You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2707 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #include "mathops.h"
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. /****************/
  47. #define HEADER_SIZE 4
  48. /**
  49. * Context for MP3On4 decoder
  50. */
  51. typedef struct MP3On4DecodeContext {
  52. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  53. int chan_cfg; ///< channel config number
  54. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  55. } MP3On4DecodeContext;
  56. /* layer 3 "granule" */
  57. typedef struct GranuleDef {
  58. uint8_t scfsi;
  59. int part2_3_length;
  60. int big_values;
  61. int global_gain;
  62. int scalefac_compress;
  63. uint8_t block_type;
  64. uint8_t switch_point;
  65. int table_select[3];
  66. int subblock_gain[3];
  67. uint8_t scalefac_scale;
  68. uint8_t count1table_select;
  69. int region_size[3]; /* number of huffman codes in each region */
  70. int preflag;
  71. int short_start, long_end; /* long/short band indexes */
  72. uint8_t scale_factors[40];
  73. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  74. } GranuleDef;
  75. #include "mpegaudiodata.h"
  76. #include "mpegaudiodectab.h"
  77. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  78. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  79. /* vlc structure for decoding layer 3 huffman tables */
  80. static VLC huff_vlc[16];
  81. static VLC huff_quad_vlc[2];
  82. /* computed from band_size_long */
  83. static uint16_t band_index_long[9][23];
  84. /* XXX: free when all decoders are closed */
  85. #define TABLE_4_3_SIZE (8191 + 16)*4
  86. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  87. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  88. static uint32_t exp_table[512];
  89. static uint32_t expval_table[512][16];
  90. /* intensity stereo coef table */
  91. static int32_t is_table[2][16];
  92. static int32_t is_table_lsf[2][2][16];
  93. static int32_t csa_table[8][4];
  94. static float csa_table_float[8][4];
  95. static int32_t mdct_win[8][36];
  96. /* lower 2 bits: modulo 3, higher bits: shift */
  97. static uint16_t scale_factor_modshift[64];
  98. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  99. static int32_t scale_factor_mult[15][3];
  100. /* mult table for layer 2 group quantization */
  101. #define SCALE_GEN(v) \
  102. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  103. static const int32_t scale_factor_mult2[3][3] = {
  104. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  105. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  106. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  107. };
  108. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  109. /**
  110. * Convert region offsets to region sizes and truncate
  111. * size to big_values.
  112. */
  113. void ff_region_offset2size(GranuleDef *g){
  114. int i, k, j=0;
  115. g->region_size[2] = (576 / 2);
  116. for(i=0;i<3;i++) {
  117. k = FFMIN(g->region_size[i], g->big_values);
  118. g->region_size[i] = k - j;
  119. j = k;
  120. }
  121. }
  122. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  123. if (g->block_type == 2)
  124. g->region_size[0] = (36 / 2);
  125. else {
  126. if (s->sample_rate_index <= 2)
  127. g->region_size[0] = (36 / 2);
  128. else if (s->sample_rate_index != 8)
  129. g->region_size[0] = (54 / 2);
  130. else
  131. g->region_size[0] = (108 / 2);
  132. }
  133. g->region_size[1] = (576 / 2);
  134. }
  135. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  136. int l;
  137. g->region_size[0] =
  138. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  139. /* should not overflow */
  140. l = FFMIN(ra1 + ra2 + 2, 22);
  141. g->region_size[1] =
  142. band_index_long[s->sample_rate_index][l] >> 1;
  143. }
  144. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  145. if (g->block_type == 2) {
  146. if (g->switch_point) {
  147. /* if switched mode, we handle the 36 first samples as
  148. long blocks. For 8000Hz, we handle the 48 first
  149. exponents as long blocks (XXX: check this!) */
  150. if (s->sample_rate_index <= 2)
  151. g->long_end = 8;
  152. else if (s->sample_rate_index != 8)
  153. g->long_end = 6;
  154. else
  155. g->long_end = 4; /* 8000 Hz */
  156. g->short_start = 2 + (s->sample_rate_index != 8);
  157. } else {
  158. g->long_end = 0;
  159. g->short_start = 0;
  160. }
  161. } else {
  162. g->short_start = 13;
  163. g->long_end = 22;
  164. }
  165. }
  166. /* layer 1 unscaling */
  167. /* n = number of bits of the mantissa minus 1 */
  168. static inline int l1_unscale(int n, int mant, int scale_factor)
  169. {
  170. int shift, mod;
  171. int64_t val;
  172. shift = scale_factor_modshift[scale_factor];
  173. mod = shift & 3;
  174. shift >>= 2;
  175. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  176. shift += n;
  177. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  178. return (int)((val + (1LL << (shift - 1))) >> shift);
  179. }
  180. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  181. {
  182. int shift, mod, val;
  183. shift = scale_factor_modshift[scale_factor];
  184. mod = shift & 3;
  185. shift >>= 2;
  186. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  187. /* NOTE: at this point, 0 <= shift <= 21 */
  188. if (shift > 0)
  189. val = (val + (1 << (shift - 1))) >> shift;
  190. return val;
  191. }
  192. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  193. static inline int l3_unscale(int value, int exponent)
  194. {
  195. unsigned int m;
  196. int e;
  197. e = table_4_3_exp [4*value + (exponent&3)];
  198. m = table_4_3_value[4*value + (exponent&3)];
  199. e -= (exponent >> 2);
  200. assert(e>=1);
  201. if (e > 31)
  202. return 0;
  203. m = (m + (1 << (e-1))) >> e;
  204. return m;
  205. }
  206. /* all integer n^(4/3) computation code */
  207. #define DEV_ORDER 13
  208. #define POW_FRAC_BITS 24
  209. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  210. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  211. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  212. static int dev_4_3_coefs[DEV_ORDER];
  213. #if 0 /* unused */
  214. static int pow_mult3[3] = {
  215. POW_FIX(1.0),
  216. POW_FIX(1.25992104989487316476),
  217. POW_FIX(1.58740105196819947474),
  218. };
  219. #endif
  220. static void int_pow_init(void)
  221. {
  222. int i, a;
  223. a = POW_FIX(1.0);
  224. for(i=0;i<DEV_ORDER;i++) {
  225. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  226. dev_4_3_coefs[i] = a;
  227. }
  228. }
  229. #if 0 /* unused, remove? */
  230. /* return the mantissa and the binary exponent */
  231. static int int_pow(int i, int *exp_ptr)
  232. {
  233. int e, er, eq, j;
  234. int a, a1;
  235. /* renormalize */
  236. a = i;
  237. e = POW_FRAC_BITS;
  238. while (a < (1 << (POW_FRAC_BITS - 1))) {
  239. a = a << 1;
  240. e--;
  241. }
  242. a -= (1 << POW_FRAC_BITS);
  243. a1 = 0;
  244. for(j = DEV_ORDER - 1; j >= 0; j--)
  245. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  246. a = (1 << POW_FRAC_BITS) + a1;
  247. /* exponent compute (exact) */
  248. e = e * 4;
  249. er = e % 3;
  250. eq = e / 3;
  251. a = POW_MULL(a, pow_mult3[er]);
  252. while (a >= 2 * POW_FRAC_ONE) {
  253. a = a >> 1;
  254. eq++;
  255. }
  256. /* convert to float */
  257. while (a < POW_FRAC_ONE) {
  258. a = a << 1;
  259. eq--;
  260. }
  261. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  262. #if POW_FRAC_BITS > FRAC_BITS
  263. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  264. /* correct overflow */
  265. if (a >= 2 * (1 << FRAC_BITS)) {
  266. a = a >> 1;
  267. eq++;
  268. }
  269. #endif
  270. *exp_ptr = eq;
  271. return a;
  272. }
  273. #endif
  274. static int decode_init(AVCodecContext * avctx)
  275. {
  276. MPADecodeContext *s = avctx->priv_data;
  277. static int init=0;
  278. int i, j, k;
  279. s->avctx = avctx;
  280. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  281. avctx->sample_fmt= SAMPLE_FMT_S32;
  282. #else
  283. avctx->sample_fmt= SAMPLE_FMT_S16;
  284. #endif
  285. s->error_resilience= avctx->error_resilience;
  286. if(avctx->antialias_algo != FF_AA_FLOAT)
  287. s->compute_antialias= compute_antialias_integer;
  288. else
  289. s->compute_antialias= compute_antialias_float;
  290. if (!init && !avctx->parse_only) {
  291. /* scale factors table for layer 1/2 */
  292. for(i=0;i<64;i++) {
  293. int shift, mod;
  294. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  295. shift = (i / 3);
  296. mod = i % 3;
  297. scale_factor_modshift[i] = mod | (shift << 2);
  298. }
  299. /* scale factor multiply for layer 1 */
  300. for(i=0;i<15;i++) {
  301. int n, norm;
  302. n = i + 2;
  303. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  304. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  305. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  306. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  307. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  308. i, norm,
  309. scale_factor_mult[i][0],
  310. scale_factor_mult[i][1],
  311. scale_factor_mult[i][2]);
  312. }
  313. ff_mpa_synth_init(window);
  314. /* huffman decode tables */
  315. for(i=1;i<16;i++) {
  316. const HuffTable *h = &mpa_huff_tables[i];
  317. int xsize, x, y;
  318. unsigned int n;
  319. uint8_t tmp_bits [512];
  320. uint16_t tmp_codes[512];
  321. memset(tmp_bits , 0, sizeof(tmp_bits ));
  322. memset(tmp_codes, 0, sizeof(tmp_codes));
  323. xsize = h->xsize;
  324. n = xsize * xsize;
  325. j = 0;
  326. for(x=0;x<xsize;x++) {
  327. for(y=0;y<xsize;y++){
  328. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  329. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  330. }
  331. }
  332. /* XXX: fail test */
  333. init_vlc(&huff_vlc[i], 7, 512,
  334. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  335. }
  336. for(i=0;i<2;i++) {
  337. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  338. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  339. }
  340. for(i=0;i<9;i++) {
  341. k = 0;
  342. for(j=0;j<22;j++) {
  343. band_index_long[i][j] = k;
  344. k += band_size_long[i][j];
  345. }
  346. band_index_long[i][22] = k;
  347. }
  348. /* compute n ^ (4/3) and store it in mantissa/exp format */
  349. int_pow_init();
  350. for(i=1;i<TABLE_4_3_SIZE;i++) {
  351. double f, fm;
  352. int e, m;
  353. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  354. fm = frexp(f, &e);
  355. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  356. e+= FRAC_BITS - 31 + 5 - 100;
  357. /* normalized to FRAC_BITS */
  358. table_4_3_value[i] = m;
  359. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  360. table_4_3_exp[i] = -e;
  361. }
  362. for(i=0; i<512*16; i++){
  363. int exponent= (i>>4);
  364. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  365. expval_table[exponent][i&15]= llrint(f);
  366. if((i&15)==1)
  367. exp_table[exponent]= llrint(f);
  368. }
  369. for(i=0;i<7;i++) {
  370. float f;
  371. int v;
  372. if (i != 6) {
  373. f = tan((double)i * M_PI / 12.0);
  374. v = FIXR(f / (1.0 + f));
  375. } else {
  376. v = FIXR(1.0);
  377. }
  378. is_table[0][i] = v;
  379. is_table[1][6 - i] = v;
  380. }
  381. /* invalid values */
  382. for(i=7;i<16;i++)
  383. is_table[0][i] = is_table[1][i] = 0.0;
  384. for(i=0;i<16;i++) {
  385. double f;
  386. int e, k;
  387. for(j=0;j<2;j++) {
  388. e = -(j + 1) * ((i + 1) >> 1);
  389. f = pow(2.0, e / 4.0);
  390. k = i & 1;
  391. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  392. is_table_lsf[j][k][i] = FIXR(1.0);
  393. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  394. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  395. }
  396. }
  397. for(i=0;i<8;i++) {
  398. float ci, cs, ca;
  399. ci = ci_table[i];
  400. cs = 1.0 / sqrt(1.0 + ci * ci);
  401. ca = cs * ci;
  402. csa_table[i][0] = FIXHR(cs/4);
  403. csa_table[i][1] = FIXHR(ca/4);
  404. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  405. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  406. csa_table_float[i][0] = cs;
  407. csa_table_float[i][1] = ca;
  408. csa_table_float[i][2] = ca + cs;
  409. csa_table_float[i][3] = ca - cs;
  410. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  411. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  412. }
  413. /* compute mdct windows */
  414. for(i=0;i<36;i++) {
  415. for(j=0; j<4; j++){
  416. double d;
  417. if(j==2 && i%3 != 1)
  418. continue;
  419. d= sin(M_PI * (i + 0.5) / 36.0);
  420. if(j==1){
  421. if (i>=30) d= 0;
  422. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  423. else if(i>=18) d= 1;
  424. }else if(j==3){
  425. if (i< 6) d= 0;
  426. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  427. else if(i< 18) d= 1;
  428. }
  429. //merge last stage of imdct into the window coefficients
  430. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  431. if(j==2)
  432. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  433. else
  434. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  435. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  436. }
  437. }
  438. /* NOTE: we do frequency inversion adter the MDCT by changing
  439. the sign of the right window coefs */
  440. for(j=0;j<4;j++) {
  441. for(i=0;i<36;i+=2) {
  442. mdct_win[j + 4][i] = mdct_win[j][i];
  443. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  444. }
  445. }
  446. #if defined(DEBUG)
  447. for(j=0;j<8;j++) {
  448. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  449. for(i=0;i<36;i++)
  450. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  451. av_log(avctx, AV_LOG_DEBUG, "\n");
  452. }
  453. #endif
  454. init = 1;
  455. }
  456. #ifdef DEBUG
  457. s->frame_count = 0;
  458. #endif
  459. if (avctx->codec_id == CODEC_ID_MP3ADU)
  460. s->adu_mode = 1;
  461. return 0;
  462. }
  463. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  464. /* cos(i*pi/64) */
  465. #define COS0_0 FIXHR(0.50060299823519630134/2)
  466. #define COS0_1 FIXHR(0.50547095989754365998/2)
  467. #define COS0_2 FIXHR(0.51544730992262454697/2)
  468. #define COS0_3 FIXHR(0.53104259108978417447/2)
  469. #define COS0_4 FIXHR(0.55310389603444452782/2)
  470. #define COS0_5 FIXHR(0.58293496820613387367/2)
  471. #define COS0_6 FIXHR(0.62250412303566481615/2)
  472. #define COS0_7 FIXHR(0.67480834145500574602/2)
  473. #define COS0_8 FIXHR(0.74453627100229844977/2)
  474. #define COS0_9 FIXHR(0.83934964541552703873/2)
  475. #define COS0_10 FIXHR(0.97256823786196069369/2)
  476. #define COS0_11 FIXHR(1.16943993343288495515/4)
  477. #define COS0_12 FIXHR(1.48416461631416627724/4)
  478. #define COS0_13 FIXHR(2.05778100995341155085/8)
  479. #define COS0_14 FIXHR(3.40760841846871878570/8)
  480. #define COS0_15 FIXHR(10.19000812354805681150/32)
  481. #define COS1_0 FIXHR(0.50241928618815570551/2)
  482. #define COS1_1 FIXHR(0.52249861493968888062/2)
  483. #define COS1_2 FIXHR(0.56694403481635770368/2)
  484. #define COS1_3 FIXHR(0.64682178335999012954/2)
  485. #define COS1_4 FIXHR(0.78815462345125022473/2)
  486. #define COS1_5 FIXHR(1.06067768599034747134/4)
  487. #define COS1_6 FIXHR(1.72244709823833392782/4)
  488. #define COS1_7 FIXHR(5.10114861868916385802/16)
  489. #define COS2_0 FIXHR(0.50979557910415916894/2)
  490. #define COS2_1 FIXHR(0.60134488693504528054/2)
  491. #define COS2_2 FIXHR(0.89997622313641570463/2)
  492. #define COS2_3 FIXHR(2.56291544774150617881/8)
  493. #define COS3_0 FIXHR(0.54119610014619698439/2)
  494. #define COS3_1 FIXHR(1.30656296487637652785/4)
  495. #define COS4_0 FIXHR(0.70710678118654752439/2)
  496. /* butterfly operator */
  497. #define BF(a, b, c, s)\
  498. {\
  499. tmp0 = tab[a] + tab[b];\
  500. tmp1 = tab[a] - tab[b];\
  501. tab[a] = tmp0;\
  502. tab[b] = MULH(tmp1<<(s), c);\
  503. }
  504. #define BF1(a, b, c, d)\
  505. {\
  506. BF(a, b, COS4_0, 1);\
  507. BF(c, d,-COS4_0, 1);\
  508. tab[c] += tab[d];\
  509. }
  510. #define BF2(a, b, c, d)\
  511. {\
  512. BF(a, b, COS4_0, 1);\
  513. BF(c, d,-COS4_0, 1);\
  514. tab[c] += tab[d];\
  515. tab[a] += tab[c];\
  516. tab[c] += tab[b];\
  517. tab[b] += tab[d];\
  518. }
  519. #define ADD(a, b) tab[a] += tab[b]
  520. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  521. static void dct32(int32_t *out, int32_t *tab)
  522. {
  523. int tmp0, tmp1;
  524. /* pass 1 */
  525. BF( 0, 31, COS0_0 , 1);
  526. BF(15, 16, COS0_15, 5);
  527. /* pass 2 */
  528. BF( 0, 15, COS1_0 , 1);
  529. BF(16, 31,-COS1_0 , 1);
  530. /* pass 1 */
  531. BF( 7, 24, COS0_7 , 1);
  532. BF( 8, 23, COS0_8 , 1);
  533. /* pass 2 */
  534. BF( 7, 8, COS1_7 , 4);
  535. BF(23, 24,-COS1_7 , 4);
  536. /* pass 3 */
  537. BF( 0, 7, COS2_0 , 1);
  538. BF( 8, 15,-COS2_0 , 1);
  539. BF(16, 23, COS2_0 , 1);
  540. BF(24, 31,-COS2_0 , 1);
  541. /* pass 1 */
  542. BF( 3, 28, COS0_3 , 1);
  543. BF(12, 19, COS0_12, 2);
  544. /* pass 2 */
  545. BF( 3, 12, COS1_3 , 1);
  546. BF(19, 28,-COS1_3 , 1);
  547. /* pass 1 */
  548. BF( 4, 27, COS0_4 , 1);
  549. BF(11, 20, COS0_11, 2);
  550. /* pass 2 */
  551. BF( 4, 11, COS1_4 , 1);
  552. BF(20, 27,-COS1_4 , 1);
  553. /* pass 3 */
  554. BF( 3, 4, COS2_3 , 3);
  555. BF(11, 12,-COS2_3 , 3);
  556. BF(19, 20, COS2_3 , 3);
  557. BF(27, 28,-COS2_3 , 3);
  558. /* pass 4 */
  559. BF( 0, 3, COS3_0 , 1);
  560. BF( 4, 7,-COS3_0 , 1);
  561. BF( 8, 11, COS3_0 , 1);
  562. BF(12, 15,-COS3_0 , 1);
  563. BF(16, 19, COS3_0 , 1);
  564. BF(20, 23,-COS3_0 , 1);
  565. BF(24, 27, COS3_0 , 1);
  566. BF(28, 31,-COS3_0 , 1);
  567. /* pass 1 */
  568. BF( 1, 30, COS0_1 , 1);
  569. BF(14, 17, COS0_14, 3);
  570. /* pass 2 */
  571. BF( 1, 14, COS1_1 , 1);
  572. BF(17, 30,-COS1_1 , 1);
  573. /* pass 1 */
  574. BF( 6, 25, COS0_6 , 1);
  575. BF( 9, 22, COS0_9 , 1);
  576. /* pass 2 */
  577. BF( 6, 9, COS1_6 , 2);
  578. BF(22, 25,-COS1_6 , 2);
  579. /* pass 3 */
  580. BF( 1, 6, COS2_1 , 1);
  581. BF( 9, 14,-COS2_1 , 1);
  582. BF(17, 22, COS2_1 , 1);
  583. BF(25, 30,-COS2_1 , 1);
  584. /* pass 1 */
  585. BF( 2, 29, COS0_2 , 1);
  586. BF(13, 18, COS0_13, 3);
  587. /* pass 2 */
  588. BF( 2, 13, COS1_2 , 1);
  589. BF(18, 29,-COS1_2 , 1);
  590. /* pass 1 */
  591. BF( 5, 26, COS0_5 , 1);
  592. BF(10, 21, COS0_10, 1);
  593. /* pass 2 */
  594. BF( 5, 10, COS1_5 , 2);
  595. BF(21, 26,-COS1_5 , 2);
  596. /* pass 3 */
  597. BF( 2, 5, COS2_2 , 1);
  598. BF(10, 13,-COS2_2 , 1);
  599. BF(18, 21, COS2_2 , 1);
  600. BF(26, 29,-COS2_2 , 1);
  601. /* pass 4 */
  602. BF( 1, 2, COS3_1 , 2);
  603. BF( 5, 6,-COS3_1 , 2);
  604. BF( 9, 10, COS3_1 , 2);
  605. BF(13, 14,-COS3_1 , 2);
  606. BF(17, 18, COS3_1 , 2);
  607. BF(21, 22,-COS3_1 , 2);
  608. BF(25, 26, COS3_1 , 2);
  609. BF(29, 30,-COS3_1 , 2);
  610. /* pass 5 */
  611. BF1( 0, 1, 2, 3);
  612. BF2( 4, 5, 6, 7);
  613. BF1( 8, 9, 10, 11);
  614. BF2(12, 13, 14, 15);
  615. BF1(16, 17, 18, 19);
  616. BF2(20, 21, 22, 23);
  617. BF1(24, 25, 26, 27);
  618. BF2(28, 29, 30, 31);
  619. /* pass 6 */
  620. ADD( 8, 12);
  621. ADD(12, 10);
  622. ADD(10, 14);
  623. ADD(14, 9);
  624. ADD( 9, 13);
  625. ADD(13, 11);
  626. ADD(11, 15);
  627. out[ 0] = tab[0];
  628. out[16] = tab[1];
  629. out[ 8] = tab[2];
  630. out[24] = tab[3];
  631. out[ 4] = tab[4];
  632. out[20] = tab[5];
  633. out[12] = tab[6];
  634. out[28] = tab[7];
  635. out[ 2] = tab[8];
  636. out[18] = tab[9];
  637. out[10] = tab[10];
  638. out[26] = tab[11];
  639. out[ 6] = tab[12];
  640. out[22] = tab[13];
  641. out[14] = tab[14];
  642. out[30] = tab[15];
  643. ADD(24, 28);
  644. ADD(28, 26);
  645. ADD(26, 30);
  646. ADD(30, 25);
  647. ADD(25, 29);
  648. ADD(29, 27);
  649. ADD(27, 31);
  650. out[ 1] = tab[16] + tab[24];
  651. out[17] = tab[17] + tab[25];
  652. out[ 9] = tab[18] + tab[26];
  653. out[25] = tab[19] + tab[27];
  654. out[ 5] = tab[20] + tab[28];
  655. out[21] = tab[21] + tab[29];
  656. out[13] = tab[22] + tab[30];
  657. out[29] = tab[23] + tab[31];
  658. out[ 3] = tab[24] + tab[20];
  659. out[19] = tab[25] + tab[21];
  660. out[11] = tab[26] + tab[22];
  661. out[27] = tab[27] + tab[23];
  662. out[ 7] = tab[28] + tab[18];
  663. out[23] = tab[29] + tab[19];
  664. out[15] = tab[30] + tab[17];
  665. out[31] = tab[31];
  666. }
  667. #if FRAC_BITS <= 15
  668. static inline int round_sample(int *sum)
  669. {
  670. int sum1;
  671. sum1 = (*sum) >> OUT_SHIFT;
  672. *sum &= (1<<OUT_SHIFT)-1;
  673. if (sum1 < OUT_MIN)
  674. sum1 = OUT_MIN;
  675. else if (sum1 > OUT_MAX)
  676. sum1 = OUT_MAX;
  677. return sum1;
  678. }
  679. /* signed 16x16 -> 32 multiply add accumulate */
  680. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  681. /* signed 16x16 -> 32 multiply */
  682. #define MULS(ra, rb) MUL16(ra, rb)
  683. #else
  684. static inline int round_sample(int64_t *sum)
  685. {
  686. int sum1;
  687. sum1 = (int)((*sum) >> OUT_SHIFT);
  688. *sum &= (1<<OUT_SHIFT)-1;
  689. if (sum1 < OUT_MIN)
  690. sum1 = OUT_MIN;
  691. else if (sum1 > OUT_MAX)
  692. sum1 = OUT_MAX;
  693. return sum1;
  694. }
  695. # define MULS(ra, rb) MUL64(ra, rb)
  696. #endif
  697. #define SUM8(sum, op, w, p) \
  698. { \
  699. sum op MULS((w)[0 * 64], p[0 * 64]);\
  700. sum op MULS((w)[1 * 64], p[1 * 64]);\
  701. sum op MULS((w)[2 * 64], p[2 * 64]);\
  702. sum op MULS((w)[3 * 64], p[3 * 64]);\
  703. sum op MULS((w)[4 * 64], p[4 * 64]);\
  704. sum op MULS((w)[5 * 64], p[5 * 64]);\
  705. sum op MULS((w)[6 * 64], p[6 * 64]);\
  706. sum op MULS((w)[7 * 64], p[7 * 64]);\
  707. }
  708. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  709. { \
  710. int tmp;\
  711. tmp = p[0 * 64];\
  712. sum1 op1 MULS((w1)[0 * 64], tmp);\
  713. sum2 op2 MULS((w2)[0 * 64], tmp);\
  714. tmp = p[1 * 64];\
  715. sum1 op1 MULS((w1)[1 * 64], tmp);\
  716. sum2 op2 MULS((w2)[1 * 64], tmp);\
  717. tmp = p[2 * 64];\
  718. sum1 op1 MULS((w1)[2 * 64], tmp);\
  719. sum2 op2 MULS((w2)[2 * 64], tmp);\
  720. tmp = p[3 * 64];\
  721. sum1 op1 MULS((w1)[3 * 64], tmp);\
  722. sum2 op2 MULS((w2)[3 * 64], tmp);\
  723. tmp = p[4 * 64];\
  724. sum1 op1 MULS((w1)[4 * 64], tmp);\
  725. sum2 op2 MULS((w2)[4 * 64], tmp);\
  726. tmp = p[5 * 64];\
  727. sum1 op1 MULS((w1)[5 * 64], tmp);\
  728. sum2 op2 MULS((w2)[5 * 64], tmp);\
  729. tmp = p[6 * 64];\
  730. sum1 op1 MULS((w1)[6 * 64], tmp);\
  731. sum2 op2 MULS((w2)[6 * 64], tmp);\
  732. tmp = p[7 * 64];\
  733. sum1 op1 MULS((w1)[7 * 64], tmp);\
  734. sum2 op2 MULS((w2)[7 * 64], tmp);\
  735. }
  736. void ff_mpa_synth_init(MPA_INT *window)
  737. {
  738. int i;
  739. /* max = 18760, max sum over all 16 coefs : 44736 */
  740. for(i=0;i<257;i++) {
  741. int v;
  742. v = ff_mpa_enwindow[i];
  743. #if WFRAC_BITS < 16
  744. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  745. #endif
  746. window[i] = v;
  747. if ((i & 63) != 0)
  748. v = -v;
  749. if (i != 0)
  750. window[512 - i] = v;
  751. }
  752. }
  753. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  754. 32 samples. */
  755. /* XXX: optimize by avoiding ring buffer usage */
  756. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  757. MPA_INT *window, int *dither_state,
  758. OUT_INT *samples, int incr,
  759. int32_t sb_samples[SBLIMIT])
  760. {
  761. int32_t tmp[32];
  762. register MPA_INT *synth_buf;
  763. register const MPA_INT *w, *w2, *p;
  764. int j, offset, v;
  765. OUT_INT *samples2;
  766. #if FRAC_BITS <= 15
  767. int sum, sum2;
  768. #else
  769. int64_t sum, sum2;
  770. #endif
  771. dct32(tmp, sb_samples);
  772. offset = *synth_buf_offset;
  773. synth_buf = synth_buf_ptr + offset;
  774. for(j=0;j<32;j++) {
  775. v = tmp[j];
  776. #if FRAC_BITS <= 15
  777. /* NOTE: can cause a loss in precision if very high amplitude
  778. sound */
  779. v = av_clip_int16(v);
  780. #endif
  781. synth_buf[j] = v;
  782. }
  783. /* copy to avoid wrap */
  784. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  785. samples2 = samples + 31 * incr;
  786. w = window;
  787. w2 = window + 31;
  788. sum = *dither_state;
  789. p = synth_buf + 16;
  790. SUM8(sum, +=, w, p);
  791. p = synth_buf + 48;
  792. SUM8(sum, -=, w + 32, p);
  793. *samples = round_sample(&sum);
  794. samples += incr;
  795. w++;
  796. /* we calculate two samples at the same time to avoid one memory
  797. access per two sample */
  798. for(j=1;j<16;j++) {
  799. sum2 = 0;
  800. p = synth_buf + 16 + j;
  801. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  802. p = synth_buf + 48 - j;
  803. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  804. *samples = round_sample(&sum);
  805. samples += incr;
  806. sum += sum2;
  807. *samples2 = round_sample(&sum);
  808. samples2 -= incr;
  809. w++;
  810. w2--;
  811. }
  812. p = synth_buf + 32;
  813. SUM8(sum, -=, w + 32, p);
  814. *samples = round_sample(&sum);
  815. *dither_state= sum;
  816. offset = (offset - 32) & 511;
  817. *synth_buf_offset = offset;
  818. }
  819. #define C3 FIXHR(0.86602540378443864676/2)
  820. /* 0.5 / cos(pi*(2*i+1)/36) */
  821. static const int icos36[9] = {
  822. FIXR(0.50190991877167369479),
  823. FIXR(0.51763809020504152469), //0
  824. FIXR(0.55168895948124587824),
  825. FIXR(0.61038729438072803416),
  826. FIXR(0.70710678118654752439), //1
  827. FIXR(0.87172339781054900991),
  828. FIXR(1.18310079157624925896),
  829. FIXR(1.93185165257813657349), //2
  830. FIXR(5.73685662283492756461),
  831. };
  832. /* 0.5 / cos(pi*(2*i+1)/36) */
  833. static const int icos36h[9] = {
  834. FIXHR(0.50190991877167369479/2),
  835. FIXHR(0.51763809020504152469/2), //0
  836. FIXHR(0.55168895948124587824/2),
  837. FIXHR(0.61038729438072803416/2),
  838. FIXHR(0.70710678118654752439/2), //1
  839. FIXHR(0.87172339781054900991/2),
  840. FIXHR(1.18310079157624925896/4),
  841. FIXHR(1.93185165257813657349/4), //2
  842. // FIXHR(5.73685662283492756461),
  843. };
  844. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  845. cases. */
  846. static void imdct12(int *out, int *in)
  847. {
  848. int in0, in1, in2, in3, in4, in5, t1, t2;
  849. in0= in[0*3];
  850. in1= in[1*3] + in[0*3];
  851. in2= in[2*3] + in[1*3];
  852. in3= in[3*3] + in[2*3];
  853. in4= in[4*3] + in[3*3];
  854. in5= in[5*3] + in[4*3];
  855. in5 += in3;
  856. in3 += in1;
  857. in2= MULH(2*in2, C3);
  858. in3= MULH(4*in3, C3);
  859. t1 = in0 - in4;
  860. t2 = MULH(2*(in1 - in5), icos36h[4]);
  861. out[ 7]=
  862. out[10]= t1 + t2;
  863. out[ 1]=
  864. out[ 4]= t1 - t2;
  865. in0 += in4>>1;
  866. in4 = in0 + in2;
  867. in5 += 2*in1;
  868. in1 = MULH(in5 + in3, icos36h[1]);
  869. out[ 8]=
  870. out[ 9]= in4 + in1;
  871. out[ 2]=
  872. out[ 3]= in4 - in1;
  873. in0 -= in2;
  874. in5 = MULH(2*(in5 - in3), icos36h[7]);
  875. out[ 0]=
  876. out[ 5]= in0 - in5;
  877. out[ 6]=
  878. out[11]= in0 + in5;
  879. }
  880. /* cos(pi*i/18) */
  881. #define C1 FIXHR(0.98480775301220805936/2)
  882. #define C2 FIXHR(0.93969262078590838405/2)
  883. #define C3 FIXHR(0.86602540378443864676/2)
  884. #define C4 FIXHR(0.76604444311897803520/2)
  885. #define C5 FIXHR(0.64278760968653932632/2)
  886. #define C6 FIXHR(0.5/2)
  887. #define C7 FIXHR(0.34202014332566873304/2)
  888. #define C8 FIXHR(0.17364817766693034885/2)
  889. /* using Lee like decomposition followed by hand coded 9 points DCT */
  890. static void imdct36(int *out, int *buf, int *in, int *win)
  891. {
  892. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  893. int tmp[18], *tmp1, *in1;
  894. for(i=17;i>=1;i--)
  895. in[i] += in[i-1];
  896. for(i=17;i>=3;i-=2)
  897. in[i] += in[i-2];
  898. for(j=0;j<2;j++) {
  899. tmp1 = tmp + j;
  900. in1 = in + j;
  901. #if 0
  902. //more accurate but slower
  903. int64_t t0, t1, t2, t3;
  904. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  905. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  906. t1 = in1[2*0] - in1[2*6];
  907. tmp1[ 6] = t1 - (t2>>1);
  908. tmp1[16] = t1 + t2;
  909. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  910. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  911. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  912. tmp1[10] = (t3 - t0 - t2) >> 32;
  913. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  914. tmp1[14] = (t3 + t2 - t1) >> 32;
  915. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  916. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  917. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  918. t0 = MUL64(2*in1[2*3], C3);
  919. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  920. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  921. tmp1[12] = (t2 + t1 - t0) >> 32;
  922. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  923. #else
  924. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  925. t3 = in1[2*0] + (in1[2*6]>>1);
  926. t1 = in1[2*0] - in1[2*6];
  927. tmp1[ 6] = t1 - (t2>>1);
  928. tmp1[16] = t1 + t2;
  929. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  930. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  931. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  932. tmp1[10] = t3 - t0 - t2;
  933. tmp1[ 2] = t3 + t0 + t1;
  934. tmp1[14] = t3 + t2 - t1;
  935. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  936. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  937. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  938. t0 = MULH(2*in1[2*3], C3);
  939. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  940. tmp1[ 0] = t2 + t3 + t0;
  941. tmp1[12] = t2 + t1 - t0;
  942. tmp1[ 8] = t3 - t1 - t0;
  943. #endif
  944. }
  945. i = 0;
  946. for(j=0;j<4;j++) {
  947. t0 = tmp[i];
  948. t1 = tmp[i + 2];
  949. s0 = t1 + t0;
  950. s2 = t1 - t0;
  951. t2 = tmp[i + 1];
  952. t3 = tmp[i + 3];
  953. s1 = MULH(2*(t3 + t2), icos36h[j]);
  954. s3 = MULL(t3 - t2, icos36[8 - j]);
  955. t0 = s0 + s1;
  956. t1 = s0 - s1;
  957. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  958. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  959. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  960. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  961. t0 = s2 + s3;
  962. t1 = s2 - s3;
  963. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  964. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  965. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  966. buf[ + j] = MULH(t0, win[18 + j]);
  967. i += 4;
  968. }
  969. s0 = tmp[16];
  970. s1 = MULH(2*tmp[17], icos36h[4]);
  971. t0 = s0 + s1;
  972. t1 = s0 - s1;
  973. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  974. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  975. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  976. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  977. }
  978. /* return the number of decoded frames */
  979. static int mp_decode_layer1(MPADecodeContext *s)
  980. {
  981. int bound, i, v, n, ch, j, mant;
  982. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  983. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  984. if (s->mode == MPA_JSTEREO)
  985. bound = (s->mode_ext + 1) * 4;
  986. else
  987. bound = SBLIMIT;
  988. /* allocation bits */
  989. for(i=0;i<bound;i++) {
  990. for(ch=0;ch<s->nb_channels;ch++) {
  991. allocation[ch][i] = get_bits(&s->gb, 4);
  992. }
  993. }
  994. for(i=bound;i<SBLIMIT;i++) {
  995. allocation[0][i] = get_bits(&s->gb, 4);
  996. }
  997. /* scale factors */
  998. for(i=0;i<bound;i++) {
  999. for(ch=0;ch<s->nb_channels;ch++) {
  1000. if (allocation[ch][i])
  1001. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1002. }
  1003. }
  1004. for(i=bound;i<SBLIMIT;i++) {
  1005. if (allocation[0][i]) {
  1006. scale_factors[0][i] = get_bits(&s->gb, 6);
  1007. scale_factors[1][i] = get_bits(&s->gb, 6);
  1008. }
  1009. }
  1010. /* compute samples */
  1011. for(j=0;j<12;j++) {
  1012. for(i=0;i<bound;i++) {
  1013. for(ch=0;ch<s->nb_channels;ch++) {
  1014. n = allocation[ch][i];
  1015. if (n) {
  1016. mant = get_bits(&s->gb, n + 1);
  1017. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1018. } else {
  1019. v = 0;
  1020. }
  1021. s->sb_samples[ch][j][i] = v;
  1022. }
  1023. }
  1024. for(i=bound;i<SBLIMIT;i++) {
  1025. n = allocation[0][i];
  1026. if (n) {
  1027. mant = get_bits(&s->gb, n + 1);
  1028. v = l1_unscale(n, mant, scale_factors[0][i]);
  1029. s->sb_samples[0][j][i] = v;
  1030. v = l1_unscale(n, mant, scale_factors[1][i]);
  1031. s->sb_samples[1][j][i] = v;
  1032. } else {
  1033. s->sb_samples[0][j][i] = 0;
  1034. s->sb_samples[1][j][i] = 0;
  1035. }
  1036. }
  1037. }
  1038. return 12;
  1039. }
  1040. static int mp_decode_layer2(MPADecodeContext *s)
  1041. {
  1042. int sblimit; /* number of used subbands */
  1043. const unsigned char *alloc_table;
  1044. int table, bit_alloc_bits, i, j, ch, bound, v;
  1045. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1046. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1047. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1048. int scale, qindex, bits, steps, k, l, m, b;
  1049. /* select decoding table */
  1050. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1051. s->sample_rate, s->lsf);
  1052. sblimit = ff_mpa_sblimit_table[table];
  1053. alloc_table = ff_mpa_alloc_tables[table];
  1054. if (s->mode == MPA_JSTEREO)
  1055. bound = (s->mode_ext + 1) * 4;
  1056. else
  1057. bound = sblimit;
  1058. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1059. /* sanity check */
  1060. if( bound > sblimit ) bound = sblimit;
  1061. /* parse bit allocation */
  1062. j = 0;
  1063. for(i=0;i<bound;i++) {
  1064. bit_alloc_bits = alloc_table[j];
  1065. for(ch=0;ch<s->nb_channels;ch++) {
  1066. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1067. }
  1068. j += 1 << bit_alloc_bits;
  1069. }
  1070. for(i=bound;i<sblimit;i++) {
  1071. bit_alloc_bits = alloc_table[j];
  1072. v = get_bits(&s->gb, bit_alloc_bits);
  1073. bit_alloc[0][i] = v;
  1074. bit_alloc[1][i] = v;
  1075. j += 1 << bit_alloc_bits;
  1076. }
  1077. #ifdef DEBUG
  1078. {
  1079. for(ch=0;ch<s->nb_channels;ch++) {
  1080. for(i=0;i<sblimit;i++)
  1081. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1082. dprintf(s->avctx, "\n");
  1083. }
  1084. }
  1085. #endif
  1086. /* scale codes */
  1087. for(i=0;i<sblimit;i++) {
  1088. for(ch=0;ch<s->nb_channels;ch++) {
  1089. if (bit_alloc[ch][i])
  1090. scale_code[ch][i] = get_bits(&s->gb, 2);
  1091. }
  1092. }
  1093. /* scale factors */
  1094. for(i=0;i<sblimit;i++) {
  1095. for(ch=0;ch<s->nb_channels;ch++) {
  1096. if (bit_alloc[ch][i]) {
  1097. sf = scale_factors[ch][i];
  1098. switch(scale_code[ch][i]) {
  1099. default:
  1100. case 0:
  1101. sf[0] = get_bits(&s->gb, 6);
  1102. sf[1] = get_bits(&s->gb, 6);
  1103. sf[2] = get_bits(&s->gb, 6);
  1104. break;
  1105. case 2:
  1106. sf[0] = get_bits(&s->gb, 6);
  1107. sf[1] = sf[0];
  1108. sf[2] = sf[0];
  1109. break;
  1110. case 1:
  1111. sf[0] = get_bits(&s->gb, 6);
  1112. sf[2] = get_bits(&s->gb, 6);
  1113. sf[1] = sf[0];
  1114. break;
  1115. case 3:
  1116. sf[0] = get_bits(&s->gb, 6);
  1117. sf[2] = get_bits(&s->gb, 6);
  1118. sf[1] = sf[2];
  1119. break;
  1120. }
  1121. }
  1122. }
  1123. }
  1124. #ifdef DEBUG
  1125. for(ch=0;ch<s->nb_channels;ch++) {
  1126. for(i=0;i<sblimit;i++) {
  1127. if (bit_alloc[ch][i]) {
  1128. sf = scale_factors[ch][i];
  1129. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1130. } else {
  1131. dprintf(s->avctx, " -");
  1132. }
  1133. }
  1134. dprintf(s->avctx, "\n");
  1135. }
  1136. #endif
  1137. /* samples */
  1138. for(k=0;k<3;k++) {
  1139. for(l=0;l<12;l+=3) {
  1140. j = 0;
  1141. for(i=0;i<bound;i++) {
  1142. bit_alloc_bits = alloc_table[j];
  1143. for(ch=0;ch<s->nb_channels;ch++) {
  1144. b = bit_alloc[ch][i];
  1145. if (b) {
  1146. scale = scale_factors[ch][i][k];
  1147. qindex = alloc_table[j+b];
  1148. bits = ff_mpa_quant_bits[qindex];
  1149. if (bits < 0) {
  1150. /* 3 values at the same time */
  1151. v = get_bits(&s->gb, -bits);
  1152. steps = ff_mpa_quant_steps[qindex];
  1153. s->sb_samples[ch][k * 12 + l + 0][i] =
  1154. l2_unscale_group(steps, v % steps, scale);
  1155. v = v / steps;
  1156. s->sb_samples[ch][k * 12 + l + 1][i] =
  1157. l2_unscale_group(steps, v % steps, scale);
  1158. v = v / steps;
  1159. s->sb_samples[ch][k * 12 + l + 2][i] =
  1160. l2_unscale_group(steps, v, scale);
  1161. } else {
  1162. for(m=0;m<3;m++) {
  1163. v = get_bits(&s->gb, bits);
  1164. v = l1_unscale(bits - 1, v, scale);
  1165. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1166. }
  1167. }
  1168. } else {
  1169. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1170. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1171. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1172. }
  1173. }
  1174. /* next subband in alloc table */
  1175. j += 1 << bit_alloc_bits;
  1176. }
  1177. /* XXX: find a way to avoid this duplication of code */
  1178. for(i=bound;i<sblimit;i++) {
  1179. bit_alloc_bits = alloc_table[j];
  1180. b = bit_alloc[0][i];
  1181. if (b) {
  1182. int mant, scale0, scale1;
  1183. scale0 = scale_factors[0][i][k];
  1184. scale1 = scale_factors[1][i][k];
  1185. qindex = alloc_table[j+b];
  1186. bits = ff_mpa_quant_bits[qindex];
  1187. if (bits < 0) {
  1188. /* 3 values at the same time */
  1189. v = get_bits(&s->gb, -bits);
  1190. steps = ff_mpa_quant_steps[qindex];
  1191. mant = v % steps;
  1192. v = v / steps;
  1193. s->sb_samples[0][k * 12 + l + 0][i] =
  1194. l2_unscale_group(steps, mant, scale0);
  1195. s->sb_samples[1][k * 12 + l + 0][i] =
  1196. l2_unscale_group(steps, mant, scale1);
  1197. mant = v % steps;
  1198. v = v / steps;
  1199. s->sb_samples[0][k * 12 + l + 1][i] =
  1200. l2_unscale_group(steps, mant, scale0);
  1201. s->sb_samples[1][k * 12 + l + 1][i] =
  1202. l2_unscale_group(steps, mant, scale1);
  1203. s->sb_samples[0][k * 12 + l + 2][i] =
  1204. l2_unscale_group(steps, v, scale0);
  1205. s->sb_samples[1][k * 12 + l + 2][i] =
  1206. l2_unscale_group(steps, v, scale1);
  1207. } else {
  1208. for(m=0;m<3;m++) {
  1209. mant = get_bits(&s->gb, bits);
  1210. s->sb_samples[0][k * 12 + l + m][i] =
  1211. l1_unscale(bits - 1, mant, scale0);
  1212. s->sb_samples[1][k * 12 + l + m][i] =
  1213. l1_unscale(bits - 1, mant, scale1);
  1214. }
  1215. }
  1216. } else {
  1217. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1218. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1219. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1220. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1221. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1222. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1223. }
  1224. /* next subband in alloc table */
  1225. j += 1 << bit_alloc_bits;
  1226. }
  1227. /* fill remaining samples to zero */
  1228. for(i=sblimit;i<SBLIMIT;i++) {
  1229. for(ch=0;ch<s->nb_channels;ch++) {
  1230. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1231. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1232. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1233. }
  1234. }
  1235. }
  1236. }
  1237. return 3 * 12;
  1238. }
  1239. static inline void lsf_sf_expand(int *slen,
  1240. int sf, int n1, int n2, int n3)
  1241. {
  1242. if (n3) {
  1243. slen[3] = sf % n3;
  1244. sf /= n3;
  1245. } else {
  1246. slen[3] = 0;
  1247. }
  1248. if (n2) {
  1249. slen[2] = sf % n2;
  1250. sf /= n2;
  1251. } else {
  1252. slen[2] = 0;
  1253. }
  1254. slen[1] = sf % n1;
  1255. sf /= n1;
  1256. slen[0] = sf;
  1257. }
  1258. static void exponents_from_scale_factors(MPADecodeContext *s,
  1259. GranuleDef *g,
  1260. int16_t *exponents)
  1261. {
  1262. const uint8_t *bstab, *pretab;
  1263. int len, i, j, k, l, v0, shift, gain, gains[3];
  1264. int16_t *exp_ptr;
  1265. exp_ptr = exponents;
  1266. gain = g->global_gain - 210;
  1267. shift = g->scalefac_scale + 1;
  1268. bstab = band_size_long[s->sample_rate_index];
  1269. pretab = mpa_pretab[g->preflag];
  1270. for(i=0;i<g->long_end;i++) {
  1271. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1272. len = bstab[i];
  1273. for(j=len;j>0;j--)
  1274. *exp_ptr++ = v0;
  1275. }
  1276. if (g->short_start < 13) {
  1277. bstab = band_size_short[s->sample_rate_index];
  1278. gains[0] = gain - (g->subblock_gain[0] << 3);
  1279. gains[1] = gain - (g->subblock_gain[1] << 3);
  1280. gains[2] = gain - (g->subblock_gain[2] << 3);
  1281. k = g->long_end;
  1282. for(i=g->short_start;i<13;i++) {
  1283. len = bstab[i];
  1284. for(l=0;l<3;l++) {
  1285. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1286. for(j=len;j>0;j--)
  1287. *exp_ptr++ = v0;
  1288. }
  1289. }
  1290. }
  1291. }
  1292. /* handle n = 0 too */
  1293. static inline int get_bitsz(GetBitContext *s, int n)
  1294. {
  1295. if (n == 0)
  1296. return 0;
  1297. else
  1298. return get_bits(s, n);
  1299. }
  1300. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1301. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1302. s->gb= s->in_gb;
  1303. s->in_gb.buffer=NULL;
  1304. assert((get_bits_count(&s->gb) & 7) == 0);
  1305. skip_bits_long(&s->gb, *pos - *end_pos);
  1306. *end_pos2=
  1307. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1308. *pos= get_bits_count(&s->gb);
  1309. }
  1310. }
  1311. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1312. int16_t *exponents, int end_pos2)
  1313. {
  1314. int s_index;
  1315. int i;
  1316. int last_pos, bits_left;
  1317. VLC *vlc;
  1318. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1319. /* low frequencies (called big values) */
  1320. s_index = 0;
  1321. for(i=0;i<3;i++) {
  1322. int j, k, l, linbits;
  1323. j = g->region_size[i];
  1324. if (j == 0)
  1325. continue;
  1326. /* select vlc table */
  1327. k = g->table_select[i];
  1328. l = mpa_huff_data[k][0];
  1329. linbits = mpa_huff_data[k][1];
  1330. vlc = &huff_vlc[l];
  1331. if(!l){
  1332. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1333. s_index += 2*j;
  1334. continue;
  1335. }
  1336. /* read huffcode and compute each couple */
  1337. for(;j>0;j--) {
  1338. int exponent, x, y, v;
  1339. int pos= get_bits_count(&s->gb);
  1340. if (pos >= end_pos){
  1341. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1342. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1343. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1344. if(pos >= end_pos)
  1345. break;
  1346. }
  1347. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1348. if(!y){
  1349. g->sb_hybrid[s_index ] =
  1350. g->sb_hybrid[s_index+1] = 0;
  1351. s_index += 2;
  1352. continue;
  1353. }
  1354. exponent= exponents[s_index];
  1355. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1356. i, g->region_size[i] - j, x, y, exponent);
  1357. if(y&16){
  1358. x = y >> 5;
  1359. y = y & 0x0f;
  1360. if (x < 15){
  1361. v = expval_table[ exponent ][ x ];
  1362. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1363. }else{
  1364. x += get_bitsz(&s->gb, linbits);
  1365. v = l3_unscale(x, exponent);
  1366. }
  1367. if (get_bits1(&s->gb))
  1368. v = -v;
  1369. g->sb_hybrid[s_index] = v;
  1370. if (y < 15){
  1371. v = expval_table[ exponent ][ y ];
  1372. }else{
  1373. y += get_bitsz(&s->gb, linbits);
  1374. v = l3_unscale(y, exponent);
  1375. }
  1376. if (get_bits1(&s->gb))
  1377. v = -v;
  1378. g->sb_hybrid[s_index+1] = v;
  1379. }else{
  1380. x = y >> 5;
  1381. y = y & 0x0f;
  1382. x += y;
  1383. if (x < 15){
  1384. v = expval_table[ exponent ][ x ];
  1385. }else{
  1386. x += get_bitsz(&s->gb, linbits);
  1387. v = l3_unscale(x, exponent);
  1388. }
  1389. if (get_bits1(&s->gb))
  1390. v = -v;
  1391. g->sb_hybrid[s_index+!!y] = v;
  1392. g->sb_hybrid[s_index+ !y] = 0;
  1393. }
  1394. s_index+=2;
  1395. }
  1396. }
  1397. /* high frequencies */
  1398. vlc = &huff_quad_vlc[g->count1table_select];
  1399. last_pos=0;
  1400. while (s_index <= 572) {
  1401. int pos, code;
  1402. pos = get_bits_count(&s->gb);
  1403. if (pos >= end_pos) {
  1404. if (pos > end_pos2 && last_pos){
  1405. /* some encoders generate an incorrect size for this
  1406. part. We must go back into the data */
  1407. s_index -= 4;
  1408. skip_bits_long(&s->gb, last_pos - pos);
  1409. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1410. if(s->error_resilience >= FF_ER_COMPLIANT)
  1411. s_index=0;
  1412. break;
  1413. }
  1414. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1415. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1416. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1417. if(pos >= end_pos)
  1418. break;
  1419. }
  1420. last_pos= pos;
  1421. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1422. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1423. g->sb_hybrid[s_index+0]=
  1424. g->sb_hybrid[s_index+1]=
  1425. g->sb_hybrid[s_index+2]=
  1426. g->sb_hybrid[s_index+3]= 0;
  1427. while(code){
  1428. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1429. int v;
  1430. int pos= s_index+idxtab[code];
  1431. code ^= 8>>idxtab[code];
  1432. v = exp_table[ exponents[pos] ];
  1433. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1434. if(get_bits1(&s->gb))
  1435. v = -v;
  1436. g->sb_hybrid[pos] = v;
  1437. }
  1438. s_index+=4;
  1439. }
  1440. /* skip extension bits */
  1441. bits_left = end_pos2 - get_bits_count(&s->gb);
  1442. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1443. if (bits_left < 0/* || bits_left > 500*/) {
  1444. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1445. s_index=0;
  1446. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1447. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1448. s_index=0;
  1449. }
  1450. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1451. skip_bits_long(&s->gb, bits_left);
  1452. i= get_bits_count(&s->gb);
  1453. switch_buffer(s, &i, &end_pos, &end_pos2);
  1454. return 0;
  1455. }
  1456. /* Reorder short blocks from bitstream order to interleaved order. It
  1457. would be faster to do it in parsing, but the code would be far more
  1458. complicated */
  1459. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1460. {
  1461. int i, j, len;
  1462. int32_t *ptr, *dst, *ptr1;
  1463. int32_t tmp[576];
  1464. if (g->block_type != 2)
  1465. return;
  1466. if (g->switch_point) {
  1467. if (s->sample_rate_index != 8) {
  1468. ptr = g->sb_hybrid + 36;
  1469. } else {
  1470. ptr = g->sb_hybrid + 48;
  1471. }
  1472. } else {
  1473. ptr = g->sb_hybrid;
  1474. }
  1475. for(i=g->short_start;i<13;i++) {
  1476. len = band_size_short[s->sample_rate_index][i];
  1477. ptr1 = ptr;
  1478. dst = tmp;
  1479. for(j=len;j>0;j--) {
  1480. *dst++ = ptr[0*len];
  1481. *dst++ = ptr[1*len];
  1482. *dst++ = ptr[2*len];
  1483. ptr++;
  1484. }
  1485. ptr+=2*len;
  1486. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1487. }
  1488. }
  1489. #define ISQRT2 FIXR(0.70710678118654752440)
  1490. static void compute_stereo(MPADecodeContext *s,
  1491. GranuleDef *g0, GranuleDef *g1)
  1492. {
  1493. int i, j, k, l;
  1494. int32_t v1, v2;
  1495. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1496. int32_t (*is_tab)[16];
  1497. int32_t *tab0, *tab1;
  1498. int non_zero_found_short[3];
  1499. /* intensity stereo */
  1500. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1501. if (!s->lsf) {
  1502. is_tab = is_table;
  1503. sf_max = 7;
  1504. } else {
  1505. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1506. sf_max = 16;
  1507. }
  1508. tab0 = g0->sb_hybrid + 576;
  1509. tab1 = g1->sb_hybrid + 576;
  1510. non_zero_found_short[0] = 0;
  1511. non_zero_found_short[1] = 0;
  1512. non_zero_found_short[2] = 0;
  1513. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1514. for(i = 12;i >= g1->short_start;i--) {
  1515. /* for last band, use previous scale factor */
  1516. if (i != 11)
  1517. k -= 3;
  1518. len = band_size_short[s->sample_rate_index][i];
  1519. for(l=2;l>=0;l--) {
  1520. tab0 -= len;
  1521. tab1 -= len;
  1522. if (!non_zero_found_short[l]) {
  1523. /* test if non zero band. if so, stop doing i-stereo */
  1524. for(j=0;j<len;j++) {
  1525. if (tab1[j] != 0) {
  1526. non_zero_found_short[l] = 1;
  1527. goto found1;
  1528. }
  1529. }
  1530. sf = g1->scale_factors[k + l];
  1531. if (sf >= sf_max)
  1532. goto found1;
  1533. v1 = is_tab[0][sf];
  1534. v2 = is_tab[1][sf];
  1535. for(j=0;j<len;j++) {
  1536. tmp0 = tab0[j];
  1537. tab0[j] = MULL(tmp0, v1);
  1538. tab1[j] = MULL(tmp0, v2);
  1539. }
  1540. } else {
  1541. found1:
  1542. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1543. /* lower part of the spectrum : do ms stereo
  1544. if enabled */
  1545. for(j=0;j<len;j++) {
  1546. tmp0 = tab0[j];
  1547. tmp1 = tab1[j];
  1548. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1549. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1550. }
  1551. }
  1552. }
  1553. }
  1554. }
  1555. non_zero_found = non_zero_found_short[0] |
  1556. non_zero_found_short[1] |
  1557. non_zero_found_short[2];
  1558. for(i = g1->long_end - 1;i >= 0;i--) {
  1559. len = band_size_long[s->sample_rate_index][i];
  1560. tab0 -= len;
  1561. tab1 -= len;
  1562. /* test if non zero band. if so, stop doing i-stereo */
  1563. if (!non_zero_found) {
  1564. for(j=0;j<len;j++) {
  1565. if (tab1[j] != 0) {
  1566. non_zero_found = 1;
  1567. goto found2;
  1568. }
  1569. }
  1570. /* for last band, use previous scale factor */
  1571. k = (i == 21) ? 20 : i;
  1572. sf = g1->scale_factors[k];
  1573. if (sf >= sf_max)
  1574. goto found2;
  1575. v1 = is_tab[0][sf];
  1576. v2 = is_tab[1][sf];
  1577. for(j=0;j<len;j++) {
  1578. tmp0 = tab0[j];
  1579. tab0[j] = MULL(tmp0, v1);
  1580. tab1[j] = MULL(tmp0, v2);
  1581. }
  1582. } else {
  1583. found2:
  1584. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1585. /* lower part of the spectrum : do ms stereo
  1586. if enabled */
  1587. for(j=0;j<len;j++) {
  1588. tmp0 = tab0[j];
  1589. tmp1 = tab1[j];
  1590. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1591. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1592. }
  1593. }
  1594. }
  1595. }
  1596. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1597. /* ms stereo ONLY */
  1598. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1599. global gain */
  1600. tab0 = g0->sb_hybrid;
  1601. tab1 = g1->sb_hybrid;
  1602. for(i=0;i<576;i++) {
  1603. tmp0 = tab0[i];
  1604. tmp1 = tab1[i];
  1605. tab0[i] = tmp0 + tmp1;
  1606. tab1[i] = tmp0 - tmp1;
  1607. }
  1608. }
  1609. }
  1610. static void compute_antialias_integer(MPADecodeContext *s,
  1611. GranuleDef *g)
  1612. {
  1613. int32_t *ptr, *csa;
  1614. int n, i;
  1615. /* we antialias only "long" bands */
  1616. if (g->block_type == 2) {
  1617. if (!g->switch_point)
  1618. return;
  1619. /* XXX: check this for 8000Hz case */
  1620. n = 1;
  1621. } else {
  1622. n = SBLIMIT - 1;
  1623. }
  1624. ptr = g->sb_hybrid + 18;
  1625. for(i = n;i > 0;i--) {
  1626. int tmp0, tmp1, tmp2;
  1627. csa = &csa_table[0][0];
  1628. #define INT_AA(j) \
  1629. tmp0 = ptr[-1-j];\
  1630. tmp1 = ptr[ j];\
  1631. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1632. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1633. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1634. INT_AA(0)
  1635. INT_AA(1)
  1636. INT_AA(2)
  1637. INT_AA(3)
  1638. INT_AA(4)
  1639. INT_AA(5)
  1640. INT_AA(6)
  1641. INT_AA(7)
  1642. ptr += 18;
  1643. }
  1644. }
  1645. static void compute_antialias_float(MPADecodeContext *s,
  1646. GranuleDef *g)
  1647. {
  1648. int32_t *ptr;
  1649. int n, i;
  1650. /* we antialias only "long" bands */
  1651. if (g->block_type == 2) {
  1652. if (!g->switch_point)
  1653. return;
  1654. /* XXX: check this for 8000Hz case */
  1655. n = 1;
  1656. } else {
  1657. n = SBLIMIT - 1;
  1658. }
  1659. ptr = g->sb_hybrid + 18;
  1660. for(i = n;i > 0;i--) {
  1661. float tmp0, tmp1;
  1662. float *csa = &csa_table_float[0][0];
  1663. #define FLOAT_AA(j)\
  1664. tmp0= ptr[-1-j];\
  1665. tmp1= ptr[ j];\
  1666. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1667. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1668. FLOAT_AA(0)
  1669. FLOAT_AA(1)
  1670. FLOAT_AA(2)
  1671. FLOAT_AA(3)
  1672. FLOAT_AA(4)
  1673. FLOAT_AA(5)
  1674. FLOAT_AA(6)
  1675. FLOAT_AA(7)
  1676. ptr += 18;
  1677. }
  1678. }
  1679. static void compute_imdct(MPADecodeContext *s,
  1680. GranuleDef *g,
  1681. int32_t *sb_samples,
  1682. int32_t *mdct_buf)
  1683. {
  1684. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1685. int32_t out2[12];
  1686. int i, j, mdct_long_end, v, sblimit;
  1687. /* find last non zero block */
  1688. ptr = g->sb_hybrid + 576;
  1689. ptr1 = g->sb_hybrid + 2 * 18;
  1690. while (ptr >= ptr1) {
  1691. ptr -= 6;
  1692. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1693. if (v != 0)
  1694. break;
  1695. }
  1696. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1697. if (g->block_type == 2) {
  1698. /* XXX: check for 8000 Hz */
  1699. if (g->switch_point)
  1700. mdct_long_end = 2;
  1701. else
  1702. mdct_long_end = 0;
  1703. } else {
  1704. mdct_long_end = sblimit;
  1705. }
  1706. buf = mdct_buf;
  1707. ptr = g->sb_hybrid;
  1708. for(j=0;j<mdct_long_end;j++) {
  1709. /* apply window & overlap with previous buffer */
  1710. out_ptr = sb_samples + j;
  1711. /* select window */
  1712. if (g->switch_point && j < 2)
  1713. win1 = mdct_win[0];
  1714. else
  1715. win1 = mdct_win[g->block_type];
  1716. /* select frequency inversion */
  1717. win = win1 + ((4 * 36) & -(j & 1));
  1718. imdct36(out_ptr, buf, ptr, win);
  1719. out_ptr += 18*SBLIMIT;
  1720. ptr += 18;
  1721. buf += 18;
  1722. }
  1723. for(j=mdct_long_end;j<sblimit;j++) {
  1724. /* select frequency inversion */
  1725. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1726. out_ptr = sb_samples + j;
  1727. for(i=0; i<6; i++){
  1728. *out_ptr = buf[i];
  1729. out_ptr += SBLIMIT;
  1730. }
  1731. imdct12(out2, ptr + 0);
  1732. for(i=0;i<6;i++) {
  1733. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1734. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1735. out_ptr += SBLIMIT;
  1736. }
  1737. imdct12(out2, ptr + 1);
  1738. for(i=0;i<6;i++) {
  1739. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1740. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1741. out_ptr += SBLIMIT;
  1742. }
  1743. imdct12(out2, ptr + 2);
  1744. for(i=0;i<6;i++) {
  1745. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1746. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1747. buf[i + 6*2] = 0;
  1748. }
  1749. ptr += 18;
  1750. buf += 18;
  1751. }
  1752. /* zero bands */
  1753. for(j=sblimit;j<SBLIMIT;j++) {
  1754. /* overlap */
  1755. out_ptr = sb_samples + j;
  1756. for(i=0;i<18;i++) {
  1757. *out_ptr = buf[i];
  1758. buf[i] = 0;
  1759. out_ptr += SBLIMIT;
  1760. }
  1761. buf += 18;
  1762. }
  1763. }
  1764. #if defined(DEBUG)
  1765. void sample_dump(int fnum, int32_t *tab, int n)
  1766. {
  1767. static FILE *files[16], *f;
  1768. char buf[512];
  1769. int i;
  1770. int32_t v;
  1771. f = files[fnum];
  1772. if (!f) {
  1773. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1774. fnum,
  1775. #ifdef USE_HIGHPRECISION
  1776. "hp"
  1777. #else
  1778. "lp"
  1779. #endif
  1780. );
  1781. f = fopen(buf, "w");
  1782. if (!f)
  1783. return;
  1784. files[fnum] = f;
  1785. }
  1786. if (fnum == 0) {
  1787. static int pos = 0;
  1788. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1789. for(i=0;i<n;i++) {
  1790. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1791. if ((i % 18) == 17)
  1792. av_log(NULL, AV_LOG_DEBUG, "\n");
  1793. }
  1794. pos += n;
  1795. }
  1796. for(i=0;i<n;i++) {
  1797. /* normalize to 23 frac bits */
  1798. v = tab[i] << (23 - FRAC_BITS);
  1799. fwrite(&v, 1, sizeof(int32_t), f);
  1800. }
  1801. }
  1802. #endif
  1803. /* main layer3 decoding function */
  1804. static int mp_decode_layer3(MPADecodeContext *s)
  1805. {
  1806. int nb_granules, main_data_begin, private_bits;
  1807. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1808. GranuleDef granules[2][2], *g;
  1809. int16_t exponents[576];
  1810. /* read side info */
  1811. if (s->lsf) {
  1812. main_data_begin = get_bits(&s->gb, 8);
  1813. private_bits = get_bits(&s->gb, s->nb_channels);
  1814. nb_granules = 1;
  1815. } else {
  1816. main_data_begin = get_bits(&s->gb, 9);
  1817. if (s->nb_channels == 2)
  1818. private_bits = get_bits(&s->gb, 3);
  1819. else
  1820. private_bits = get_bits(&s->gb, 5);
  1821. nb_granules = 2;
  1822. for(ch=0;ch<s->nb_channels;ch++) {
  1823. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1824. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1825. }
  1826. }
  1827. for(gr=0;gr<nb_granules;gr++) {
  1828. for(ch=0;ch<s->nb_channels;ch++) {
  1829. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1830. g = &granules[ch][gr];
  1831. g->part2_3_length = get_bits(&s->gb, 12);
  1832. g->big_values = get_bits(&s->gb, 9);
  1833. if(g->big_values > 288){
  1834. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1835. return -1;
  1836. }
  1837. g->global_gain = get_bits(&s->gb, 8);
  1838. /* if MS stereo only is selected, we precompute the
  1839. 1/sqrt(2) renormalization factor */
  1840. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1841. MODE_EXT_MS_STEREO)
  1842. g->global_gain -= 2;
  1843. if (s->lsf)
  1844. g->scalefac_compress = get_bits(&s->gb, 9);
  1845. else
  1846. g->scalefac_compress = get_bits(&s->gb, 4);
  1847. blocksplit_flag = get_bits1(&s->gb);
  1848. if (blocksplit_flag) {
  1849. g->block_type = get_bits(&s->gb, 2);
  1850. if (g->block_type == 0){
  1851. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1852. return -1;
  1853. }
  1854. g->switch_point = get_bits1(&s->gb);
  1855. for(i=0;i<2;i++)
  1856. g->table_select[i] = get_bits(&s->gb, 5);
  1857. for(i=0;i<3;i++)
  1858. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1859. ff_init_short_region(s, g);
  1860. } else {
  1861. int region_address1, region_address2;
  1862. g->block_type = 0;
  1863. g->switch_point = 0;
  1864. for(i=0;i<3;i++)
  1865. g->table_select[i] = get_bits(&s->gb, 5);
  1866. /* compute huffman coded region sizes */
  1867. region_address1 = get_bits(&s->gb, 4);
  1868. region_address2 = get_bits(&s->gb, 3);
  1869. dprintf(s->avctx, "region1=%d region2=%d\n",
  1870. region_address1, region_address2);
  1871. ff_init_long_region(s, g, region_address1, region_address2);
  1872. }
  1873. ff_region_offset2size(g);
  1874. ff_compute_band_indexes(s, g);
  1875. g->preflag = 0;
  1876. if (!s->lsf)
  1877. g->preflag = get_bits1(&s->gb);
  1878. g->scalefac_scale = get_bits1(&s->gb);
  1879. g->count1table_select = get_bits1(&s->gb);
  1880. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1881. g->block_type, g->switch_point);
  1882. }
  1883. }
  1884. if (!s->adu_mode) {
  1885. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1886. assert((get_bits_count(&s->gb) & 7) == 0);
  1887. /* now we get bits from the main_data_begin offset */
  1888. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1889. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1890. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1891. s->in_gb= s->gb;
  1892. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1893. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1894. }
  1895. for(gr=0;gr<nb_granules;gr++) {
  1896. for(ch=0;ch<s->nb_channels;ch++) {
  1897. g = &granules[ch][gr];
  1898. if(get_bits_count(&s->gb)<0){
  1899. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1900. main_data_begin, s->last_buf_size, gr);
  1901. skip_bits_long(&s->gb, g->part2_3_length);
  1902. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1903. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1904. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1905. s->gb= s->in_gb;
  1906. s->in_gb.buffer=NULL;
  1907. }
  1908. continue;
  1909. }
  1910. bits_pos = get_bits_count(&s->gb);
  1911. if (!s->lsf) {
  1912. uint8_t *sc;
  1913. int slen, slen1, slen2;
  1914. /* MPEG1 scale factors */
  1915. slen1 = slen_table[0][g->scalefac_compress];
  1916. slen2 = slen_table[1][g->scalefac_compress];
  1917. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1918. if (g->block_type == 2) {
  1919. n = g->switch_point ? 17 : 18;
  1920. j = 0;
  1921. if(slen1){
  1922. for(i=0;i<n;i++)
  1923. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1924. }else{
  1925. for(i=0;i<n;i++)
  1926. g->scale_factors[j++] = 0;
  1927. }
  1928. if(slen2){
  1929. for(i=0;i<18;i++)
  1930. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1931. for(i=0;i<3;i++)
  1932. g->scale_factors[j++] = 0;
  1933. }else{
  1934. for(i=0;i<21;i++)
  1935. g->scale_factors[j++] = 0;
  1936. }
  1937. } else {
  1938. sc = granules[ch][0].scale_factors;
  1939. j = 0;
  1940. for(k=0;k<4;k++) {
  1941. n = (k == 0 ? 6 : 5);
  1942. if ((g->scfsi & (0x8 >> k)) == 0) {
  1943. slen = (k < 2) ? slen1 : slen2;
  1944. if(slen){
  1945. for(i=0;i<n;i++)
  1946. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1947. }else{
  1948. for(i=0;i<n;i++)
  1949. g->scale_factors[j++] = 0;
  1950. }
  1951. } else {
  1952. /* simply copy from last granule */
  1953. for(i=0;i<n;i++) {
  1954. g->scale_factors[j] = sc[j];
  1955. j++;
  1956. }
  1957. }
  1958. }
  1959. g->scale_factors[j++] = 0;
  1960. }
  1961. #if defined(DEBUG)
  1962. {
  1963. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  1964. g->scfsi, gr, ch);
  1965. for(i=0;i<j;i++)
  1966. dprintf(s->avctx, " %d", g->scale_factors[i]);
  1967. dprintf(s->avctx, "\n");
  1968. }
  1969. #endif
  1970. } else {
  1971. int tindex, tindex2, slen[4], sl, sf;
  1972. /* LSF scale factors */
  1973. if (g->block_type == 2) {
  1974. tindex = g->switch_point ? 2 : 1;
  1975. } else {
  1976. tindex = 0;
  1977. }
  1978. sf = g->scalefac_compress;
  1979. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1980. /* intensity stereo case */
  1981. sf >>= 1;
  1982. if (sf < 180) {
  1983. lsf_sf_expand(slen, sf, 6, 6, 0);
  1984. tindex2 = 3;
  1985. } else if (sf < 244) {
  1986. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1987. tindex2 = 4;
  1988. } else {
  1989. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1990. tindex2 = 5;
  1991. }
  1992. } else {
  1993. /* normal case */
  1994. if (sf < 400) {
  1995. lsf_sf_expand(slen, sf, 5, 4, 4);
  1996. tindex2 = 0;
  1997. } else if (sf < 500) {
  1998. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1999. tindex2 = 1;
  2000. } else {
  2001. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2002. tindex2 = 2;
  2003. g->preflag = 1;
  2004. }
  2005. }
  2006. j = 0;
  2007. for(k=0;k<4;k++) {
  2008. n = lsf_nsf_table[tindex2][tindex][k];
  2009. sl = slen[k];
  2010. if(sl){
  2011. for(i=0;i<n;i++)
  2012. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2013. }else{
  2014. for(i=0;i<n;i++)
  2015. g->scale_factors[j++] = 0;
  2016. }
  2017. }
  2018. /* XXX: should compute exact size */
  2019. for(;j<40;j++)
  2020. g->scale_factors[j] = 0;
  2021. #if defined(DEBUG)
  2022. {
  2023. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2024. gr, ch);
  2025. for(i=0;i<40;i++)
  2026. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2027. dprintf(s->avctx, "\n");
  2028. }
  2029. #endif
  2030. }
  2031. exponents_from_scale_factors(s, g, exponents);
  2032. /* read Huffman coded residue */
  2033. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2034. #if defined(DEBUG)
  2035. sample_dump(0, g->sb_hybrid, 576);
  2036. #endif
  2037. } /* ch */
  2038. if (s->nb_channels == 2)
  2039. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2040. for(ch=0;ch<s->nb_channels;ch++) {
  2041. g = &granules[ch][gr];
  2042. reorder_block(s, g);
  2043. #if defined(DEBUG)
  2044. sample_dump(0, g->sb_hybrid, 576);
  2045. #endif
  2046. s->compute_antialias(s, g);
  2047. #if defined(DEBUG)
  2048. sample_dump(1, g->sb_hybrid, 576);
  2049. #endif
  2050. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2051. #if defined(DEBUG)
  2052. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2053. #endif
  2054. }
  2055. } /* gr */
  2056. if(get_bits_count(&s->gb)<0)
  2057. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2058. return nb_granules * 18;
  2059. }
  2060. static int mp_decode_frame(MPADecodeContext *s,
  2061. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2062. {
  2063. int i, nb_frames, ch;
  2064. OUT_INT *samples_ptr;
  2065. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2066. /* skip error protection field */
  2067. if (s->error_protection)
  2068. skip_bits(&s->gb, 16);
  2069. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2070. switch(s->layer) {
  2071. case 1:
  2072. nb_frames = mp_decode_layer1(s);
  2073. break;
  2074. case 2:
  2075. nb_frames = mp_decode_layer2(s);
  2076. break;
  2077. case 3:
  2078. default:
  2079. nb_frames = mp_decode_layer3(s);
  2080. s->last_buf_size=0;
  2081. if(s->in_gb.buffer){
  2082. align_get_bits(&s->gb);
  2083. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2084. if(i >= 0 && i <= BACKSTEP_SIZE){
  2085. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2086. s->last_buf_size=i;
  2087. }else
  2088. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2089. s->gb= s->in_gb;
  2090. s->in_gb.buffer= NULL;
  2091. }
  2092. align_get_bits(&s->gb);
  2093. assert((get_bits_count(&s->gb) & 7) == 0);
  2094. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2095. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2096. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2097. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2098. }
  2099. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2100. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2101. s->last_buf_size += i;
  2102. break;
  2103. }
  2104. #if defined(DEBUG)
  2105. for(i=0;i<nb_frames;i++) {
  2106. for(ch=0;ch<s->nb_channels;ch++) {
  2107. int j;
  2108. dprintf(s->avctx, "%d-%d:", i, ch);
  2109. for(j=0;j<SBLIMIT;j++)
  2110. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2111. dprintf(s->avctx, "\n");
  2112. }
  2113. }
  2114. #endif
  2115. /* apply the synthesis filter */
  2116. for(ch=0;ch<s->nb_channels;ch++) {
  2117. samples_ptr = samples + ch;
  2118. for(i=0;i<nb_frames;i++) {
  2119. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2120. window, &s->dither_state,
  2121. samples_ptr, s->nb_channels,
  2122. s->sb_samples[ch][i]);
  2123. samples_ptr += 32 * s->nb_channels;
  2124. }
  2125. }
  2126. #ifdef DEBUG
  2127. s->frame_count++;
  2128. #endif
  2129. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2130. }
  2131. static int decode_frame(AVCodecContext * avctx,
  2132. void *data, int *data_size,
  2133. const uint8_t * buf, int buf_size)
  2134. {
  2135. MPADecodeContext *s = avctx->priv_data;
  2136. uint32_t header;
  2137. int out_size;
  2138. OUT_INT *out_samples = data;
  2139. retry:
  2140. if(buf_size < HEADER_SIZE)
  2141. return -1;
  2142. header = AV_RB32(buf);
  2143. if(ff_mpa_check_header(header) < 0){
  2144. buf++;
  2145. // buf_size--;
  2146. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2147. goto retry;
  2148. }
  2149. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2150. /* free format: prepare to compute frame size */
  2151. s->frame_size = -1;
  2152. return -1;
  2153. }
  2154. /* update codec info */
  2155. avctx->channels = s->nb_channels;
  2156. avctx->bit_rate = s->bit_rate;
  2157. avctx->sub_id = s->layer;
  2158. switch(s->layer) {
  2159. case 1:
  2160. avctx->frame_size = 384;
  2161. break;
  2162. case 2:
  2163. avctx->frame_size = 1152;
  2164. break;
  2165. case 3:
  2166. if (s->lsf)
  2167. avctx->frame_size = 576;
  2168. else
  2169. avctx->frame_size = 1152;
  2170. break;
  2171. }
  2172. if(s->frame_size<=0 || s->frame_size > buf_size){
  2173. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2174. return -1;
  2175. }else if(s->frame_size < buf_size){
  2176. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2177. buf_size= s->frame_size;
  2178. }
  2179. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2180. if(out_size>=0){
  2181. *data_size = out_size;
  2182. avctx->sample_rate = s->sample_rate;
  2183. //FIXME maybe move the other codec info stuff from above here too
  2184. }else
  2185. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2186. s->frame_size = 0;
  2187. return buf_size;
  2188. }
  2189. static void flush(AVCodecContext *avctx){
  2190. MPADecodeContext *s = avctx->priv_data;
  2191. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2192. s->last_buf_size= 0;
  2193. }
  2194. #ifdef CONFIG_MP3ADU_DECODER
  2195. static int decode_frame_adu(AVCodecContext * avctx,
  2196. void *data, int *data_size,
  2197. const uint8_t * buf, int buf_size)
  2198. {
  2199. MPADecodeContext *s = avctx->priv_data;
  2200. uint32_t header;
  2201. int len, out_size;
  2202. OUT_INT *out_samples = data;
  2203. len = buf_size;
  2204. // Discard too short frames
  2205. if (buf_size < HEADER_SIZE) {
  2206. *data_size = 0;
  2207. return buf_size;
  2208. }
  2209. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2210. len = MPA_MAX_CODED_FRAME_SIZE;
  2211. // Get header and restore sync word
  2212. header = AV_RB32(buf) | 0xffe00000;
  2213. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2214. *data_size = 0;
  2215. return buf_size;
  2216. }
  2217. ff_mpegaudio_decode_header(s, header);
  2218. /* update codec info */
  2219. avctx->sample_rate = s->sample_rate;
  2220. avctx->channels = s->nb_channels;
  2221. avctx->bit_rate = s->bit_rate;
  2222. avctx->sub_id = s->layer;
  2223. avctx->frame_size=s->frame_size = len;
  2224. if (avctx->parse_only) {
  2225. out_size = buf_size;
  2226. } else {
  2227. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2228. }
  2229. *data_size = out_size;
  2230. return buf_size;
  2231. }
  2232. #endif /* CONFIG_MP3ADU_DECODER */
  2233. #ifdef CONFIG_MP3ON4_DECODER
  2234. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2235. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2236. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2237. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2238. static int chan_offset[9][5] = {
  2239. {0},
  2240. {0}, // C
  2241. {0}, // FLR
  2242. {2,0}, // C FLR
  2243. {2,0,3}, // C FLR BS
  2244. {4,0,2}, // C FLR BLRS
  2245. {4,0,2,5}, // C FLR BLRS LFE
  2246. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2247. {0,2} // FLR BLRS
  2248. };
  2249. static int decode_init_mp3on4(AVCodecContext * avctx)
  2250. {
  2251. MP3On4DecodeContext *s = avctx->priv_data;
  2252. int i;
  2253. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2254. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2255. return -1;
  2256. }
  2257. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2258. s->frames = mp3Frames[s->chan_cfg];
  2259. if(!s->frames) {
  2260. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2261. return -1;
  2262. }
  2263. avctx->channels = mp3Channels[s->chan_cfg];
  2264. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2265. * We replace avctx->priv_data with the context of the first decoder so that
  2266. * decode_init() does not have to be changed.
  2267. * Other decoders will be initialized here copying data from the first context
  2268. */
  2269. // Allocate zeroed memory for the first decoder context
  2270. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2271. // Put decoder context in place to make init_decode() happy
  2272. avctx->priv_data = s->mp3decctx[0];
  2273. decode_init(avctx);
  2274. // Restore mp3on4 context pointer
  2275. avctx->priv_data = s;
  2276. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2277. /* Create a separate codec/context for each frame (first is already ok).
  2278. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2279. */
  2280. for (i = 1; i < s->frames; i++) {
  2281. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2282. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2283. s->mp3decctx[i]->adu_mode = 1;
  2284. s->mp3decctx[i]->avctx = avctx;
  2285. }
  2286. return 0;
  2287. }
  2288. static int decode_close_mp3on4(AVCodecContext * avctx)
  2289. {
  2290. MP3On4DecodeContext *s = avctx->priv_data;
  2291. int i;
  2292. for (i = 0; i < s->frames; i++)
  2293. if (s->mp3decctx[i])
  2294. av_free(s->mp3decctx[i]);
  2295. return 0;
  2296. }
  2297. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2298. void *data, int *data_size,
  2299. const uint8_t * buf, int buf_size)
  2300. {
  2301. MP3On4DecodeContext *s = avctx->priv_data;
  2302. MPADecodeContext *m;
  2303. int len, out_size = 0;
  2304. uint32_t header;
  2305. OUT_INT *out_samples = data;
  2306. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2307. OUT_INT *outptr, *bp;
  2308. int fsize;
  2309. const unsigned char *start2 = buf, *start;
  2310. int fr, i, j, n;
  2311. int off = avctx->channels;
  2312. int *coff = chan_offset[s->chan_cfg];
  2313. len = buf_size;
  2314. // Discard too short frames
  2315. if (buf_size < HEADER_SIZE) {
  2316. *data_size = 0;
  2317. return buf_size;
  2318. }
  2319. // If only one decoder interleave is not needed
  2320. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2321. for (fr = 0; fr < s->frames; fr++) {
  2322. start = start2;
  2323. fsize = (start[0] << 4) | (start[1] >> 4);
  2324. start2 += fsize;
  2325. if (fsize > len)
  2326. fsize = len;
  2327. len -= fsize;
  2328. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2329. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2330. m = s->mp3decctx[fr];
  2331. assert (m != NULL);
  2332. // Get header
  2333. header = AV_RB32(start) | 0xfff00000;
  2334. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2335. *data_size = 0;
  2336. return buf_size;
  2337. }
  2338. ff_mpegaudio_decode_header(m, header);
  2339. mp_decode_frame(m, decoded_buf, start, fsize);
  2340. n = MPA_FRAME_SIZE * m->nb_channels;
  2341. out_size += n * sizeof(OUT_INT);
  2342. if(s->frames > 1) {
  2343. /* interleave output data */
  2344. bp = out_samples + coff[fr];
  2345. if(m->nb_channels == 1) {
  2346. for(j = 0; j < n; j++) {
  2347. *bp = decoded_buf[j];
  2348. bp += off;
  2349. }
  2350. } else {
  2351. for(j = 0; j < n; j++) {
  2352. bp[0] = decoded_buf[j++];
  2353. bp[1] = decoded_buf[j];
  2354. bp += off;
  2355. }
  2356. }
  2357. }
  2358. }
  2359. /* update codec info */
  2360. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2361. avctx->frame_size= buf_size;
  2362. avctx->bit_rate = 0;
  2363. for (i = 0; i < s->frames; i++)
  2364. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2365. *data_size = out_size;
  2366. return buf_size;
  2367. }
  2368. #endif /* CONFIG_MP3ON4_DECODER */
  2369. #ifdef CONFIG_MP2_DECODER
  2370. AVCodec mp2_decoder =
  2371. {
  2372. "mp2",
  2373. CODEC_TYPE_AUDIO,
  2374. CODEC_ID_MP2,
  2375. sizeof(MPADecodeContext),
  2376. decode_init,
  2377. NULL,
  2378. NULL,
  2379. decode_frame,
  2380. CODEC_CAP_PARSE_ONLY,
  2381. .flush= flush,
  2382. };
  2383. #endif
  2384. #ifdef CONFIG_MP3_DECODER
  2385. AVCodec mp3_decoder =
  2386. {
  2387. "mp3",
  2388. CODEC_TYPE_AUDIO,
  2389. CODEC_ID_MP3,
  2390. sizeof(MPADecodeContext),
  2391. decode_init,
  2392. NULL,
  2393. NULL,
  2394. decode_frame,
  2395. CODEC_CAP_PARSE_ONLY,
  2396. .flush= flush,
  2397. };
  2398. #endif
  2399. #ifdef CONFIG_MP3ADU_DECODER
  2400. AVCodec mp3adu_decoder =
  2401. {
  2402. "mp3adu",
  2403. CODEC_TYPE_AUDIO,
  2404. CODEC_ID_MP3ADU,
  2405. sizeof(MPADecodeContext),
  2406. decode_init,
  2407. NULL,
  2408. NULL,
  2409. decode_frame_adu,
  2410. CODEC_CAP_PARSE_ONLY,
  2411. .flush= flush,
  2412. };
  2413. #endif
  2414. #ifdef CONFIG_MP3ON4_DECODER
  2415. AVCodec mp3on4_decoder =
  2416. {
  2417. "mp3on4",
  2418. CODEC_TYPE_AUDIO,
  2419. CODEC_ID_MP3ON4,
  2420. sizeof(MP3On4DecodeContext),
  2421. decode_init_mp3on4,
  2422. NULL,
  2423. decode_close_mp3on4,
  2424. decode_frame_mp3on4,
  2425. .flush= flush,
  2426. };
  2427. #endif