x < width; x += 2) {
  215. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  216. if(code < 0){
  217. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  218. return -1;
  219. }
  220. planep[x + 0] = (code >> 0) & 1;
  221. planep[x + 1] = (code >> 1) & 1;
  222. planep[x + 0 + stride] = (code >> 2) & 1;
  223. planep[x + 1 + stride] = (code >> 3) & 1;
  224. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  225. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  226. }
  227. planep += stride * 3;
  228. }
  229. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  230. } else { // 3x2
  231. planep += (height & 1) * stride;
  232. for(y = height & 1; y < height; y += 2) {
  233. for(x = width % 3; x < width; x += 3) {
  234. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  235. if(code < 0){
  236. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  237. return -1;
  238. }
  239. planep[x + 0] = (code >> 0) & 1;
  240. planep[x + 1] = (code >> 1) & 1;
  241. planep[x + 2] = (code >> 2) & 1;
  242. planep[x + 0 + stride] = (code >> 3) & 1;
  243. planep[x + 1 + stride] = (code >> 4) & 1;
  244. planep[x + 2 + stride] = (code >> 5) & 1;
  245. }
  246. planep += stride * 2;
  247. }
  248. x = width % 3;
  249. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  250. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  251. }
  252. break;
  253. case IMODE_ROWSKIP:
  254. decode_rowskip(data, width, height, stride, &v->s.gb);
  255. break;
  256. case IMODE_COLSKIP:
  257. decode_colskip(data, width, height, stride, &v->s.gb);
  258. break;
  259. default: break;
  260. }
  261. /* Applying diff operator */
  262. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  263. {
  264. planep = data;
  265. planep[0] ^= invert;
  266. for (x=1; x<width; x++)
  267. planep[x] ^= planep[x-1];
  268. for (y=1; y<height; y++)
  269. {
  270. planep += stride;
  271. planep[0] ^= planep[-stride];
  272. for (x=1; x<width; x++)
  273. {
  274. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  275. else planep[x] ^= planep[x-1];
  276. }
  277. }
  278. }
  279. else if (invert)
  280. {
  281. planep = data;
  282. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  283. }
  284. return (imode<<1) + invert;
  285. }
  286. /** @} */ //Bitplane group
  287. /***********************************************************************/
  288. /** VOP Dquant decoding
  289. * @param v VC-1 Context
  290. */
  291. static int vop_dquant_decoding(VC1Context *v)
  292. {
  293. GetBitContext *gb = &v->s.gb;
  294. int pqdiff;
  295. //variable size
  296. if (v->dquant == 2)
  297. {
  298. pqdiff = get_bits(gb, 3);
  299. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  300. else v->altpq = v->pq + pqdiff + 1;
  301. }
  302. else
  303. {
  304. v->dquantfrm = get_bits1(gb);
  305. if ( v->dquantfrm )
  306. {
  307. v->dqprofile = get_bits(gb, 2);
  308. switch (v->dqprofile)
  309. {
  310. case DQPROFILE_SINGLE_EDGE:
  311. case DQPROFILE_DOUBLE_EDGES:
  312. v->dqsbedge = get_bits(gb, 2);
  313. break;
  314. case DQPROFILE_ALL_MBS:
  315. v->dqbilevel = get_bits1(gb);
  316. if(!v->dqbilevel)
  317. v->halfpq = 0;
  318. default: break; //Forbidden ?
  319. }
  320. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  321. {
  322. pqdiff = get_bits(gb, 3);
  323. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  324. else v->altpq = v->pq + pqdiff + 1;
  325. }
  326. }
  327. }
  328. return 0;
  329. }
  330. /** Put block onto picture
  331. */
  332. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  333. {
  334. uint8_t *Y;
  335. int ys, us, vs;
  336. DSPContext *dsp = &v->s.dsp;
  337. if(v->rangeredfrm) {
  338. int i, j, k;
  339. for(k = 0; k < 6; k++)
  340. for(j = 0; j < 8; j++)
  341. for(i = 0; i < 8; i++)
  342. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  343. }
  344. ys = v->s.current_picture.linesize[0];
  345. us = v->s.current_picture.linesize[1];
  346. vs = v->s.current_picture.linesize[2];
  347. Y = v->s.dest[0];
  348. dsp->put_pixels_clamped(block[0], Y, ys);
  349. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  350. Y += ys * 8;
  351. dsp->put_pixels_clamped(block[2], Y, ys);
  352. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  353. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  354. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  355. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  356. }
  357. }
  358. /** Do motion compensation over 1 macroblock
  359. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  360. */
  361. static void vc1_mc_1mv(VC1Context *v, int dir)
  362. {
  363. MpegEncContext *s = &v->s;
  364. DSPContext *dsp = &v->s.dsp;
  365. uint8_t *srcY, *srcU, *srcV;
  366. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  367. if(!v->s.last_picture.data[0])return;
  368. mx = s->mv[dir][0][0];
  369. my = s->mv[dir][0][1];
  370. // store motion vectors for further use in B frames
  371. if(s->pict_type == P_TYPE) {
  372. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  373. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  374. }
  375. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  376. uvmy = (my + ((my & 3) == 3)) >> 1;
  377. if(v->fastuvmc) {
  378. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  379. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  380. }
  381. if(!dir) {
  382. srcY = s->last_picture.data[0];
  383. srcU = s->last_picture.data[1];
  384. srcV = s->last_picture.data[2];
  385. } else {
  386. srcY = s->next_picture.data[0];
  387. srcU = s->next_picture.data[1];
  388. srcV = s->next_picture.data[2];
  389. }
  390. src_x = s->mb_x * 16 + (mx >> 2);
  391. src_y = s->mb_y * 16 + (my >> 2);
  392. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  393. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  394. if(v->profile != PROFILE_ADVANCED){
  395. src_x = av_clip( src_x, -16, s->mb_width * 16);
  396. src_y = av_clip( src_y, -16, s->mb_height * 16);
  397. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  398. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  399. }else{
  400. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  401. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  402. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  403. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  404. }
  405. srcY += src_y * s->linesize + src_x;
  406. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  407. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  408. /* for grayscale we should not try to read from unknown area */
  409. if(s->flags & CODEC_FLAG_GRAY) {
  410. srcU = s->edge_emu_buffer + 18 * s->linesize;
  411. srcV = s->edge_emu_buffer + 18 * s->linesize;
  412. }
  413. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  414. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  415. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  416. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  417. srcY -= s->mspel * (1 + s->linesize);
  418. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  419. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  420. srcY = s->edge_emu_buffer;
  421. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  422. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  423. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  424. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  425. srcU = uvbuf;
  426. srcV = uvbuf + 16;
  427. /* if we deal with range reduction we need to scale source blocks */
  428. if(v->rangeredfrm) {
  429. int i, j;
  430. uint8_t *src, *src2;
  431. src = srcY;
  432. for(j = 0; j < 17 + s->mspel*2; j++) {
  433. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  434. src += s->linesize;
  435. }
  436. src = srcU; src2 = srcV;
  437. for(j = 0; j < 9; j++) {
  438. for(i = 0; i < 9; i++) {
  439. src[i] = ((src[i] - 128) >> 1) + 128;
  440. src2[i] = ((src2[i] - 128) >> 1) + 128;
  441. }
  442. src += s->uvlinesize;
  443. src2 += s->uvlinesize;
  444. }
  445. }
  446. /* if we deal with intensity compensation we need to scale source blocks */
  447. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  448. int i, j;
  449. uint8_t *src, *src2;
  450. src = srcY;
  451. for(j = 0; j < 17 + s->mspel*2; j++) {
  452. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  453. src += s->linesize;
  454. }
  455. src = srcU; src2 = srcV;
  456. for(j = 0; j < 9; j++) {
  457. for(i = 0; i < 9; i++) {
  458. src[i] = v->lutuv[src[i]];
  459. src2[i] = v->lutuv[src2[i]];
  460. }
  461. src += s->uvlinesize;
  462. src2 += s->uvlinesize;
  463. }
  464. }
  465. srcY += s->mspel * (1 + s->linesize);
  466. }
  467. if(s->mspel) {
  468. dxy = ((my & 3) << 2) | (mx & 3);
  469. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  470. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  471. srcY += s->linesize * 8;
  472. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  473. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  474. } else { // hpel mc - always used for luma
  475. dxy = (my & 2) | ((mx & 2) >> 1);
  476. if(!v->rnd)
  477. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  478. else
  479. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  480. }
  481. if(s->flags & CODEC_FLAG_GRAY) return;
  482. /* Chroma MC always uses qpel bilinear */
  483. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  484. uvmx = (uvmx&3)<<1;
  485. uvmy = (uvmy&3)<<1;
  486. if(!v->rnd){
  487. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  488. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  489. }else{
  490. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  491. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  492. }
  493. }
  494. /** Do motion compensation for 4-MV macroblock - luminance block
  495. */
  496. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  497. {
  498. MpegEncContext *s = &v->s;
  499. DSPContext *dsp = &v->s.dsp;
  500. uint8_t *srcY;
  501. int dxy, mx, my, src_x, src_y;
  502. int off;
  503. if(!v->s.last_picture.data[0])return;
  504. mx = s->mv[0][n][0];
  505. my = s->mv[0][n][1];
  506. srcY = s->last_picture.data[0];
  507. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  508. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  509. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  510. if(v->profile != PROFILE_ADVANCED){
  511. src_x = av_clip( src_x, -16, s->mb_width * 16);
  512. src_y = av_clip( src_y, -16, s->mb_height * 16);
  513. }else{
  514. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  515. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  516. }
  517. srcY += src_y * s->linesize + src_x;
  518. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  519. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  520. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  521. srcY -= s->mspel * (1 + s->linesize);
  522. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  523. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  524. srcY = s->edge_emu_buffer;
  525. /* if we deal with range reduction we need to scale source blocks */
  526. if(v->rangeredfrm) {
  527. int i, j;
  528. uint8_t *src;
  529. src = srcY;
  530. for(j = 0; j < 9 + s->mspel*2; j++) {
  531. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  532. src += s->linesize;
  533. }
  534. }
  535. /* if we deal with intensity compensation we need to scale source blocks */
  536. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  537. int i, j;
  538. uint8_t *src;
  539. src = srcY;
  540. for(j = 0; j < 9 + s->mspel*2; j++) {
  541. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  542. src += s->linesize;
  543. }
  544. }
  545. srcY += s->mspel * (1 + s->linesize);
  546. }
  547. if(s->mspel) {
  548. dxy = ((my & 3) << 2) | (mx & 3);
  549. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  550. } else { // hpel mc - always used for luma
  551. dxy = (my & 2) | ((mx & 2) >> 1);
  552. if(!v->rnd)
  553. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  554. else
  555. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  556. }
  557. }
  558. static inline int median4(int a, int b, int c, int d)
  559. {
  560. if(a < b) {
  561. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  562. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  563. } else {
  564. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  565. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  566. }
  567. }
  568. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  569. */
  570. static void vc1_mc_4mv_chroma(VC1Context *v)
  571. {
  572. MpegEncContext *s = &v->s;
  573. DSPContext *dsp = &v->s.dsp;
  574. uint8_t *srcU, *srcV;
  575. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  576. int i, idx, tx = 0, ty = 0;
  577. int mvx[4], mvy[4], intra[4];
  578. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  579. if(!v->s.last_picture.data[0])return;
  580. if(s->flags & CODEC_FLAG_GRAY) return;
  581. for(i = 0; i < 4; i++) {
  582. mvx[i] = s->mv[0][i][0];
  583. mvy[i] = s->mv[0][i][1];
  584. intra[i] = v->mb_type[0][s->block_index[i]];
  585. }
  586. /* calculate chroma MV vector from four luma MVs */
  587. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  588. if(!idx) { // all blocks are inter
  589. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  590. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  591. } else if(count[idx] == 1) { // 3 inter blocks
  592. switch(idx) {
  593. case 0x1:
  594. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  595. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  596. break;
  597. case 0x2:
  598. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  599. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  600. break;
  601. case 0x4:
  602. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  603. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  604. break;
  605. case 0x8:
  606. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  607. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  608. break;
  609. }
  610. } else if(count[idx] == 2) {
  611. int t1 = 0, t2 = 0;
  612. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  613. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  614. tx = (mvx[t1] + mvx[t2]) / 2;
  615. ty = (mvy[t1] + mvy[t2]) / 2;
  616. } else {
  617. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  618. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  619. return; //no need to do MC for inter blocks
  620. }
  621. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  622. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  623. uvmx = (tx + ((tx&3) == 3)) >> 1;
  624. uvmy = (ty + ((ty&3) == 3)) >> 1;
  625. if(v->fastuvmc) {
  626. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  627. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  628. }
  629. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  630. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  631. if(v->profile != PROFILE_ADVANCED){
  632. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  633. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  634. }else{
  635. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  636. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  637. }
  638. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  639. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  640. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  641. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  642. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  643. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  644. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  645. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  646. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  647. srcU = s->edge_emu_buffer;
  648. srcV = s->edge_emu_buffer + 16;
  649. /* if we deal with range reduction we need to scale source blocks */
  650. if(v->rangeredfrm) {
  651. int i, j;
  652. uint8_t *src, *src2;
  653. src = srcU; src2 = srcV;
  654. for(j = 0; j < 9; j++) {
  655. for(i = 0; i < 9; i++) {
  656. src[i] = ((src[i] - 128) >> 1) + 128;
  657. src2[i] = ((src2[i] - 128) >> 1) + 128;
  658. }
  659. src += s->uvlinesize;
  660. src2 += s->uvlinesize;
  661. }
  662. }
  663. /* if we deal with intensity compensation we need to scale source blocks */
  664. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  665. int i, j;
  666. uint8_t *src, *src2;
  667. src = srcU; src2 = srcV;
  668. for(j = 0; j < 9; j++) {
  669. for(i = 0; i < 9; i++) {
  670. src[i] = v->lutuv[src[i]];
  671. src2[i] = v->lutuv[src2[i]];
  672. }
  673. src += s->uvlinesize;
  674. src2 += s->uvlinesize;
  675. }
  676. }
  677. }
  678. /* Chroma MC always uses qpel bilinear */
  679. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  680. uvmx = (uvmx&3)<<1;
  681. uvmy = (uvmy&3)<<1;
  682. if(!v->rnd){
  683. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  684. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  685. }else{
  686. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  687. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  688. }
  689. }
  690. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  691. /**
  692. * Decode Simple/Main Profiles sequence header
  693. * @see Figure 7-8, p16-17
  694. * @param avctx Codec context
  695. * @param gb GetBit context initialized from Codec context extra_data
  696. * @return Status
  697. */
  698. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  699. {
  700. VC1Context *v = avctx->priv_data;
  701. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  702. v->profile = get_bits(gb, 2);
  703. if (v->profile == PROFILE_COMPLEX)
  704. {
  705. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  706. }
  707. if (v->profile == PROFILE_ADVANCED)
  708. {
  709. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  710. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  711. return decode_sequence_header_adv(v, gb);
  712. }
  713. else
  714. {
  715. v->zz_8x4 = ff_vc1_simple_progressive_8x4_zz;
  716. v->zz_4x8 = ff_vc1_simple_progressive_4x8_zz;
  717. v->res_sm = get_bits(gb, 2); //reserved
  718. if (v->res_sm)
  719. {
  720. av_log(avctx, AV_LOG_ERROR,
  721. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  722. return -1;
  723. }
  724. }
  725. // (fps-2)/4 (->30)
  726. v->frmrtq_postproc = get_bits(gb, 3); //common
  727. // (bitrate-32kbps)/64kbps
  728. v->bitrtq_postproc = get_bits(gb, 5); //common
  729. v->s.loop_filter = get_bits1(gb); //common
  730. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  731. {
  732. av_log(avctx, AV_LOG_ERROR,
  733. "LOOPFILTER shell not be enabled in simple profile\n");
  734. }
  735. v->res_x8 = get_bits1(gb); //reserved
  736. v->multires = get_bits1(gb);
  737. v->res_fasttx = get_bits1(gb);
  738. if (!v->res_fasttx)
  739. {
  740. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  741. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  742. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  743. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  744. }
  745. v->fastuvmc = get_bits1(gb); //common
  746. if (!v->profile && !v->fastuvmc)
  747. {
  748. av_log(avctx, AV_LOG_ERROR,
  749. "FASTUVMC unavailable in Simple Profile\n");
  750. return -1;
  751. }
  752. v->extended_mv = get_bits1(gb); //common
  753. if (!v->profile && v->extended_mv)
  754. {
  755. av_log(avctx, AV_LOG_ERROR,
  756. "Extended MVs unavailable in Simple Profile\n");
  757. return -1;
  758. }
  759. v->dquant = get_bits(gb, 2); //common
  760. v->vstransform = get_bits1(gb); //common
  761. v->res_transtab = get_bits1(gb);
  762. if (v->res_transtab)
  763. {
  764. av_log(avctx, AV_LOG_ERROR,
  765. "1 for reserved RES_TRANSTAB is forbidden\n");
  766. return -1;
  767. }
  768. v->overlap = get_bits1(gb); //common
  769. v->s.resync_marker = get_bits1(gb);
  770. v->rangered = get_bits1(gb);
  771. if (v->rangered && v->profile == PROFILE_SIMPLE)
  772. {
  773. av_log(avctx, AV_LOG_INFO,
  774. "RANGERED should be set to 0 in simple profile\n");
  775. }
  776. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  777. v->quantizer_mode = get_bits(gb, 2); //common
  778. v->finterpflag = get_bits1(gb); //common
  779. v->res_rtm_flag = get_bits1(gb); //reserved
  780. if (!v->res_rtm_flag)
  781. {
  782. // av_log(avctx, AV_LOG_ERROR,
  783. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  784. av_log(avctx, AV_LOG_ERROR,
  785. "Old WMV3 version detected, only I-frames will be decoded\n");
  786. //return -1;
  787. }
  788. //TODO: figure out what they mean (always 0x402F)
  789. if(!v->res_fasttx) skip_bits(gb, 16);
  790. av_log(avctx, AV_LOG_DEBUG,
  791. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  792. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  793. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  794. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  795. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  796. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  797. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  798. v->dquant, v->quantizer_mode, avctx->max_b_frames
  799. );
  800. return 0;
  801. }
  802. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  803. {
  804. v->res_rtm_flag = 1;
  805. v->level = get_bits(gb, 3);
  806. if(v->level >= 5)
  807. {
  808. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  809. }
  810. v->chromaformat = get_bits(gb, 2);
  811. if (v->chromaformat != 1)
  812. {
  813. av_log(v->s.avctx, AV_LOG_ERROR,
  814. "Only 4:2:0 chroma format supported\n");
  815. return -1;
  816. }
  817. // (fps-2)/4 (->30)
  818. v->frmrtq_postproc = get_bits(gb, 3); //common
  819. // (bitrate-32kbps)/64kbps
  820. v->bitrtq_postproc = get_bits(gb, 5); //common
  821. v->postprocflag = get_bits1(gb); //common
  822. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  823. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  824. v->s.avctx->width = v->s.avctx->coded_width;
  825. v->s.avctx->height = v->s.avctx->coded_height;
  826. v->broadcast = get_bits1(gb);
  827. v->interlace = get_bits1(gb);
  828. v->tfcntrflag = get_bits1(gb);
  829. v->finterpflag = get_bits1(gb);
  830. skip_bits1(gb); // reserved
  831. v->s.h_edge_pos = v->s.avctx->coded_width;
  832. v->s.v_edge_pos = v->s.avctx->coded_height;
  833. av_log(v->s.avctx, AV_LOG_DEBUG,
  834. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  835. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  836. "TFCTRflag=%i, FINTERPflag=%i\n",
  837. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  838. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  839. v->tfcntrflag, v->finterpflag
  840. );
  841. v->psf = get_bits1(gb);
  842. if(v->psf) { //PsF, 6.1.13
  843. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  844. return -1;
  845. }
  846. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  847. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  848. int w, h, ar = 0;
  849. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  850. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  851. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  852. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  853. if(get_bits1(gb))
  854. ar = get_bits(gb, 4);
  855. if(ar && ar < 14){
  856. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  857. }else if(ar == 15){
  858. w = get_bits(gb, 8);
  859. h = get_bits(gb, 8);
  860. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  861. }
  862. if(get_bits1(gb)){ //framerate stuff
  863. if(get_bits1(gb)) {
  864. v->s.avctx->time_base.num = 32;
  865. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  866. } else {
  867. int nr, dr;
  868. nr = get_bits(gb, 8);
  869. dr = get_bits(gb, 4);
  870. if(nr && nr < 8 && dr && dr < 3){
  871. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  872. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  873. }
  874. }
  875. }
  876. if(get_bits1(gb)){
  877. v->color_prim = get_bits(gb, 8);
  878. v->transfer_char = get_bits(gb, 8);
  879. v->matrix_coef = get_bits(gb, 8);
  880. }
  881. }
  882. v->hrd_param_flag = get_bits1(gb);
  883. if(v->hrd_param_flag) {
  884. int i;
  885. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  886. skip_bits(gb, 4); //bitrate exponent
  887. skip_bits(gb, 4); //buffer size exponent
  888. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  889. skip_bits(gb, 16); //hrd_rate[n]
  890. skip_bits(gb, 16); //hrd_buffer[n]
  891. }
  892. }
  893. return 0;
  894. }
  895. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  896. {
  897. VC1Context *v = avctx->priv_data;
  898. int i, blink, clentry, refdist;
  899. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  900. blink = get_bits1(gb); // broken link
  901. clentry = get_bits1(gb); // closed entry
  902. v->panscanflag = get_bits1(gb);
  903. refdist = get_bits1(gb); // refdist flag
  904. v->s.loop_filter = get_bits1(gb);
  905. v->fastuvmc = get_bits1(gb);
  906. v->extended_mv = get_bits1(gb);
  907. v->dquant = get_bits(gb, 2);
  908. v->vstransform = get_bits1(gb);
  909. v->overlap = get_bits1(gb);
  910. v->quantizer_mode = get_bits(gb, 2);
  911. if(v->hrd_param_flag){
  912. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  913. skip_bits(gb, 8); //hrd_full[n]
  914. }
  915. }
  916. if(get_bits1(gb)){
  917. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  918. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  919. }
  920. if(v->extended_mv)
  921. v->extended_dmv = get_bits1(gb);
  922. if(get_bits1(gb)) {
  923. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  924. skip_bits(gb, 3); // Y range, ignored for now
  925. }
  926. if(get_bits1(gb)) {
  927. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  928. skip_bits(gb, 3); // UV range, ignored for now
  929. }
  930. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  931. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  932. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  933. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  934. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  935. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  936. return 0;
  937. }
  938. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  939. {
  940. int pqindex, lowquant, status;
  941. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  942. skip_bits(gb, 2); //framecnt unused
  943. v->rangeredfrm = 0;
  944. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  945. v->s.pict_type = get_bits1(gb);
  946. if (v->s.avctx->max_b_frames) {
  947. if (!v->s.pict_type) {
  948. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  949. else v->s.pict_type = B_TYPE;
  950. } else v->s.pict_type = P_TYPE;
  951. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  952. v->bi_type = 0;
  953. if(v->s.pict_type == B_TYPE) {
  954. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  955. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  956. if(v->bfraction == 0) {
  957. v->s.pict_type = BI_TYPE;
  958. }
  959. }
  960. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  961. skip_bits(gb, 7); // skip buffer fullness
  962. /* calculate RND */
  963. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  964. v->rnd = 1;
  965. if(v->s.pict_type == P_TYPE)
  966. v->rnd ^= 1;
  967. /* Quantizer stuff */
  968. pqindex = get_bits(gb, 5);
  969. if(!pqindex) return -1;
  970. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  971. v->pq = ff_vc1_pquant_table[0][pqindex];
  972. else
  973. v->pq = ff_vc1_pquant_table[1][pqindex];
  974. v->pquantizer = 1;
  975. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  976. v->pquantizer = pqindex < 9;
  977. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  978. v->pquantizer = 0;
  979. v->pqindex = pqindex;
  980. if (pqindex < 9) v->halfpq = get_bits1(gb);
  981. else v->halfpq = 0;
  982. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  983. v->pquantizer = get_bits1(gb);
  984. v->dquantfrm = 0;
  985. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  986. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  987. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  988. v->range_x = 1 << (v->k_x - 1);
  989. v->range_y = 1 << (v->k_y - 1);
  990. if (v->profile == PROFILE_ADVANCED)
  991. {
  992. if (v->postprocflag) v->postproc = get_bits1(gb);
  993. }
  994. else
  995. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  996. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  997. v->x8_type = get_bits1(gb);
  998. }else v->x8_type = 0;
  999. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1000. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1001. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1002. switch(v->s.pict_type) {
  1003. case P_TYPE:
  1004. if (v->pq < 5) v->tt_index = 0;
  1005. else if(v->pq < 13) v->tt_index = 1;
  1006. else v->tt_index = 2;
  1007. lowquant = (v->pq > 12) ? 0 : 1;
  1008. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1009. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1010. {
  1011. int scale, shift, i;
  1012. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1013. v->lumscale = get_bits(gb, 6);
  1014. v->lumshift = get_bits(gb, 6);
  1015. v->use_ic = 1;
  1016. /* fill lookup tables for intensity compensation */
  1017. if(!v->lumscale) {
  1018. scale = -64;
  1019. shift = (255 - v->lumshift * 2) << 6;
  1020. if(v->lumshift > 31)
  1021. shift += 128 << 6;
  1022. } else {
  1023. scale = v->lumscale + 32;
  1024. if(v->lumshift > 31)
  1025. shift = (v->lumshift - 64) << 6;
  1026. else
  1027. shift = v->lumshift << 6;
  1028. }
  1029. for(i = 0; i < 256; i++) {
  1030. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1031. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1032. }
  1033. }
  1034. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1035. v->s.quarter_sample = 0;
  1036. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1037. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1038. v->s.quarter_sample = 0;
  1039. else
  1040. v->s.quarter_sample = 1;
  1041. } else
  1042. v->s.quarter_sample = 1;
  1043. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1044. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1045. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1046. || v->mv_mode == MV_PMODE_MIXED_MV)
  1047. {
  1048. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1049. if (status < 0) return -1;
  1050. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1051. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1052. } else {
  1053. v->mv_type_is_raw = 0;
  1054. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1055. }
  1056. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1057. if (status < 0) return -1;
  1058. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1059. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1060. /* Hopefully this is correct for P frames */
  1061. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1062. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1063. if (v->dquant)
  1064. {
  1065. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1066. vop_dquant_decoding(v);
  1067. }
  1068. v->ttfrm = 0; //FIXME Is that so ?
  1069. if (v->vstransform)
  1070. {
  1071. v->ttmbf = get_bits1(gb);
  1072. if (v->ttmbf)
  1073. {
  1074. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1075. }
  1076. } else {
  1077. v->ttmbf = 1;
  1078. v->ttfrm = TT_8X8;
  1079. }
  1080. break;
  1081. case B_TYPE:
  1082. if (v->pq < 5) v->tt_index = 0;
  1083. else if(v->pq < 13) v->tt_index = 1;
  1084. else v->tt_index = 2;
  1085. lowquant = (v->pq > 12) ? 0 : 1;
  1086. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1087. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1088. v->s.mspel = v->s.quarter_sample;
  1089. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1090. if (status < 0) return -1;
  1091. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1092. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1093. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. v->s.mv_table_index = get_bits(gb, 2);
  1098. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1099. if (v->dquant)
  1100. {
  1101. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1102. vop_dquant_decoding(v);
  1103. }
  1104. v->ttfrm = 0;
  1105. if (v->vstransform)
  1106. {
  1107. v->ttmbf = get_bits1(gb);
  1108. if (v->ttmbf)
  1109. {
  1110. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1111. }
  1112. } else {
  1113. v->ttmbf = 1;
  1114. v->ttfrm = TT_8X8;
  1115. }
  1116. break;
  1117. }
  1118. if(!v->x8_type)
  1119. {
  1120. /* AC Syntax */
  1121. v->c_ac_table_index = decode012(gb);
  1122. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1123. {
  1124. v->y_ac_table_index = decode012(gb);
  1125. }
  1126. /* DC Syntax */
  1127. v->s.dc_table_index = get_bits1(gb);
  1128. }
  1129. if(v->s.pict_type == BI_TYPE) {
  1130. v->s.pict_type = B_TYPE;
  1131. v->bi_type = 1;
  1132. }
  1133. return 0;
  1134. }
  1135. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1136. {
  1137. int pqindex, lowquant;
  1138. int status;
  1139. v->p_frame_skipped = 0;
  1140. if(v->interlace){
  1141. v->fcm = decode012(gb);
  1142. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1143. }
  1144. switch(get_unary(gb, 0, 4)) {
  1145. case 0:
  1146. v->s.pict_type = P_TYPE;
  1147. break;
  1148. case 1:
  1149. v->s.pict_type = B_TYPE;
  1150. break;
  1151. case 2:
  1152. v->s.pict_type = I_TYPE;
  1153. break;
  1154. case 3:
  1155. v->s.pict_type = BI_TYPE;
  1156. break;
  1157. case 4:
  1158. v->s.pict_type = P_TYPE; // skipped pic
  1159. v->p_frame_skipped = 1;
  1160. return 0;
  1161. }
  1162. if(v->tfcntrflag)
  1163. skip_bits(gb, 8);
  1164. if(v->broadcast) {
  1165. if(!v->interlace || v->psf) {
  1166. v->rptfrm = get_bits(gb, 2);
  1167. } else {
  1168. v->tff = get_bits1(gb);
  1169. v->rptfrm = get_bits1(gb);
  1170. }
  1171. }
  1172. if(v->panscanflag) {
  1173. //...
  1174. }
  1175. v->rnd = get_bits1(gb);
  1176. if(v->interlace)
  1177. v->uvsamp = get_bits1(gb);
  1178. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1179. if(v->s.pict_type == B_TYPE) {
  1180. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1181. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1182. if(v->bfraction == 0) {
  1183. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1184. }
  1185. }
  1186. pqindex = get_bits(gb, 5);
  1187. if(!pqindex) return -1;
  1188. v->pqindex = pqindex;
  1189. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1190. v->pq = ff_vc1_pquant_table[0][pqindex];
  1191. else
  1192. v->pq = ff_vc1_pquant_table[1][pqindex];
  1193. v->pquantizer = 1;
  1194. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1195. v->pquantizer = pqindex < 9;
  1196. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1197. v->pquantizer = 0;
  1198. v->pqindex = pqindex;
  1199. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1200. else v->halfpq = 0;
  1201. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1202. v->pquantizer = get_bits1(gb);
  1203. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1204. switch(v->s.pict_type) {
  1205. case I_TYPE:
  1206. case BI_TYPE:
  1207. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1208. if (status < 0) return -1;
  1209. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1210. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1211. v->condover = CONDOVER_NONE;
  1212. if(v->overlap && v->pq <= 8) {
  1213. v->condover = decode012(gb);
  1214. if(v->condover == CONDOVER_SELECT) {
  1215. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1216. if (status < 0) return -1;
  1217. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1218. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1219. }
  1220. }
  1221. break;
  1222. case P_TYPE:
  1223. if(v->postprocflag)
  1224. v->postproc = get_bits1(gb);
  1225. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1226. else v->mvrange = 0;
  1227. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1228. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1229. v->range_x = 1 << (v->k_x - 1);
  1230. v->range_y = 1 << (v->k_y - 1);
  1231. if (v->pq < 5) v->tt_index = 0;
  1232. else if(v->pq < 13) v->tt_index = 1;
  1233. else v->tt_index = 2;
  1234. lowquant = (v->pq > 12) ? 0 : 1;
  1235. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1236. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1237. {
  1238. int scale, shift, i;
  1239. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1240. v->lumscale = get_bits(gb, 6);
  1241. v->lumshift = get_bits(gb, 6);
  1242. /* fill lookup tables for intensity compensation */
  1243. if(!v->lumscale) {
  1244. scale = -64;
  1245. shift = (255 - v->lumshift * 2) << 6;
  1246. if(v->lumshift > 31)
  1247. shift += 128 << 6;
  1248. } else {
  1249. scale = v->lumscale + 32;
  1250. if(v->lumshift > 31)
  1251. shift = (v->lumshift - 64) << 6;
  1252. else
  1253. shift = v->lumshift << 6;
  1254. }
  1255. for(i = 0; i < 256; i++) {
  1256. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1257. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1258. }
  1259. v->use_ic = 1;
  1260. }
  1261. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1262. v->s.quarter_sample = 0;
  1263. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1264. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1265. v->s.quarter_sample = 0;
  1266. else
  1267. v->s.quarter_sample = 1;
  1268. } else
  1269. v->s.quarter_sample = 1;
  1270. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1271. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1272. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1273. || v->mv_mode == MV_PMODE_MIXED_MV)
  1274. {
  1275. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1276. if (status < 0) return -1;
  1277. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1278. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1279. } else {
  1280. v->mv_type_is_raw = 0;
  1281. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1282. }
  1283. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1284. if (status < 0) return -1;
  1285. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1286. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1287. /* Hopefully this is correct for P frames */
  1288. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1289. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1290. if (v->dquant)
  1291. {
  1292. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1293. vop_dquant_decoding(v);
  1294. }
  1295. v->ttfrm = 0; //FIXME Is that so ?
  1296. if (v->vstransform)
  1297. {
  1298. v->ttmbf = get_bits1(gb);
  1299. if (v->ttmbf)
  1300. {
  1301. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1302. }
  1303. } else {
  1304. v->ttmbf = 1;
  1305. v->ttfrm = TT_8X8;
  1306. }
  1307. break;
  1308. case B_TYPE:
  1309. if(v->postprocflag)
  1310. v->postproc = get_bits1(gb);
  1311. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1312. else v->mvrange = 0;
  1313. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1314. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1315. v->range_x = 1 << (v->k_x - 1);
  1316. v->range_y = 1 << (v->k_y - 1);
  1317. if (v->pq < 5) v->tt_index = 0;
  1318. else if(v->pq < 13) v->tt_index = 1;
  1319. else v->tt_index = 2;
  1320. lowquant = (v->pq > 12) ? 0 : 1;
  1321. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1322. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1323. v->s.mspel = v->s.quarter_sample;
  1324. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1325. if (status < 0) return -1;
  1326. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1327. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1328. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1329. if (status < 0) return -1;
  1330. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1331. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1332. v->s.mv_table_index = get_bits(gb, 2);
  1333. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1334. if (v->dquant)
  1335. {
  1336. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1337. vop_dquant_decoding(v);
  1338. }
  1339. v->ttfrm = 0;
  1340. if (v->vstransform)
  1341. {
  1342. v->ttmbf = get_bits1(gb);
  1343. if (v->ttmbf)
  1344. {
  1345. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1346. }
  1347. } else {
  1348. v->ttmbf = 1;
  1349. v->ttfrm = TT_8X8;
  1350. }
  1351. break;
  1352. }
  1353. /* AC Syntax */
  1354. v->c_ac_table_index = decode012(gb);
  1355. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1356. {
  1357. v->y_ac_table_index = decode012(gb);
  1358. }
  1359. /* DC Syntax */
  1360. v->s.dc_table_index = get_bits1(gb);
  1361. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1362. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1363. vop_dquant_decoding(v);
  1364. }
  1365. v->bi_type = 0;
  1366. if(v->s.pict_type == BI_TYPE) {
  1367. v->s.pict_type = B_TYPE;
  1368. v->bi_type = 1;
  1369. }
  1370. return 0;
  1371. }
  1372. /***********************************************************************/
  1373. /**
  1374. * @defgroup block VC-1 Block-level functions
  1375. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1376. * @{
  1377. */
  1378. /**
  1379. * @def GET_MQUANT
  1380. * @brief Get macroblock-level quantizer scale
  1381. */
  1382. #define GET_MQUANT() \
  1383. if (v->dquantfrm) \
  1384. { \
  1385. int edges = 0; \
  1386. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1387. { \
  1388. if (v->dqbilevel) \
  1389. { \
  1390. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1391. } \
  1392. else \
  1393. { \
  1394. mqdiff = get_bits(gb, 3); \
  1395. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1396. else mquant = get_bits(gb, 5); \
  1397. } \
  1398. } \
  1399. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1400. edges = 1 << v->dqsbedge; \
  1401. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1402. edges = (3 << v->dqsbedge) % 15; \
  1403. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1404. edges = 15; \
  1405. if((edges&1) && !s->mb_x) \
  1406. mquant = v->altpq; \
  1407. if((edges&2) && s->first_slice_line) \
  1408. mquant = v->altpq; \
  1409. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1410. mquant = v->altpq; \
  1411. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1412. mquant = v->altpq; \
  1413. }
  1414. /**
  1415. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1416. * @brief Get MV differentials
  1417. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1418. * @param _dmv_x Horizontal differential for decoded MV
  1419. * @param _dmv_y Vertical differential for decoded MV
  1420. */
  1421. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1422. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1423. VC1_MV_DIFF_VLC_BITS, 2); \
  1424. if (index > 36) \
  1425. { \
  1426. mb_has_coeffs = 1; \
  1427. index -= 37; \
  1428. } \
  1429. else mb_has_coeffs = 0; \
  1430. s->mb_intra = 0; \
  1431. if (!index) { _dmv_x = _dmv_y = 0; } \
  1432. else if (index == 35) \
  1433. { \
  1434. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1435. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1436. } \
  1437. else if (index == 36) \
  1438. { \
  1439. _dmv_x = 0; \
  1440. _dmv_y = 0; \
  1441. s->mb_intra = 1; \
  1442. } \
  1443. else \
  1444. { \
  1445. index1 = index%6; \
  1446. if (!s->quarter_sample && index1 == 5) val = 1; \
  1447. else val = 0; \
  1448. if(size_table[index1] - val > 0) \
  1449. val = get_bits(gb, size_table[index1] - val); \
  1450. else val = 0; \
  1451. sign = 0 - (val&1); \
  1452. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1453. \
  1454. index1 = index/6; \
  1455. if (!s->quarter_sample && index1 == 5) val = 1; \
  1456. else val = 0; \
  1457. if(size_table[index1] - val > 0) \
  1458. val = get_bits(gb, size_table[index1] - val); \
  1459. else val = 0; \
  1460. sign = 0 - (val&1); \
  1461. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1462. }
  1463. /** Predict and set motion vector
  1464. */
  1465. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1466. {
  1467. int xy, wrap, off = 0;
  1468. int16_t *A, *B, *C;
  1469. int px, py;
  1470. int sum;
  1471. /* scale MV difference to be quad-pel */
  1472. dmv_x <<= 1 - s->quarter_sample;
  1473. dmv_y <<= 1 - s->quarter_sample;
  1474. wrap = s->b8_stride;
  1475. xy = s->block_index[n];
  1476. if(s->mb_intra){
  1477. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1478. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1479. s->current_picture.motion_val[1][xy][0] = 0;
  1480. s->current_picture.motion_val[1][xy][1] = 0;
  1481. if(mv1) { /* duplicate motion data for 1-MV block */
  1482. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1483. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1484. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1485. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1486. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1487. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1488. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1489. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1490. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1491. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1492. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1493. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1494. }
  1495. return;
  1496. }
  1497. C = s->current_picture.motion_val[0][xy - 1];
  1498. A = s->current_picture.motion_val[0][xy - wrap];
  1499. if(mv1)
  1500. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1501. else {
  1502. //in 4-MV mode different blocks have different B predictor position
  1503. switch(n){
  1504. case 0:
  1505. off = (s->mb_x > 0) ? -1 : 1;
  1506. break;
  1507. case 1:
  1508. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1509. break;
  1510. case 2:
  1511. off = 1;
  1512. break;
  1513. case 3:
  1514. off = -1;
  1515. }
  1516. }
  1517. B = s->current_picture.motion_val[0][xy - wrap + off];
  1518. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1519. if(s->mb_width == 1) {
  1520. px = A[0];
  1521. py = A[1];
  1522. } else {
  1523. px = mid_pred(A[0], B[0], C[0]);
  1524. py = mid_pred(A[1], B[1], C[1]);
  1525. }
  1526. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1527. px = C[0];
  1528. py = C[1];
  1529. } else {
  1530. px = py = 0;
  1531. }
  1532. /* Pullback MV as specified in 8.3.5.3.4 */
  1533. {
  1534. int qx, qy, X, Y;
  1535. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1536. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1537. X = (s->mb_width << 6) - 4;
  1538. Y = (s->mb_height << 6) - 4;
  1539. if(mv1) {
  1540. if(qx + px < -60) px = -60 - qx;
  1541. if(qy + py < -60) py = -60 - qy;
  1542. } else {
  1543. if(qx + px < -28) px = -28 - qx;
  1544. if(qy + py < -28) py = -28 - qy;
  1545. }
  1546. if(qx + px > X) px = X - qx;
  1547. if(qy + py > Y) py = Y - qy;
  1548. }
  1549. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1550. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1551. if(is_intra[xy - wrap])
  1552. sum = FFABS(px) + FFABS(py);
  1553. else
  1554. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1555. if(sum > 32) {
  1556. if(get_bits1(&s->gb)) {
  1557. px = A[0];
  1558. py = A[1];
  1559. } else {
  1560. px = C[0];
  1561. py = C[1];
  1562. }
  1563. } else {
  1564. if(is_intra[xy - 1])
  1565. sum = FFABS(px) + FFABS(py);
  1566. else
  1567. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1568. if(sum > 32) {
  1569. if(get_bits1(&s->gb)) {
  1570. px = A[0];
  1571. py = A[1];
  1572. } else {
  1573. px = C[0];
  1574. py = C[1];
  1575. }
  1576. }
  1577. }
  1578. }
  1579. /* store MV using signed modulus of MV range defined in 4.11 */
  1580. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1581. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1582. if(mv1) { /* duplicate motion data for 1-MV block */
  1583. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1584. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1585. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1586. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1587. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1588. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1589. }
  1590. }
  1591. /** Motion compensation for direct or interpolated blocks in B-frames
  1592. */
  1593. static void vc1_interp_mc(VC1Context *v)
  1594. {
  1595. MpegEncContext *s = &v->s;
  1596. DSPContext *dsp = &v->s.dsp;
  1597. uint8_t *srcY, *srcU, *srcV;
  1598. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1599. if(!v->s.next_picture.data[0])return;
  1600. mx = s->mv[1][0][0];
  1601. my = s->mv[1][0][1];
  1602. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1603. uvmy = (my + ((my & 3) == 3)) >> 1;
  1604. if(v->fastuvmc) {
  1605. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1606. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1607. }
  1608. srcY = s->next_picture.data[0];
  1609. srcU = s->next_picture.data[1];
  1610. srcV = s->next_picture.data[2];
  1611. src_x = s->mb_x * 16 + (mx >> 2);
  1612. src_y = s->mb_y * 16 + (my >> 2);
  1613. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1614. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1615. if(v->profile != PROFILE_ADVANCED){
  1616. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1617. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1618. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1619. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1620. }else{
  1621. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1622. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1623. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1624. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1625. }
  1626. srcY += src_y * s->linesize + src_x;
  1627. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1628. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1629. /* for grayscale we should not try to read from unknown area */
  1630. if(s->flags & CODEC_FLAG_GRAY) {
  1631. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1632. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1633. }
  1634. if(v->rangeredfrm
  1635. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1636. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1637. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1638. srcY -= s->mspel * (1 + s->linesize);
  1639. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1640. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1641. srcY = s->edge_emu_buffer;
  1642. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1643. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1644. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1645. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1646. srcU = uvbuf;
  1647. srcV = uvbuf + 16;
  1648. /* if we deal with range reduction we need to scale source blocks */
  1649. if(v->rangeredfrm) {
  1650. int i, j;
  1651. uint8_t *src, *src2;
  1652. src = srcY;
  1653. for(j = 0; j < 17 + s->mspel*2; j++) {
  1654. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1655. src += s->linesize;
  1656. }
  1657. src = srcU; src2 = srcV;
  1658. for(j = 0; j < 9; j++) {
  1659. for(i = 0; i < 9; i++) {
  1660. src[i] = ((src[i] - 128) >> 1) + 128;
  1661. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1662. }
  1663. src += s->uvlinesize;
  1664. src2 += s->uvlinesize;
  1665. }
  1666. }
  1667. srcY += s->mspel * (1 + s->linesize);
  1668. }
  1669. mx >>= 1;
  1670. my >>= 1;
  1671. dxy = ((my & 1) << 1) | (mx & 1);
  1672. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1673. if(s->flags & CODEC_FLAG_GRAY) return;
  1674. /* Chroma MC always uses qpel blilinear */
  1675. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1676. uvmx = (uvmx&3)<<1;
  1677. uvmy = (uvmy&3)<<1;
  1678. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1679. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1680. }
  1681. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1682. {
  1683. int n = bfrac;
  1684. #if B_FRACTION_DEN==256
  1685. if(inv)
  1686. n -= 256;
  1687. if(!qs)
  1688. return 2 * ((value * n + 255) >> 9);
  1689. return (value * n + 128) >> 8;
  1690. #else
  1691. if(inv)
  1692. n -= B_FRACTION_DEN;
  1693. if(!qs)
  1694. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1695. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1696. #endif
  1697. }
  1698. /** Reconstruct motion vector for B-frame and do motion compensation
  1699. */
  1700. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1701. {
  1702. if(v->use_ic) {
  1703. v->mv_mode2 = v->mv_mode;
  1704. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1705. }
  1706. if(direct) {
  1707. vc1_mc_1mv(v, 0);
  1708. vc1_interp_mc(v);
  1709. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1710. return;
  1711. }
  1712. if(mode == BMV_TYPE_INTERPOLATED) {
  1713. vc1_mc_1mv(v, 0);
  1714. vc1_interp_mc(v);
  1715. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1716. return;
  1717. }
  1718. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1719. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1720. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1721. }
  1722. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1723. {
  1724. MpegEncContext *s = &v->s;
  1725. int xy, wrap, off = 0;
  1726. int16_t *A, *B, *C;
  1727. int px, py;
  1728. int sum;
  1729. int r_x, r_y;
  1730. const uint8_t *is_intra = v->mb_type[0];
  1731. r_x = v->range_x;
  1732. r_y = v->range_y;
  1733. /* scale MV difference to be quad-pel */
  1734. dmv_x[0] <<= 1 - s->quarter_sample;
  1735. dmv_y[0] <<= 1 - s->quarter_sample;
  1736. dmv_x[1] <<= 1 - s->quarter_sample;
  1737. dmv_y[1] <<= 1 - s->quarter_sample;
  1738. wrap = s->b8_stride;
  1739. xy = s->block_index[0];
  1740. if(s->mb_intra) {
  1741. s->current_picture.motion_val[0][xy][0] =
  1742. s->current_picture.motion_val[0][xy][1] =
  1743. s->current_picture.motion_val[1][xy][0] =
  1744. s->current_picture.motion_val[1][xy][1] = 0;
  1745. return;
  1746. }
  1747. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1748. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1749. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1750. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1751. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1752. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1753. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1754. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1755. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1756. if(direct) {
  1757. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1758. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1759. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1760. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1761. return;
  1762. }
  1763. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1764. C = s->current_picture.motion_val[0][xy - 2];
  1765. A = s->current_picture.motion_val[0][xy - wrap*2];
  1766. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1767. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1768. if(!s->mb_x) C[0] = C[1] = 0;
  1769. if(!s->first_slice_line) { // predictor A is not out of bounds
  1770. if(s->mb_width == 1) {
  1771. px = A[0];
  1772. py = A[1];
  1773. } else {
  1774. px = mid_pred(A[0], B[0], C[0]);
  1775. py = mid_pred(A[1], B[1], C[1]);
  1776. }
  1777. } else if(s->mb_x) { // predictor C is not out of bounds
  1778. px = C[0];
  1779. py = C[1];
  1780. } else {
  1781. px = py = 0;
  1782. }
  1783. /* Pullback MV as specified in 8.3.5.3.4 */
  1784. {
  1785. int qx, qy, X, Y;
  1786. if(v->profile < PROFILE_ADVANCED) {
  1787. qx = (s->mb_x << 5);
  1788. qy = (s->mb_y << 5);
  1789. X = (s->mb_width << 5) - 4;
  1790. Y = (s->mb_height << 5) - 4;
  1791. if(qx + px < -28) px = -28 - qx;
  1792. if(qy + py < -28) py = -28 - qy;
  1793. if(qx + px > X) px = X - qx;
  1794. if(qy + py > Y) py = Y - qy;
  1795. } else {
  1796. qx = (s->mb_x << 6);
  1797. qy = (s->mb_y << 6);
  1798. X = (s->mb_width << 6) - 4;
  1799. Y = (s->mb_height << 6) - 4;
  1800. if(qx + px < -60) px = -60 - qx;
  1801. if(qy + py < -60) py = -60 - qy;
  1802. if(qx + px > X) px = X - qx;
  1803. if(qy + py > Y) py = Y - qy;
  1804. }
  1805. }
  1806. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1807. if(0 && !s->first_slice_line && s->mb_x) {
  1808. if(is_intra[xy - wrap])
  1809. sum = FFABS(px) + FFABS(py);
  1810. else
  1811. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1812. if(sum > 32) {
  1813. if(get_bits1(&s->gb)) {
  1814. px = A[0];
  1815. py = A[1];
  1816. } else {
  1817. px = C[0];
  1818. py = C[1];
  1819. }
  1820. } else {
  1821. if(is_intra[xy - 2])
  1822. sum = FFABS(px) + FFABS(py);
  1823. else
  1824. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1825. if(sum > 32) {
  1826. if(get_bits1(&s->gb)) {
  1827. px = A[0];
  1828. py = A[1];
  1829. } else {
  1830. px = C[0];
  1831. py = C[1];
  1832. }
  1833. }
  1834. }
  1835. }
  1836. /* store MV using signed modulus of MV range defined in 4.11 */
  1837. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1838. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1839. }
  1840. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1841. C = s->current_picture.motion_val[1][xy - 2];
  1842. A = s->current_picture.motion_val[1][xy - wrap*2];
  1843. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1844. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1845. if(!s->mb_x) C[0] = C[1] = 0;
  1846. if(!s->first_slice_line) { // predictor A is not out of bounds
  1847. if(s->mb_width == 1) {
  1848. px = A[0];
  1849. py = A[1];
  1850. } else {
  1851. px = mid_pred(A[0], B[0], C[0]);
  1852. py = mid_pred(A[1], B[1], C[1]);
  1853. }
  1854. } else if(s->mb_x) { // predictor C is not out of bounds
  1855. px = C[0];
  1856. py = C[1];
  1857. } else {
  1858. px = py = 0;
  1859. }
  1860. /* Pullback MV as specified in 8.3.5.3.4 */
  1861. {
  1862. int qx, qy, X, Y;
  1863. if(v->profile < PROFILE_ADVANCED) {
  1864. qx = (s->mb_x << 5);
  1865. qy = (s->mb_y << 5);
  1866. X = (s->mb_width << 5) - 4;
  1867. Y = (s->mb_height << 5) - 4;
  1868. if(qx + px < -28) px = -28 - qx;
  1869. if(qy + py < -28) py = -28 - qy;
  1870. if(qx + px > X) px = X - qx;
  1871. if(qy + py > Y) py = Y - qy;
  1872. } else {
  1873. qx = (s->mb_x << 6);
  1874. qy = (s->mb_y << 6);
  1875. X = (s->mb_width << 6) - 4;
  1876. Y = (s->mb_height << 6) - 4;
  1877. if(qx + px < -60) px = -60 - qx;
  1878. if(qy + py < -60) py = -60 - qy;
  1879. if(qx + px > X) px = X - qx;
  1880. if(qy + py > Y) py = Y - qy;
  1881. }
  1882. }
  1883. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1884. if(0 && !s->first_slice_line && s->mb_x) {
  1885. if(is_intra[xy - wrap])
  1886. sum = FFABS(px) + FFABS(py);
  1887. else
  1888. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1889. if(sum > 32) {
  1890. if(get_bits1(&s->gb)) {
  1891. px = A[0];
  1892. py = A[1];
  1893. } else {
  1894. px = C[0];
  1895. py = C[1];
  1896. }
  1897. } else {
  1898. if(is_intra[xy - 2])
  1899. sum = FFABS(px) + FFABS(py);
  1900. else
  1901. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1902. if(sum > 32) {
  1903. if(get_bits1(&s->gb)) {
  1904. px = A[0];
  1905. py = A[1];
  1906. } else {
  1907. px = C[0];
  1908. py = C[1];
  1909. }
  1910. }
  1911. }
  1912. }
  1913. /* store MV using signed modulus of MV range defined in 4.11 */
  1914. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1915. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1916. }
  1917. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1918. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1919. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1920. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1921. }
  1922. /** Get predicted DC value for I-frames only
  1923. * prediction dir: left=0, top=1
  1924. * @param s MpegEncContext
  1925. * @param[in] n block index in the current MB
  1926. * @param dc_val_ptr Pointer to DC predictor
  1927. * @param dir_ptr Prediction direction for use in AC prediction
  1928. */
  1929. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1930. int16_t **dc_val_ptr, int *dir_ptr)
  1931. {
  1932. int a, b, c, wrap, pred, scale;
  1933. int16_t *dc_val;
  1934. static const uint16_t dcpred[32] = {
  1935. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1936. 114, 102, 93, 85, 79, 73, 68, 64,
  1937. 60, 57, 54, 51, 49, 47, 45, 43,
  1938. 41, 39, 38, 37, 35, 34, 33
  1939. };
  1940. /* find prediction - wmv3_dc_scale always used here in fact */
  1941. if (n < 4) scale = s->y_dc_scale;
  1942. else scale = s->c_dc_scale;
  1943. wrap = s->block_wrap[n];
  1944. dc_val= s->dc_val[0] + s->block_index[n];
  1945. /* B A
  1946. * C X
  1947. */
  1948. c = dc_val[ - 1];
  1949. b = dc_val[ - 1 - wrap];
  1950. a = dc_val[ - wrap];
  1951. if (pq < 9 || !overlap)
  1952. {
  1953. /* Set outer values */
  1954. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1955. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1956. }
  1957. else
  1958. {
  1959. /* Set outer values */
  1960. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1961. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1962. }
  1963. if (abs(a - b) <= abs(b - c)) {
  1964. pred = c;
  1965. *dir_ptr = 1;//left
  1966. } else {
  1967. pred = a;
  1968. *dir_ptr = 0;//top
  1969. }
  1970. /* update predictor */
  1971. *dc_val_ptr = &dc_val[0];
  1972. return pred;
  1973. }
  1974. /** Get predicted DC value
  1975. * prediction dir: left=0, top=1
  1976. * @param s MpegEncContext
  1977. * @param[in] n block index in the current MB
  1978. * @param dc_val_ptr Pointer to DC predictor
  1979. * @param dir_ptr Prediction direction for use in AC prediction
  1980. */
  1981. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1982. int a_avail, int c_avail,
  1983. int16_t **dc_val_ptr, int *dir_ptr)
  1984. {
  1985. int a, b, c, wrap, pred, scale;
  1986. int16_t *dc_val;
  1987. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1988. int q1, q2 = 0;
  1989. /* find prediction - wmv3_dc_scale always used here in fact */
  1990. if (n < 4) scale = s->y_dc_scale;
  1991. else scale = s->c_dc_scale;
  1992. wrap = s->block_wrap[n];
  1993. dc_val= s->dc_val[0] + s->block_index[n];
  1994. /* B A
  1995. * C X
  1996. */
  1997. c = dc_val[ - 1];
  1998. b = dc_val[ - 1 - wrap];
  1999. a = dc_val[ - wrap];
  2000. /* scale predictors if needed */
  2001. q1 = s->current_picture.qscale_table[mb_pos];
  2002. if(c_avail && (n!= 1 && n!=3)) {
  2003. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2004. if(q2 && q2 != q1)
  2005. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2006. }
  2007. if(a_avail && (n!= 2 && n!=3)) {
  2008. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2009. if(q2 && q2 != q1)
  2010. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2011. }
  2012. if(a_avail && c_avail && (n!=3)) {
  2013. int off = mb_pos;
  2014. if(n != 1) off--;
  2015. if(n != 2) off -= s->mb_stride;
  2016. q2 = s->current_picture.qscale_table[off];
  2017. if(q2 && q2 != q1)
  2018. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2019. }
  2020. if(a_avail && c_avail) {
  2021. if(abs(a - b) <= abs(b - c)) {
  2022. pred = c;
  2023. *dir_ptr = 1;//left
  2024. } else {
  2025. pred = a;
  2026. *dir_ptr = 0;//top
  2027. }
  2028. } else if(a_avail) {
  2029. pred = a;
  2030. *dir_ptr = 0;//top
  2031. } else if(c_avail) {
  2032. pred = c;
  2033. *dir_ptr = 1;//left
  2034. } else {
  2035. pred = 0;
  2036. *dir_ptr = 1;//left
  2037. }
  2038. /* update predictor */
  2039. *dc_val_ptr = &dc_val[0];
  2040. return pred;
  2041. }
  2042. /**
  2043. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2044. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2045. * @{
  2046. */
  2047. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2048. {
  2049. int xy, wrap, pred, a, b, c;
  2050. xy = s->block_index[n];
  2051. wrap = s->b8_stride;
  2052. /* B C
  2053. * A X
  2054. */
  2055. a = s->coded_block[xy - 1 ];
  2056. b = s->coded_block[xy - 1 - wrap];
  2057. c = s->coded_block[xy - wrap];
  2058. if (b == c) {
  2059. pred = a;
  2060. } else {
  2061. pred = c;
  2062. }
  2063. /* store value */
  2064. *coded_block_ptr = &s->coded_block[xy];
  2065. return pred;
  2066. }
  2067. /**
  2068. * Decode one AC coefficient
  2069. * @param v The VC1 context
  2070. * @param last Last coefficient
  2071. * @param skip How much zero coefficients to skip
  2072. * @param value Decoded AC coefficient value
  2073. * @see 8.1.3.4
  2074. */
  2075. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2076. {
  2077. GetBitContext *gb = &v->s.gb;
  2078. int index, escape, run = 0, level = 0, lst = 0;
  2079. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2080. if (index != vc1_ac_sizes[codingset] - 1) {
  2081. run = vc1_index_decode_table[codingset][index][0];
  2082. level = vc1_index_decode_table[codingset][index][1];
  2083. lst = index >= vc1_last_decode_table[codingset];
  2084. if(get_bits1(gb))
  2085. level = -level;
  2086. } else {
  2087. escape = decode210(gb);
  2088. if (escape != 2) {
  2089. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2090. run = vc1_index_decode_table[codingset][index][0];
  2091. level = vc1_index_decode_table[codingset][index][1];
  2092. lst = index >= vc1_last_decode_table[codingset];
  2093. if(escape == 0) {
  2094. if(lst)
  2095. level += vc1_last_delta_level_table[codingset][run];
  2096. else
  2097. level += vc1_delta_level_table[codingset][run];
  2098. } else {
  2099. if(lst)
  2100. run += vc1_last_delta_run_table[codingset][level] + 1;
  2101. else
  2102. run += vc1_delta_run_table[codingset][level] + 1;
  2103. }
  2104. if(get_bits1(gb))
  2105. level = -level;
  2106. } else {
  2107. int sign;
  2108. lst = get_bits1(gb);
  2109. if(v->s.esc3_level_length == 0) {
  2110. if(v->pq < 8 || v->dquantfrm) { // table 59
  2111. v->s.esc3_level_length = get_bits(gb, 3);
  2112. if(!v->s.esc3_level_length)
  2113. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2114. } else { //table 60
  2115. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2116. }
  2117. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2118. }
  2119. run = get_bits(gb, v->s.esc3_run_length);
  2120. sign = get_bits1(gb);
  2121. level = get_bits(gb, v->s.esc3_level_length);
  2122. if(sign)
  2123. level = -level;
  2124. }
  2125. }
  2126. *last = lst;
  2127. *skip = run;
  2128. *value = level;
  2129. }
  2130. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2131. * @param v VC1Context
  2132. * @param block block to decode
  2133. * @param coded are AC coeffs present or not
  2134. * @param codingset set of VLC to decode data
  2135. */
  2136. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2137. {
  2138. GetBitContext *gb = &v->s.gb;
  2139. MpegEncContext *s = &v->s;
  2140. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2141. int run_diff, i;
  2142. int16_t *dc_val;
  2143. int16_t *ac_val, *ac_val2;
  2144. int dcdiff;
  2145. /* Get DC differential */
  2146. if (n < 4) {
  2147. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2148. } else {
  2149. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2150. }
  2151. if (dcdiff < 0){
  2152. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2153. return -1;
  2154. }
  2155. if (dcdiff)
  2156. {
  2157. if (dcdiff == 119 /* ESC index value */)
  2158. {
  2159. /* TODO: Optimize */
  2160. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2161. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2162. else dcdiff = get_bits(gb, 8);
  2163. }
  2164. else
  2165. {
  2166. if (v->pq == 1)
  2167. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2168. else if (v->pq == 2)
  2169. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2170. }
  2171. if (get_bits1(gb))
  2172. dcdiff = -dcdiff;
  2173. }
  2174. /* Prediction */
  2175. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2176. *dc_val = dcdiff;
  2177. /* Store the quantized DC coeff, used for prediction */
  2178. if (n < 4) {
  2179. block[0] = dcdiff * s->y_dc_scale;
  2180. } else {
  2181. block[0] = dcdiff * s->c_dc_scale;
  2182. }
  2183. /* Skip ? */
  2184. run_diff = 0;
  2185. i = 0;
  2186. if (!coded) {
  2187. goto not_coded;
  2188. }
  2189. //AC Decoding
  2190. i = 1;
  2191. {
  2192. int last = 0, skip, value;
  2193. const int8_t *zz_table;
  2194. int scale;
  2195. int k;
  2196. scale = v->pq * 2 + v->halfpq;
  2197. if(v->s.ac_pred) {
  2198. if(!dc_pred_dir)
  2199. zz_table = ff_vc1_horizontal_zz;
  2200. else
  2201. zz_table = ff_vc1_vertical_zz;
  2202. } else
  2203. zz_table = ff_vc1_normal_zz;
  2204. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2205. ac_val2 = ac_val;
  2206. if(dc_pred_dir) //left
  2207. ac_val -= 16;
  2208. else //top
  2209. ac_val -= 16 * s->block_wrap[n];
  2210. while (!last) {
  2211. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2212. i += skip;
  2213. if(i > 63)
  2214. break;
  2215. block[zz_table[i++]] = value;
  2216. }
  2217. /* apply AC prediction if needed */
  2218. if(s->ac_pred) {
  2219. if(dc_pred_dir) { //left
  2220. for(k = 1; k < 8; k++)
  2221. block[k << 3] += ac_val[k];
  2222. } else { //top
  2223. for(k = 1; k < 8; k++)
  2224. block[k] += ac_val[k + 8];
  2225. }
  2226. }
  2227. /* save AC coeffs for further prediction */
  2228. for(k = 1; k < 8; k++) {
  2229. ac_val2[k] = block[k << 3];
  2230. ac_val2[k + 8] = block[k];
  2231. }
  2232. /* scale AC coeffs */
  2233. for(k = 1; k < 64; k++)
  2234. if(block[k]) {
  2235. block[k] *= scale;
  2236. if(!v->pquantizer)
  2237. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2238. }
  2239. if(s->ac_pred) i = 63;
  2240. }
  2241. not_coded:
  2242. if(!coded) {
  2243. int k, scale;
  2244. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2245. ac_val2 = ac_val;
  2246. scale = v->pq * 2 + v->halfpq;
  2247. memset(ac_val2, 0, 16 * 2);
  2248. if(dc_pred_dir) {//left
  2249. ac_val -= 16;
  2250. if(s->ac_pred)
  2251. memcpy(ac_val2, ac_val, 8 * 2);
  2252. } else {//top
  2253. ac_val -= 16 * s->block_wrap[n];
  2254. if(s->ac_pred)
  2255. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2256. }
  2257. /* apply AC prediction if needed */
  2258. if(s->ac_pred) {
  2259. if(dc_pred_dir) { //left
  2260. for(k = 1; k < 8; k++) {
  2261. block[k << 3] = ac_val[k] * scale;
  2262. if(!v->pquantizer && block[k << 3])
  2263. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2264. }
  2265. } else { //top
  2266. for(k = 1; k < 8; k++) {
  2267. block[k] = ac_val[k + 8] * scale;
  2268. if(!v->pquantizer && block[k])
  2269. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2270. }
  2271. }
  2272. i = 63;
  2273. }
  2274. }
  2275. s->block_last_index[n] = i;
  2276. return 0;
  2277. }
  2278. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2279. * @param v VC1Context
  2280. * @param block block to decode
  2281. * @param coded are AC coeffs present or not
  2282. * @param codingset set of VLC to decode data
  2283. */
  2284. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2285. {
  2286. GetBitContext *gb = &v->s.gb;
  2287. MpegEncContext *s = &v->s;
  2288. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2289. int run_diff, i;
  2290. int16_t *dc_val;
  2291. int16_t *ac_val, *ac_val2;
  2292. int dcdiff;
  2293. int a_avail = v->a_avail, c_avail = v->c_avail;
  2294. int use_pred = s->ac_pred;
  2295. int scale;
  2296. int q1, q2 = 0;
  2297. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2298. /* Get DC differential */
  2299. if (n < 4) {
  2300. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2301. } else {
  2302. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2303. }
  2304. if (dcdiff < 0){
  2305. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2306. return -1;
  2307. }
  2308. if (dcdiff)
  2309. {
  2310. if (dcdiff == 119 /* ESC index value */)
  2311. {
  2312. /* TODO: Optimize */
  2313. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2314. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2315. else dcdiff = get_bits(gb, 8);
  2316. }
  2317. else
  2318. {
  2319. if (mquant == 1)
  2320. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2321. else if (mquant == 2)
  2322. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2323. }
  2324. if (get_bits1(gb))
  2325. dcdiff = -dcdiff;
  2326. }
  2327. /* Prediction */
  2328. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2329. *dc_val = dcdiff;
  2330. /* Store the quantized DC coeff, used for prediction */
  2331. if (n < 4) {
  2332. block[0] = dcdiff * s->y_dc_scale;
  2333. } else {
  2334. block[0] = dcdiff * s->c_dc_scale;
  2335. }
  2336. /* Skip ? */
  2337. run_diff = 0;
  2338. i = 0;
  2339. //AC Decoding
  2340. i = 1;
  2341. /* check if AC is needed at all */
  2342. if(!a_avail && !c_avail) use_pred = 0;
  2343. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2344. ac_val2 = ac_val;
  2345. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2346. if(dc_pred_dir) //left
  2347. ac_val -= 16;
  2348. else //top
  2349. ac_val -= 16 * s->block_wrap[n];
  2350. q1 = s->current_picture.qscale_table[mb_pos];
  2351. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2352. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2353. if(dc_pred_dir && n==1) q2 = q1;
  2354. if(!dc_pred_dir && n==2) q2 = q1;
  2355. if(n==3) q2 = q1;
  2356. if(coded) {
  2357. int last = 0, skip, value;
  2358. const int8_t *zz_table;
  2359. int k;
  2360. if(v->s.ac_pred) {
  2361. if(!dc_pred_dir)
  2362. zz_table = ff_vc1_horizontal_zz;
  2363. else
  2364. zz_table = ff_vc1_vertical_zz;
  2365. } else
  2366. zz_table = ff_vc1_normal_zz;
  2367. while (!last) {
  2368. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2369. i += skip;
  2370. if(i > 63)
  2371. break;
  2372. block[zz_table[i++]] = value;
  2373. }
  2374. /* apply AC prediction if needed */
  2375. if(use_pred) {
  2376. /* scale predictors if needed*/
  2377. if(q2 && q1!=q2) {
  2378. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2379. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2380. if(dc_pred_dir) { //left
  2381. for(k = 1; k < 8; k++)
  2382. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2383. } else { //top
  2384. for(k = 1; k < 8; k++)
  2385. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2386. }
  2387. } else {
  2388. if(dc_pred_dir) { //left
  2389. for(k = 1; k < 8; k++)
  2390. block[k << 3] += ac_val[k];
  2391. } else { //top
  2392. for(k = 1; k < 8; k++)
  2393. block[k] += ac_val[k + 8];
  2394. }
  2395. }
  2396. }
  2397. /* save AC coeffs for further prediction */
  2398. for(k = 1; k < 8; k++) {
  2399. ac_val2[k] = block[k << 3];
  2400. ac_val2[k + 8] = block[k];
  2401. }
  2402. /* scale AC coeffs */
  2403. for(k = 1; k < 64; k++)
  2404. if(block[k]) {
  2405. block[k] *= scale;
  2406. if(!v->pquantizer)
  2407. block[k] += (block[k] < 0) ? -mquant : mquant;
  2408. }
  2409. if(use_pred) i = 63;
  2410. } else { // no AC coeffs
  2411. int k;
  2412. memset(ac_val2, 0, 16 * 2);
  2413. if(dc_pred_dir) {//left
  2414. if(use_pred) {
  2415. memcpy(ac_val2, ac_val, 8 * 2);
  2416. if(q2 && q1!=q2) {
  2417. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2418. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2419. for(k = 1; k < 8; k++)
  2420. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2421. }
  2422. }
  2423. } else {//top
  2424. if(use_pred) {
  2425. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2426. if(q2 && q1!=q2) {
  2427. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2428. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2429. for(k = 1; k < 8; k++)
  2430. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2431. }
  2432. }
  2433. }
  2434. /* apply AC prediction if needed */
  2435. if(use_pred) {
  2436. if(dc_pred_dir) { //left
  2437. for(k = 1; k < 8; k++) {
  2438. block[k << 3] = ac_val2[k] * scale;
  2439. if(!v->pquantizer && block[k << 3])
  2440. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2441. }
  2442. } else { //top
  2443. for(k = 1; k < 8; k++) {
  2444. block[k] = ac_val2[k + 8] * scale;
  2445. if(!v->pquantizer && block[k])
  2446. block[k] += (block[k] < 0) ? -mquant : mquant;
  2447. }
  2448. }
  2449. i = 63;
  2450. }
  2451. }
  2452. s->block_last_index[n] = i;
  2453. return 0;
  2454. }
  2455. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2456. * @param v VC1Context
  2457. * @param block block to decode
  2458. * @param coded are AC coeffs present or not
  2459. * @param mquant block quantizer
  2460. * @param codingset set of VLC to decode data
  2461. */
  2462. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2463. {
  2464. GetBitContext *gb = &v->s.gb;
  2465. MpegEncContext *s = &v->s;
  2466. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2467. int run_diff, i;
  2468. int16_t *dc_val;
  2469. int16_t *ac_val, *ac_val2;
  2470. int dcdiff;
  2471. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2472. int a_avail = v->a_avail, c_avail = v->c_avail;
  2473. int use_pred = s->ac_pred;
  2474. int scale;
  2475. int q1, q2 = 0;
  2476. /* XXX: Guard against dumb values of mquant */
  2477. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2478. /* Set DC scale - y and c use the same */
  2479. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2480. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2481. /* Get DC differential */
  2482. if (n < 4) {
  2483. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2484. } else {
  2485. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2486. }
  2487. if (dcdiff < 0){
  2488. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2489. return -1;
  2490. }
  2491. if (dcdiff)
  2492. {
  2493. if (dcdiff == 119 /* ESC index value */)
  2494. {
  2495. /* TODO: Optimize */
  2496. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2497. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2498. else dcdiff = get_bits(gb, 8);
  2499. }
  2500. else
  2501. {
  2502. if (mquant == 1)
  2503. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2504. else if (mquant == 2)
  2505. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2506. }
  2507. if (get_bits1(gb))
  2508. dcdiff = -dcdiff;
  2509. }
  2510. /* Prediction */
  2511. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2512. *dc_val = dcdiff;
  2513. /* Store the quantized DC coeff, used for prediction */
  2514. if (n < 4) {
  2515. block[0] = dcdiff * s->y_dc_scale;
  2516. } else {
  2517. block[0] = dcdiff * s->c_dc_scale;
  2518. }
  2519. /* Skip ? */
  2520. run_diff = 0;
  2521. i = 0;
  2522. //AC Decoding
  2523. i = 1;
  2524. /* check if AC is needed at all and adjust direction if needed */
  2525. if(!a_avail) dc_pred_dir = 1;
  2526. if(!c_avail) dc_pred_dir = 0;
  2527. if(!a_avail && !c_avail) use_pred = 0;
  2528. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2529. ac_val2 = ac_val;
  2530. scale = mquant * 2 + v->halfpq;
  2531. if(dc_pred_dir) //left
  2532. ac_val -= 16;
  2533. else //top
  2534. ac_val -= 16 * s->block_wrap[n];
  2535. q1 = s->current_picture.qscale_table[mb_pos];
  2536. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2537. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2538. if(dc_pred_dir && n==1) q2 = q1;
  2539. if(!dc_pred_dir && n==2) q2 = q1;
  2540. if(n==3) q2 = q1;
  2541. if(coded) {
  2542. int last = 0, skip, value;
  2543. const int8_t *zz_table;
  2544. int k;
  2545. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2546. while (!last) {
  2547. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2548. i += skip;
  2549. if(i > 63)
  2550. break;
  2551. block[zz_table[i++]] = value;
  2552. }
  2553. /* apply AC prediction if needed */
  2554. if(use_pred) {
  2555. /* scale predictors if needed*/
  2556. if(q2 && q1!=q2) {
  2557. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2558. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2559. if(dc_pred_dir) { //left
  2560. for(k = 1; k < 8; k++)
  2561. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2562. } else { //top
  2563. for(k = 1; k < 8; k++)
  2564. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2565. }
  2566. } else {
  2567. if(dc_pred_dir) { //left
  2568. for(k = 1; k < 8; k++)
  2569. block[k << 3] += ac_val[k];
  2570. } else { //top
  2571. for(k = 1; k < 8; k++)
  2572. block[k] += ac_val[k + 8];
  2573. }
  2574. }
  2575. }
  2576. /* save AC coeffs for further prediction */
  2577. for(k = 1; k < 8; k++) {
  2578. ac_val2[k] = block[k << 3];
  2579. ac_val2[k + 8] = block[k];
  2580. }
  2581. /* scale AC coeffs */
  2582. for(k = 1; k < 64; k++)
  2583. if(block[k]) {
  2584. block[k] *= scale;
  2585. if(!v->pquantizer)
  2586. block[k] += (block[k] < 0) ? -mquant : mquant;
  2587. }
  2588. if(use_pred) i = 63;
  2589. } else { // no AC coeffs
  2590. int k;
  2591. memset(ac_val2, 0, 16 * 2);
  2592. if(dc_pred_dir) {//left
  2593. if(use_pred) {
  2594. memcpy(ac_val2, ac_val, 8 * 2);
  2595. if(q2 && q1!=q2) {
  2596. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2597. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2598. for(k = 1; k < 8; k++)
  2599. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2600. }
  2601. }
  2602. } else {//top
  2603. if(use_pred) {
  2604. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2605. if(q2 && q1!=q2) {
  2606. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2607. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2608. for(k = 1; k < 8; k++)
  2609. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2610. }
  2611. }
  2612. }
  2613. /* apply AC prediction if needed */
  2614. if(use_pred) {
  2615. if(dc_pred_dir) { //left
  2616. for(k = 1; k < 8; k++) {
  2617. block[k << 3] = ac_val2[k] * scale;
  2618. if(!v->pquantizer && block[k << 3])
  2619. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2620. }
  2621. } else { //top
  2622. for(k = 1; k < 8; k++) {
  2623. block[k] = ac_val2[k + 8] * scale;
  2624. if(!v->pquantizer && block[k])
  2625. block[k] += (block[k] < 0) ? -mquant : mquant;
  2626. }
  2627. }
  2628. i = 63;
  2629. }
  2630. }
  2631. s->block_last_index[n] = i;
  2632. return 0;
  2633. }
  2634. /** Decode P block
  2635. */
  2636. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2637. uint8_t *dst, int linesize, int skip_block)
  2638. {
  2639. MpegEncContext *s = &v->s;
  2640. GetBitContext *gb = &s->gb;
  2641. int i, j;
  2642. int subblkpat = 0;
  2643. int scale, off, idx, last, skip, value;
  2644. int ttblk = ttmb & 7;
  2645. if(ttmb == -1) {
  2646. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2647. }
  2648. if(ttblk == TT_4X4) {
  2649. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2650. }
  2651. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2652. subblkpat = decode012(gb);
  2653. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2654. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2655. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2656. }
  2657. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2658. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2659. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2660. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2661. ttblk = TT_8X4;
  2662. }
  2663. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2664. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2665. ttblk = TT_4X8;
  2666. }
  2667. switch(ttblk) {
  2668. case TT_8X8:
  2669. i = 0;
  2670. last = 0;
  2671. while (!last) {
  2672. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2673. i += skip;
  2674. if(i > 63)
  2675. break;
  2676. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2677. block[idx] = value * scale;
  2678. if(!v->pquantizer)
  2679. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2680. }
  2681. if(!skip_block){
  2682. s->dsp.vc1_inv_trans_8x8(block);
  2683. s->dsp.add_pixels_clamped(block, dst, linesize);
  2684. }
  2685. break;
  2686. case TT_4X4:
  2687. for(j = 0; j < 4; j++) {
  2688. last = subblkpat & (1 << (3 - j));
  2689. i = 0;
  2690. off = (j & 1) * 4 + (j & 2) * 16;
  2691. while (!last) {
  2692. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2693. i += skip;
  2694. if(i > 15)
  2695. break;
  2696. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2697. block[idx + off] = value * scale;
  2698. if(!v->pquantizer)
  2699. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2700. }
  2701. if(!(subblkpat & (1 << (3 - j))) && !skip_block)
  2702. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2703. }
  2704. break;
  2705. case TT_8X4:
  2706. for(j = 0; j < 2; j++) {
  2707. last = subblkpat & (1 << (1 - j));
  2708. i = 0;
  2709. off = j * 32;
  2710. while (!last) {
  2711. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2712. i += skip;
  2713. if(i > 31)
  2714. break;
  2715. idx = v->zz_8x4[i++]+off;
  2716. block[idx] = value * scale;
  2717. if(!v->pquantizer)
  2718. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2719. }
  2720. if(!(subblkpat & (1 << (1 - j))) && !skip_block)
  2721. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2722. }
  2723. break;
  2724. case TT_4X8:
  2725. for(j = 0; j < 2; j++) {
  2726. last = subblkpat & (1 << (1 - j));
  2727. i = 0;
  2728. off = j * 4;
  2729. while (!last) {
  2730. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2731. i += skip;
  2732. if(i > 31)
  2733. break;
  2734. idx = v->zz_4x8[i++]+off;
  2735. block[idx] = value * scale;
  2736. if(!v->pquantizer)
  2737. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2738. }
  2739. if(!(subblkpat & (1 << (1 - j))) && !skip_block)
  2740. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2741. }
  2742. break;
  2743. }
  2744. return 0;
  2745. }
  2746. /** Decode one P-frame MB (in Simple/Main profile)
  2747. */
  2748. static int vc1_decode_p_mb(VC1Context *v)
  2749. {
  2750. MpegEncContext *s = &v->s;
  2751. GetBitContext *gb = &s->gb;
  2752. int i, j;
  2753. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2754. int cbp; /* cbp decoding stuff */
  2755. int mqdiff, mquant; /* MB quantization */
  2756. int ttmb = v->ttfrm; /* MB Transform type */
  2757. int status;
  2758. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2759. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2760. int mb_has_coeffs = 1; /* last_flag */
  2761. int dmv_x, dmv_y; /* Differential MV components */
  2762. int index, index1; /* LUT indices */
  2763. int val, sign; /* temp values */
  2764. int first_block = 1;
  2765. int dst_idx, off;
  2766. int skipped, fourmv;
  2767. mquant = v->pq; /* Loosy initialization */
  2768. if (v->mv_type_is_raw)
  2769. fourmv = get_bits1(gb);
  2770. else
  2771. fourmv = v->mv_type_mb_plane[mb_pos];
  2772. if (v->skip_is_raw)
  2773. skipped = get_bits1(gb);
  2774. else
  2775. skipped = v->s.mbskip_table[mb_pos];
  2776. s->dsp.clear_blocks(s->block[0]);
  2777. if (!fourmv) /* 1MV mode */
  2778. {
  2779. if (!skipped)
  2780. {
  2781. GET_MVDATA(dmv_x, dmv_y);
  2782. if (s->mb_intra) {
  2783. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2784. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2785. }
  2786. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2787. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2788. /* FIXME Set DC val for inter block ? */
  2789. if (s->mb_intra && !mb_has_coeffs)
  2790. {
  2791. GET_MQUANT();
  2792. s->ac_pred = get_bits1(gb);
  2793. cbp = 0;
  2794. }
  2795. else if (mb_has_coeffs)
  2796. {
  2797. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2798. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2799. GET_MQUANT();
  2800. }
  2801. else
  2802. {
  2803. mquant = v->pq;
  2804. cbp = 0;
  2805. }
  2806. s->current_picture.qscale_table[mb_pos] = mquant;
  2807. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2808. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2809. VC1_TTMB_VLC_BITS, 2);
  2810. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2811. dst_idx = 0;
  2812. for (i=0; i<6; i++)
  2813. {
  2814. s->dc_val[0][s->block_index[i]] = 0;
  2815. dst_idx += i >> 2;
  2816. val = ((cbp >> (5 - i)) & 1);
  2817. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2818. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2819. if(s->mb_intra) {
  2820. /* check if prediction blocks A and C are available */
  2821. v->a_avail = v->c_avail = 0;
  2822. if(i == 2 || i == 3 || !s->first_slice_line)
  2823. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2824. if(i == 1 || i == 3 || s->mb_x)
  2825. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2826. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2827. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2828. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2829. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2830. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2831. if(v->pq >= 9 && v->overlap) {
  2832. if(v->c_avail)
  2833. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2834. if(v->a_avail)
  2835. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2836. }
  2837. } else if(val) {
  2838. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  2839. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2840. first_block = 0;
  2841. }
  2842. }
  2843. }
  2844. else //Skipped
  2845. {
  2846. s->mb_intra = 0;
  2847. for(i = 0; i < 6; i++) {
  2848. v->mb_type[0][s->block_index[i]] = 0;
  2849. s->dc_val[0][s->block_index[i]] = 0;
  2850. }
  2851. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2852. s->current_picture.qscale_table[mb_pos] = 0;
  2853. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2854. vc1_mc_1mv(v, 0);
  2855. return 0;
  2856. }
  2857. } //1MV mode
  2858. else //4MV mode
  2859. {
  2860. if (!skipped /* unskipped MB */)
  2861. {
  2862. int intra_count = 0, coded_inter = 0;
  2863. int is_intra[6], is_coded[6];
  2864. /* Get CBPCY */
  2865. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2866. for (i=0; i<6; i++)
  2867. {
  2868. val = ((cbp >> (5 - i)) & 1);
  2869. s->dc_val[0][s->block_index[i]] = 0;
  2870. s->mb_intra = 0;
  2871. if(i < 4) {
  2872. dmv_x = dmv_y = 0;
  2873. s->mb_intra = 0;
  2874. mb_has_coeffs = 0;
  2875. if(val) {
  2876. GET_MVDATA(dmv_x, dmv_y);
  2877. }
  2878. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2879. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2880. intra_count += s->mb_intra;
  2881. is_intra[i] = s->mb_intra;
  2882. is_coded[i] = mb_has_coeffs;
  2883. }
  2884. if(i&4){
  2885. is_intra[i] = (intra_count >= 3);
  2886. is_coded[i] = val;
  2887. }
  2888. if(i == 4) vc1_mc_4mv_chroma(v);
  2889. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2890. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2891. }
  2892. // if there are no coded blocks then don't do anything more
  2893. if(!intra_count && !coded_inter) return 0;
  2894. dst_idx = 0;
  2895. GET_MQUANT();
  2896. s->current_picture.qscale_table[mb_pos] = mquant;
  2897. /* test if block is intra and has pred */
  2898. {
  2899. int intrapred = 0;
  2900. for(i=0; i<6; i++)
  2901. if(is_intra[i]) {
  2902. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2903. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2904. intrapred = 1;
  2905. break;
  2906. }
  2907. }
  2908. if(intrapred)s->ac_pred = get_bits1(gb);
  2909. else s->ac_pred = 0;
  2910. }
  2911. if (!v->ttmbf && coded_inter)
  2912. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2913. for (i=0; i<6; i++)
  2914. {
  2915. dst_idx += i >> 2;
  2916. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2917. s->mb_intra = is_intra[i];
  2918. if (is_intra[i]) {
  2919. /* check if prediction blocks A and C are available */
  2920. v->a_avail = v->c_avail = 0;
  2921. if(i == 2 || i == 3 || !s->first_slice_line)
  2922. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2923. if(i == 1 || i == 3 || s->mb_x)
  2924. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2925. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2926. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2927. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2928. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2929. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2930. if(v->pq >= 9 && v->overlap) {
  2931. if(v->c_avail)
  2932. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2933. if(v->a_avail)
  2934. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2935. }
  2936. } else if(is_coded[i]) {
  2937. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  2938. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2939. first_block = 0;
  2940. }
  2941. }
  2942. return status;
  2943. }
  2944. else //Skipped MB
  2945. {
  2946. s->mb_intra = 0;
  2947. s->current_picture.qscale_table[mb_pos] = 0;
  2948. for (i=0; i<6; i++) {
  2949. v->mb_type[0][s->block_index[i]] = 0;
  2950. s->dc_val[0][s->block_index[i]] = 0;
  2951. }
  2952. for (i=0; i<4; i++)
  2953. {
  2954. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2955. vc1_mc_4mv_luma(v, i);
  2956. }
  2957. vc1_mc_4mv_chroma(v);
  2958. s->current_picture.qscale_table[mb_pos] = 0;
  2959. return 0;
  2960. }
  2961. }
  2962. /* Should never happen */
  2963. return -1;
  2964. }
  2965. /** Decode one B-frame MB (in Main profile)
  2966. */
  2967. static void vc1_decode_b_mb(VC1Context *v)
  2968. {
  2969. MpegEncContext *s = &v->s;
  2970. GetBitContext *gb = &s->gb;
  2971. int i, j;
  2972. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2973. int cbp = 0; /* cbp decoding stuff */
  2974. int mqdiff, mquant; /* MB quantization */
  2975. int ttmb = v->ttfrm; /* MB Transform type */
  2976. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2977. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2978. int mb_has_coeffs = 0; /* last_flag */
  2979. int index, index1; /* LUT indices */
  2980. int val, sign; /* temp values */
  2981. int first_block = 1;
  2982. int dst_idx, off;
  2983. int skipped, direct;
  2984. int dmv_x[2], dmv_y[2];
  2985. int bmvtype = BMV_TYPE_BACKWARD;
  2986. mquant = v->pq; /* Loosy initialization */
  2987. s->mb_intra = 0;
  2988. if (v->dmb_is_raw)
  2989. direct = get_bits1(gb);
  2990. else
  2991. direct = v->direct_mb_plane[mb_pos];
  2992. if (v->skip_is_raw)
  2993. skipped = get_bits1(gb);
  2994. else
  2995. skipped = v->s.mbskip_table[mb_pos];
  2996. s->dsp.clear_blocks(s->block[0]);
  2997. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2998. for(i = 0; i < 6; i++) {
  2999. v->mb_type[0][s->block_index[i]] = 0;
  3000. s->dc_val[0][s->block_index[i]] = 0;
  3001. }
  3002. s->current_picture.qscale_table[mb_pos] = 0;
  3003. if (!direct) {
  3004. if (!skipped) {
  3005. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3006. dmv_x[1] = dmv_x[0];
  3007. dmv_y[1] = dmv_y[0];
  3008. }
  3009. if(skipped || !s->mb_intra) {
  3010. bmvtype = decode012(gb);
  3011. switch(bmvtype) {
  3012. case 0:
  3013. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3014. break;
  3015. case 1:
  3016. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3017. break;
  3018. case 2:
  3019. bmvtype = BMV_TYPE_INTERPOLATED;
  3020. dmv_x[0] = dmv_y[0] = 0;
  3021. }
  3022. }
  3023. }
  3024. for(i = 0; i < 6; i++)
  3025. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3026. if (skipped) {
  3027. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3028. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3029. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3030. return;
  3031. }
  3032. if (direct) {
  3033. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3034. GET_MQUANT();
  3035. s->mb_intra = 0;
  3036. mb_has_coeffs = 0;
  3037. s->current_picture.qscale_table[mb_pos] = mquant;
  3038. if(!v->ttmbf)
  3039. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3040. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3041. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3042. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3043. } else {
  3044. if(!mb_has_coeffs && !s->mb_intra) {
  3045. /* no coded blocks - effectively skipped */
  3046. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3047. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3048. return;
  3049. }
  3050. if(s->mb_intra && !mb_has_coeffs) {
  3051. GET_MQUANT();
  3052. s->current_picture.qscale_table[mb_pos] = mquant;
  3053. s->ac_pred = get_bits1(gb);
  3054. cbp = 0;
  3055. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3056. } else {
  3057. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3058. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3059. if(!mb_has_coeffs) {
  3060. /* interpolated skipped block */
  3061. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3062. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3063. return;
  3064. }
  3065. }
  3066. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3067. if(!s->mb_intra) {
  3068. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3069. }
  3070. if(s->mb_intra)
  3071. s->ac_pred = get_bits1(gb);
  3072. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3073. GET_MQUANT();
  3074. s->current_picture.qscale_table[mb_pos] = mquant;
  3075. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3076. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3077. }
  3078. }
  3079. dst_idx = 0;
  3080. for (i=0; i<6; i++)
  3081. {
  3082. s->dc_val[0][s->block_index[i]] = 0;
  3083. dst_idx += i >> 2;
  3084. val = ((cbp >> (5 - i)) & 1);
  3085. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3086. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3087. if(s->mb_intra) {
  3088. /* check if prediction blocks A and C are available */
  3089. v->a_avail = v->c_avail = 0;
  3090. if(i == 2 || i == 3 || !s->first_slice_line)
  3091. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3092. if(i == 1 || i == 3 || s->mb_x)
  3093. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3094. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3095. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3096. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3097. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3098. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3099. } else if(val) {
  3100. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  3101. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3102. first_block = 0;
  3103. }
  3104. }
  3105. }
  3106. /** Decode blocks of I-frame
  3107. */
  3108. static void vc1_decode_i_blocks(VC1Context *v)
  3109. {
  3110. int k, j;
  3111. MpegEncContext *s = &v->s;
  3112. int cbp, val;
  3113. uint8_t *coded_val;
  3114. int mb_pos;
  3115. /* select codingmode used for VLC tables selection */
  3116. switch(v->y_ac_table_index){
  3117. case 0:
  3118. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3119. break;
  3120. case 1:
  3121. v->codingset = CS_HIGH_MOT_INTRA;
  3122. break;
  3123. case 2:
  3124. v->codingset = CS_MID_RATE_INTRA;
  3125. break;
  3126. }
  3127. switch(v->c_ac_table_index){
  3128. case 0:
  3129. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3130. break;
  3131. case 1:
  3132. v->codingset2 = CS_HIGH_MOT_INTER;
  3133. break;
  3134. case 2:
  3135. v->codingset2 = CS_MID_RATE_INTER;
  3136. break;
  3137. }
  3138. /* Set DC scale - y and c use the same */
  3139. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3140. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3141. //do frame decode
  3142. s->mb_x = s->mb_y = 0;
  3143. s->mb_intra = 1;
  3144. s->first_slice_line = 1;
  3145. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3146. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3147. ff_init_block_index(s);
  3148. ff_update_block_index(s);
  3149. s->dsp.clear_blocks(s->block[0]);
  3150. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3151. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3152. s->current_picture.qscale_table[mb_pos] = v->pq;
  3153. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3154. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3155. // do actual MB decoding and displaying
  3156. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3157. v->s.ac_pred = get_bits1(&v->s.gb);
  3158. for(k = 0; k < 6; k++) {
  3159. val = ((cbp >> (5 - k)) & 1);
  3160. if (k < 4) {
  3161. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3162. val = val ^ pred;
  3163. *coded_val = val;
  3164. }
  3165. cbp |= val << (5 - k);
  3166. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3167. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3168. if(v->pq >= 9 && v->overlap) {
  3169. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3170. }
  3171. }
  3172. vc1_put_block(v, s->block);
  3173. if(v->pq >= 9 && v->overlap) {
  3174. if(s->mb_x) {
  3175. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3176. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3177. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3178. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3179. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3180. }
  3181. }
  3182. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3183. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3184. if(!s->first_slice_line) {
  3185. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3186. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3187. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3188. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3189. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3190. }
  3191. }
  3192. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3193. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3194. }
  3195. if(get_bits_count(&s->gb) > v->bits) {
  3196. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3197. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3198. return;
  3199. }
  3200. }
  3201. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3202. s->first_slice_line = 0;
  3203. }
  3204. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3205. }
  3206. /** Decode blocks of I-frame for advanced profile
  3207. */
  3208. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3209. {
  3210. int k, j;
  3211. MpegEncContext *s = &v->s;
  3212. int cbp, val;
  3213. uint8_t *coded_val;
  3214. int mb_pos;
  3215. int mquant = v->pq;
  3216. int mqdiff;
  3217. int overlap;
  3218. GetBitContext *gb = &s->gb;
  3219. /* select codingmode used for VLC tables selection */
  3220. switch(v->y_ac_table_index){
  3221. case 0:
  3222. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3223. break;
  3224. case 1:
  3225. v->codingset = CS_HIGH_MOT_INTRA;
  3226. break;
  3227. case 2:
  3228. v->codingset = CS_MID_RATE_INTRA;
  3229. break;
  3230. }
  3231. switch(v->c_ac_table_index){
  3232. case 0:
  3233. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3234. break;
  3235. case 1:
  3236. v->codingset2 = CS_HIGH_MOT_INTER;
  3237. break;
  3238. case 2:
  3239. v->codingset2 = CS_MID_RATE_INTER;
  3240. break;
  3241. }
  3242. //do frame decode
  3243. s->mb_x = s->mb_y = 0;
  3244. s->mb_intra = 1;
  3245. s->first_slice_line = 1;
  3246. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3247. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3248. ff_init_block_index(s);
  3249. ff_update_block_index(s);
  3250. s->dsp.clear_blocks(s->block[0]);
  3251. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3252. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3253. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3254. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3255. // do actual MB decoding and displaying
  3256. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3257. if(v->acpred_is_raw)
  3258. v->s.ac_pred = get_bits1(&v->s.gb);
  3259. else
  3260. v->s.ac_pred = v->acpred_plane[mb_pos];
  3261. if(v->condover == CONDOVER_SELECT) {
  3262. if(v->overflg_is_raw)
  3263. overlap = get_bits1(&v->s.gb);
  3264. else
  3265. overlap = v->over_flags_plane[mb_pos];
  3266. } else
  3267. overlap = (v->condover == CONDOVER_ALL);
  3268. GET_MQUANT();
  3269. s->current_picture.qscale_table[mb_pos] = mquant;
  3270. /* Set DC scale - y and c use the same */
  3271. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3272. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3273. for(k = 0; k < 6; k++) {
  3274. val = ((cbp >> (5 - k)) & 1);
  3275. if (k < 4) {
  3276. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3277. val = val ^ pred;
  3278. *coded_val = val;
  3279. }
  3280. cbp |= val << (5 - k);
  3281. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3282. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3283. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3284. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3285. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3286. }
  3287. vc1_put_block(v, s->block);
  3288. if(overlap) {
  3289. if(s->mb_x) {
  3290. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3291. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3292. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3293. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3294. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3295. }
  3296. }
  3297. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3298. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3299. if(!s->first_slice_line) {
  3300. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3301. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3302. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3303. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3304. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3305. }
  3306. }
  3307. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3308. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3309. }
  3310. if(get_bits_count(&s->gb) > v->bits) {
  3311. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3312. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3313. return;
  3314. }
  3315. }
  3316. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3317. s->first_slice_line = 0;
  3318. }
  3319. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3320. }
  3321. static void vc1_decode_p_blocks(VC1Context *v)
  3322. {
  3323. MpegEncContext *s = &v->s;
  3324. /* select codingmode used for VLC tables selection */
  3325. switch(v->c_ac_table_index){
  3326. case 0:
  3327. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3328. break;
  3329. case 1:
  3330. v->codingset = CS_HIGH_MOT_INTRA;
  3331. break;
  3332. case 2:
  3333. v->codingset = CS_MID_RATE_INTRA;
  3334. break;
  3335. }
  3336. switch(v->c_ac_table_index){
  3337. case 0:
  3338. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3339. break;
  3340. case 1:
  3341. v->codingset2 = CS_HIGH_MOT_INTER;
  3342. break;
  3343. case 2:
  3344. v->codingset2 = CS_MID_RATE_INTER;
  3345. break;
  3346. }
  3347. s->first_slice_line = 1;
  3348. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3349. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3350. ff_init_block_index(s);
  3351. ff_update_block_index(s);
  3352. s->dsp.clear_blocks(s->block[0]);
  3353. vc1_decode_p_mb(v);
  3354. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3355. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3356. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3357. return;
  3358. }
  3359. }
  3360. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3361. s->first_slice_line = 0;
  3362. }
  3363. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3364. }
  3365. static void vc1_decode_b_blocks(VC1Context *v)
  3366. {
  3367. MpegEncContext *s = &v->s;
  3368. /* select codingmode used for VLC tables selection */
  3369. switch(v->c_ac_table_index){
  3370. case 0:
  3371. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3372. break;
  3373. case 1:
  3374. v->codingset = CS_HIGH_MOT_INTRA;
  3375. break;
  3376. case 2:
  3377. v->codingset = CS_MID_RATE_INTRA;
  3378. break;
  3379. }
  3380. switch(v->c_ac_table_index){
  3381. case 0:
  3382. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3383. break;
  3384. case 1:
  3385. v->codingset2 = CS_HIGH_MOT_INTER;
  3386. break;
  3387. case 2:
  3388. v->codingset2 = CS_MID_RATE_INTER;
  3389. break;
  3390. }
  3391. s->first_slice_line = 1;
  3392. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3393. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3394. ff_init_block_index(s);
  3395. ff_update_block_index(s);
  3396. s->dsp.clear_blocks(s->block[0]);
  3397. vc1_decode_b_mb(v);
  3398. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3399. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3400. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3401. return;
  3402. }
  3403. }
  3404. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3405. s->first_slice_line = 0;
  3406. }
  3407. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3408. }
  3409. static void vc1_decode_skip_blocks(VC1Context *v)
  3410. {
  3411. MpegEncContext *s = &v->s;
  3412. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3413. s->first_slice_line = 1;
  3414. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3415. s->mb_x = 0;
  3416. ff_init_block_index(s);
  3417. ff_update_block_index(s);
  3418. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3419. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3420. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3421. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3422. s->first_slice_line = 0;
  3423. }
  3424. s->pict_type = P_TYPE;
  3425. }
  3426. static void vc1_decode_blocks(VC1Context *v)
  3427. {
  3428. v->s.esc3_level_length = 0;
  3429. if(v->x8_type){
  3430. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3431. }else{
  3432. switch(v->s.pict_type) {
  3433. case I_TYPE:
  3434. if(v->profile == PROFILE_ADVANCED)
  3435. vc1_decode_i_blocks_adv(v);
  3436. else
  3437. vc1_decode_i_blocks(v);
  3438. break;
  3439. case P_TYPE:
  3440. if(v->p_frame_skipped)
  3441. vc1_decode_skip_blocks(v);
  3442. else
  3443. vc1_decode_p_blocks(v);
  3444. break;
  3445. case B_TYPE:
  3446. if(v->bi_type){
  3447. if(v->profile == PROFILE_ADVANCED)
  3448. vc1_decode_i_blocks_adv(v);
  3449. else
  3450. vc1_decode_i_blocks(v);
  3451. }else
  3452. vc1_decode_b_blocks(v);
  3453. break;
  3454. }
  3455. }
  3456. }
  3457. /** Find VC-1 marker in buffer
  3458. * @return position where next marker starts or end of buffer if no marker found
  3459. */
  3460. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3461. {
  3462. uint32_t mrk = 0xFFFFFFFF;
  3463. if(end-src < 4) return end;
  3464. while(src < end){
  3465. mrk = (mrk << 8) | *src++;
  3466. if(IS_MARKER(mrk))
  3467. return src-4;
  3468. }
  3469. return end;
  3470. }
  3471. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3472. {
  3473. int dsize = 0, i;
  3474. if(size < 4){
  3475. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3476. return size;
  3477. }
  3478. for(i = 0; i < size; i++, src++) {
  3479. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3480. dst[dsize++] = src[1];
  3481. src++;
  3482. i++;
  3483. } else
  3484. dst[dsize++] = *src;
  3485. }
  3486. return dsize;
  3487. }
  3488. /** Initialize a VC1/WMV3 decoder
  3489. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3490. * @todo TODO: Decypher remaining bits in extra_data
  3491. */
  3492. static int vc1_decode_init(AVCodecContext *avctx)
  3493. {
  3494. VC1Context *v = avctx->priv_data;
  3495. MpegEncContext *s = &v->s;
  3496. GetBitContext gb;
  3497. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3498. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3499. avctx->pix_fmt = PIX_FMT_YUV420P;
  3500. else
  3501. avctx->pix_fmt = PIX_FMT_GRAY8;
  3502. v->s.avctx = avctx;
  3503. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3504. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3505. if(avctx->idct_algo==FF_IDCT_AUTO){
  3506. avctx->idct_algo=FF_IDCT_WMV2;
  3507. }
  3508. if(ff_h263_decode_init(avctx) < 0)
  3509. return -1;
  3510. if (vc1_init_common(v) < 0) return -1;
  3511. avctx->coded_width = avctx->width;
  3512. avctx->coded_height = avctx->height;
  3513. if (avctx->codec_id == CODEC_ID_WMV3)
  3514. {
  3515. int count = 0;
  3516. // looks like WMV3 has a sequence header stored in the extradata
  3517. // advanced sequence header may be before the first frame
  3518. // the last byte of the extradata is a version number, 1 for the
  3519. // samples we can decode
  3520. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3521. if (decode_sequence_header(avctx, &gb) < 0)
  3522. return -1;
  3523. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3524. if (count>0)
  3525. {
  3526. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3527. count, get_bits(&gb, count));
  3528. }
  3529. else if (count < 0)
  3530. {
  3531. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3532. }
  3533. } else { // VC1/WVC1
  3534. const uint8_t *start = avctx->extradata;
  3535. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3536. const uint8_t *next;
  3537. int size, buf2_size;
  3538. uint8_t *buf2 = NULL;
  3539. int seq_initialized = 0, ep_initialized = 0;
  3540. if(avctx->extradata_size < 16) {
  3541. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3542. return -1;
  3543. }
  3544. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3545. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3546. next = start;
  3547. for(; next < end; start = next){
  3548. next = find_next_marker(start + 4, end);
  3549. size = next - start - 4;
  3550. if(size <= 0) continue;
  3551. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3552. init_get_bits(&gb, buf2, buf2_size * 8);
  3553. switch(AV_RB32(start)){
  3554. case VC1_CODE_SEQHDR:
  3555. if(decode_sequence_header(avctx, &gb) < 0){
  3556. av_free(buf2);
  3557. return -1;
  3558. }
  3559. seq_initialized = 1;
  3560. break;
  3561. case VC1_CODE_ENTRYPOINT:
  3562. if(decode_entry_point(avctx, &gb) < 0){
  3563. av_free(buf2);
  3564. return -1;
  3565. }
  3566. ep_initialized = 1;
  3567. break;
  3568. }
  3569. }
  3570. av_free(buf2);
  3571. if(!seq_initialized || !ep_initialized){
  3572. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3573. return -1;
  3574. }
  3575. }
  3576. avctx->has_b_frames= !!(avctx->max_b_frames);
  3577. s->low_delay = !avctx->has_b_frames;
  3578. s->mb_width = (avctx->coded_width+15)>>4;
  3579. s->mb_height = (avctx->coded_height+15)>>4;
  3580. /* Allocate mb bitplanes */
  3581. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3582. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3583. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3584. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3585. /* allocate block type info in that way so it could be used with s->block_index[] */
  3586. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3587. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3588. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3589. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3590. /* Init coded blocks info */
  3591. if (v->profile == PROFILE_ADVANCED)
  3592. {
  3593. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3594. // return -1;
  3595. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3596. // return -1;
  3597. }
  3598. ff_intrax8_common_init(&v->x8,s);
  3599. return 0;
  3600. }
  3601. /** Decode a VC1/WMV3 frame
  3602. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3603. */
  3604. static int vc1_decode_frame(AVCodecContext *avctx,
  3605. void *data, int *data_size,
  3606. const uint8_t *buf, int buf_size)
  3607. {
  3608. VC1Context *v = avctx->priv_data;
  3609. MpegEncContext *s = &v->s;
  3610. AVFrame *pict = data;
  3611. uint8_t *buf2 = NULL;
  3612. /* no supplementary picture */
  3613. if (buf_size == 0) {
  3614. /* special case for last picture */
  3615. if (s->low_delay==0 && s->next_picture_ptr) {
  3616. *pict= *(AVFrame*)s->next_picture_ptr;
  3617. s->next_picture_ptr= NULL;
  3618. *data_size = sizeof(AVFrame);
  3619. }
  3620. return 0;
  3621. }
  3622. /* We need to set current_picture_ptr before reading the header,
  3623. * otherwise we cannot store anything in there. */
  3624. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3625. int i= ff_find_unused_picture(s, 0);
  3626. s->current_picture_ptr= &s->picture[i];
  3627. }
  3628. //for advanced profile we may need to parse and unescape data
  3629. if (avctx->codec_id == CODEC_ID_VC1) {
  3630. int buf_size2 = 0;
  3631. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3632. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3633. const uint8_t *start, *end, *next;
  3634. int size;
  3635. next = buf;
  3636. for(start = buf, end = buf + buf_size; next < end; start = next){
  3637. next = find_next_marker(start + 4, end);
  3638. size = next - start - 4;
  3639. if(size <= 0) continue;
  3640. switch(AV_RB32(start)){
  3641. case VC1_CODE_FRAME:
  3642. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3643. break;
  3644. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3645. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3646. init_get_bits(&s->gb, buf2, buf_size2*8);
  3647. decode_entry_point(avctx, &s->gb);
  3648. break;
  3649. case VC1_CODE_SLICE:
  3650. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3651. av_free(buf2);
  3652. return -1;
  3653. }
  3654. }
  3655. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3656. const uint8_t *divider;
  3657. divider = find_next_marker(buf, buf + buf_size);
  3658. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3659. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3660. return -1;
  3661. }
  3662. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3663. // TODO
  3664. av_free(buf2);return -1;
  3665. }else{
  3666. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3667. }
  3668. init_get_bits(&s->gb, buf2, buf_size2*8);
  3669. } else
  3670. init_get_bits(&s->gb, buf, buf_size*8);
  3671. // do parse frame header
  3672. if(v->profile < PROFILE_ADVANCED) {
  3673. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3674. av_free(buf2);
  3675. return -1;
  3676. }
  3677. } else {
  3678. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3679. av_free(buf2);
  3680. return -1;
  3681. }
  3682. }
  3683. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3684. av_free(buf2);
  3685. return -1;
  3686. }
  3687. // for hurry_up==5
  3688. s->current_picture.pict_type= s->pict_type;
  3689. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3690. /* skip B-frames if we don't have reference frames */
  3691. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3692. av_free(buf2);
  3693. return -1;//buf_size;
  3694. }
  3695. /* skip b frames if we are in a hurry */
  3696. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3697. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3698. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3699. || avctx->skip_frame >= AVDISCARD_ALL) {
  3700. av_free(buf2);
  3701. return buf_size;
  3702. }
  3703. /* skip everything if we are in a hurry>=5 */
  3704. if(avctx->hurry_up>=5) {
  3705. av_free(buf2);
  3706. return -1;//buf_size;
  3707. }
  3708. if(s->next_p_frame_damaged){
  3709. if(s->pict_type==B_TYPE)
  3710. return buf_size;
  3711. else
  3712. s->next_p_frame_damaged=0;
  3713. }
  3714. if(MPV_frame_start(s, avctx) < 0) {
  3715. av_free(buf2);
  3716. return -1;
  3717. }
  3718. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3719. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3720. ff_er_frame_start(s);
  3721. v->bits = buf_size * 8;
  3722. vc1_decode_blocks(v);
  3723. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3724. // if(get_bits_count(&s->gb) > buf_size * 8)
  3725. // return -1;
  3726. ff_er_frame_end(s);
  3727. MPV_frame_end(s);
  3728. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3729. assert(s->current_picture.pict_type == s->pict_type);
  3730. if (s->pict_type == B_TYPE || s->low_delay) {
  3731. *pict= *(AVFrame*)s->current_picture_ptr;
  3732. } else if (s->last_picture_ptr != NULL) {
  3733. *pict= *(AVFrame*)s->last_picture_ptr;
  3734. }
  3735. if(s->last_picture_ptr || s->low_delay){
  3736. *data_size = sizeof(AVFrame);
  3737. ff_print_debug_info(s, pict);
  3738. }
  3739. /* Return the Picture timestamp as the frame number */
  3740. /* we subtract 1 because it is added on utils.c */
  3741. avctx->frame_number = s->picture_number - 1;
  3742. av_free(buf2);
  3743. return buf_size;
  3744. }
  3745. /** Close a VC1/WMV3 decoder
  3746. * @warning Initial try at using MpegEncContext stuff
  3747. */
  3748. static int vc1_decode_end(AVCodecContext *avctx)
  3749. {
  3750. VC1Context *v = avctx->priv_data;
  3751. av_freep(&v->hrd_rate);
  3752. av_freep(&v->hrd_buffer);
  3753. MPV_common_end(&v->s);
  3754. av_freep(&v->mv_type_mb_plane);
  3755. av_freep(&v->direct_mb_plane);
  3756. av_freep(&v->acpred_plane);
  3757. av_freep(&v->over_flags_plane);
  3758. av_freep(&v->mb_type_base);
  3759. ff_intrax8_common_end(&v->x8);
  3760. return 0;
  3761. }
  3762. AVCodec vc1_decoder = {
  3763. "vc1",
  3764. CODEC_TYPE_VIDEO,
  3765. CODEC_ID_VC1,
  3766. sizeof(VC1Context),
  3767. vc1_decode_init,
  3768. NULL,
  3769. vc1_decode_end,
  3770. vc1_decode_frame,
  3771. CODEC_CAP_DELAY,
  3772. NULL
  3773. };
  3774. AVCodec wmv3_decoder = {
  3775. "wmv3",
  3776. CODEC_TYPE_VIDEO,
  3777. CODEC_ID_WMV3,
  3778. sizeof(VC1Context),
  3779. vc1_decode_init,
  3780. NULL,
  3781. vc1_decode_end,
  3782. vc1_decode_frame,
  3783. CODEC_CAP_DELAY,
  3784. NULL
  3785. };