You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

201 lines
5.1KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. /**
  47. * init MDCT or IMDCT computation.
  48. */
  49. int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
  50. {
  51. int n, n4, i;
  52. float alpha;
  53. memset(s, 0, sizeof(*s));
  54. n = 1 << nbits;
  55. s->nbits = nbits;
  56. s->n = n;
  57. n4 = n >> 2;
  58. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  59. if (!s->tcos)
  60. goto fail;
  61. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  62. if (!s->tsin)
  63. goto fail;
  64. for(i=0;i<n4;i++) {
  65. alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
  66. s->tcos[i] = -cos(alpha);
  67. s->tsin[i] = -sin(alpha);
  68. }
  69. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  70. goto fail;
  71. return 0;
  72. fail:
  73. av_freep(&s->tcos);
  74. av_freep(&s->tsin);
  75. return -1;
  76. }
  77. /* complex multiplication: p = a * b */
  78. #define CMUL(pre, pim, are, aim, bre, bim) \
  79. {\
  80. float _are = (are);\
  81. float _aim = (aim);\
  82. float _bre = (bre);\
  83. float _bim = (bim);\
  84. (pre) = _are * _bre - _aim * _bim;\
  85. (pim) = _are * _bim + _aim * _bre;\
  86. }
  87. /**
  88. * Compute inverse MDCT of size N = 2^nbits
  89. * @param output N samples
  90. * @param input N/2 samples
  91. * @param tmp N/2 samples
  92. */
  93. void ff_imdct_calc(MDCTContext *s, FFTSample *output,
  94. const FFTSample *input, FFTSample *tmp)
  95. {
  96. int k, n8, n4, n2, n, j;
  97. const uint16_t *revtab = s->fft.revtab;
  98. const FFTSample *tcos = s->tcos;
  99. const FFTSample *tsin = s->tsin;
  100. const FFTSample *in1, *in2;
  101. FFTComplex *z = (FFTComplex *)tmp;
  102. n = 1 << s->nbits;
  103. n2 = n >> 1;
  104. n4 = n >> 2;
  105. n8 = n >> 3;
  106. /* pre rotation */
  107. in1 = input;
  108. in2 = input + n2 - 1;
  109. for(k = 0; k < n4; k++) {
  110. j=revtab[k];
  111. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  112. in1 += 2;
  113. in2 -= 2;
  114. }
  115. ff_fft_calc(&s->fft, z);
  116. /* post rotation + reordering */
  117. /* XXX: optimize */
  118. for(k = 0; k < n4; k++) {
  119. CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
  120. }
  121. for(k = 0; k < n8; k++) {
  122. output[2*k] = -z[n8 + k].im;
  123. output[n2-1-2*k] = z[n8 + k].im;
  124. output[2*k+1] = z[n8-1-k].re;
  125. output[n2-1-2*k-1] = -z[n8-1-k].re;
  126. output[n2 + 2*k]=-z[k+n8].re;
  127. output[n-1- 2*k]=-z[k+n8].re;
  128. output[n2 + 2*k+1]=z[n8-k-1].im;
  129. output[n-2 - 2 * k] = z[n8-k-1].im;
  130. }
  131. }
  132. /**
  133. * Compute MDCT of size N = 2^nbits
  134. * @param input N samples
  135. * @param out N/2 samples
  136. * @param tmp temporary storage of N/2 samples
  137. */
  138. void ff_mdct_calc(MDCTContext *s, FFTSample *out,
  139. const FFTSample *input, FFTSample *tmp)
  140. {
  141. int i, j, n, n8, n4, n2, n3;
  142. FFTSample re, im, re1, im1;
  143. const uint16_t *revtab = s->fft.revtab;
  144. const FFTSample *tcos = s->tcos;
  145. const FFTSample *tsin = s->tsin;
  146. FFTComplex *x = (FFTComplex *)tmp;
  147. n = 1 << s->nbits;
  148. n2 = n >> 1;
  149. n4 = n >> 2;
  150. n8 = n >> 3;
  151. n3 = 3 * n4;
  152. /* pre rotation */
  153. for(i=0;i<n8;i++) {
  154. re = -input[2*i+3*n4] - input[n3-1-2*i];
  155. im = -input[n4+2*i] + input[n4-1-2*i];
  156. j = revtab[i];
  157. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  158. re = input[2*i] - input[n2-1-2*i];
  159. im = -(input[n2+2*i] + input[n-1-2*i]);
  160. j = revtab[n8 + i];
  161. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  162. }
  163. ff_fft_calc(&s->fft, x);
  164. /* post rotation */
  165. for(i=0;i<n4;i++) {
  166. re = x[i].re;
  167. im = x[i].im;
  168. CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
  169. out[2*i] = im1;
  170. out[n2-1-2*i] = re1;
  171. }
  172. }
  173. void ff_mdct_end(MDCTContext *s)
  174. {
  175. av_freep(&s->tcos);
  176. av_freep(&s->tsin);
  177. ff_fft_end(&s->fft);
  178. }