You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1508 lines
44KB

  1. /**
  2. * FLAC audio encoder
  3. * Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "crc.h"
  24. #include "dsputil.h"
  25. #include "golomb.h"
  26. #include "lls.h"
  27. #define FLAC_MAX_CH 8
  28. #define FLAC_MIN_BLOCKSIZE 16
  29. #define FLAC_MAX_BLOCKSIZE 65535
  30. #define FLAC_SUBFRAME_CONSTANT 0
  31. #define FLAC_SUBFRAME_VERBATIM 1
  32. #define FLAC_SUBFRAME_FIXED 8
  33. #define FLAC_SUBFRAME_LPC 32
  34. #define FLAC_CHMODE_NOT_STEREO 0
  35. #define FLAC_CHMODE_LEFT_RIGHT 1
  36. #define FLAC_CHMODE_LEFT_SIDE 8
  37. #define FLAC_CHMODE_RIGHT_SIDE 9
  38. #define FLAC_CHMODE_MID_SIDE 10
  39. #define ORDER_METHOD_EST 0
  40. #define ORDER_METHOD_2LEVEL 1
  41. #define ORDER_METHOD_4LEVEL 2
  42. #define ORDER_METHOD_8LEVEL 3
  43. #define ORDER_METHOD_SEARCH 4
  44. #define ORDER_METHOD_LOG 5
  45. #define FLAC_STREAMINFO_SIZE 34
  46. #define MIN_LPC_ORDER 1
  47. #define MAX_LPC_ORDER 32
  48. #define MAX_FIXED_ORDER 4
  49. #define MAX_PARTITION_ORDER 8
  50. #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
  51. #define MAX_LPC_PRECISION 15
  52. #define MAX_LPC_SHIFT 15
  53. #define MAX_RICE_PARAM 14
  54. typedef struct CompressionOptions {
  55. int compression_level;
  56. int block_time_ms;
  57. int use_lpc;
  58. int lpc_coeff_precision;
  59. int min_prediction_order;
  60. int max_prediction_order;
  61. int prediction_order_method;
  62. int min_partition_order;
  63. int max_partition_order;
  64. } CompressionOptions;
  65. typedef struct RiceContext {
  66. int porder;
  67. int params[MAX_PARTITIONS];
  68. } RiceContext;
  69. typedef struct FlacSubframe {
  70. int type;
  71. int type_code;
  72. int obits;
  73. int order;
  74. int32_t coefs[MAX_LPC_ORDER];
  75. int shift;
  76. RiceContext rc;
  77. int32_t samples[FLAC_MAX_BLOCKSIZE];
  78. int32_t residual[FLAC_MAX_BLOCKSIZE+1];
  79. } FlacSubframe;
  80. typedef struct FlacFrame {
  81. FlacSubframe subframes[FLAC_MAX_CH];
  82. int blocksize;
  83. int bs_code[2];
  84. uint8_t crc8;
  85. int ch_mode;
  86. } FlacFrame;
  87. typedef struct FlacEncodeContext {
  88. PutBitContext pb;
  89. int channels;
  90. int ch_code;
  91. int samplerate;
  92. int sr_code[2];
  93. int blocksize;
  94. int max_framesize;
  95. uint32_t frame_count;
  96. FlacFrame frame;
  97. CompressionOptions options;
  98. AVCodecContext *avctx;
  99. DSPContext dsp;
  100. } FlacEncodeContext;
  101. static const int flac_samplerates[16] = {
  102. 0, 0, 0, 0,
  103. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  104. 0, 0, 0, 0
  105. };
  106. static const int flac_blocksizes[16] = {
  107. 0,
  108. 192,
  109. 576, 1152, 2304, 4608,
  110. 0, 0,
  111. 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
  112. };
  113. /**
  114. * Writes streaminfo metadata block to byte array
  115. */
  116. static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
  117. {
  118. PutBitContext pb;
  119. memset(header, 0, FLAC_STREAMINFO_SIZE);
  120. init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
  121. /* streaminfo metadata block */
  122. put_bits(&pb, 16, s->blocksize);
  123. put_bits(&pb, 16, s->blocksize);
  124. put_bits(&pb, 24, 0);
  125. put_bits(&pb, 24, s->max_framesize);
  126. put_bits(&pb, 20, s->samplerate);
  127. put_bits(&pb, 3, s->channels-1);
  128. put_bits(&pb, 5, 15); /* bits per sample - 1 */
  129. flush_put_bits(&pb);
  130. /* total samples = 0 */
  131. /* MD5 signature = 0 */
  132. }
  133. /**
  134. * Sets blocksize based on samplerate
  135. * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
  136. */
  137. static int select_blocksize(int samplerate, int block_time_ms)
  138. {
  139. int i;
  140. int target;
  141. int blocksize;
  142. assert(samplerate > 0);
  143. blocksize = flac_blocksizes[1];
  144. target = (samplerate * block_time_ms) / 1000;
  145. for(i=0; i<16; i++) {
  146. if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
  147. blocksize = flac_blocksizes[i];
  148. }
  149. }
  150. return blocksize;
  151. }
  152. static int flac_encode_init(AVCodecContext *avctx)
  153. {
  154. int freq = avctx->sample_rate;
  155. int channels = avctx->channels;
  156. FlacEncodeContext *s = avctx->priv_data;
  157. int i, level;
  158. uint8_t *streaminfo;
  159. s->avctx = avctx;
  160. dsputil_init(&s->dsp, avctx);
  161. if(avctx->sample_fmt != SAMPLE_FMT_S16) {
  162. return -1;
  163. }
  164. if(channels < 1 || channels > FLAC_MAX_CH) {
  165. return -1;
  166. }
  167. s->channels = channels;
  168. s->ch_code = s->channels-1;
  169. /* find samplerate in table */
  170. if(freq < 1)
  171. return -1;
  172. for(i=4; i<12; i++) {
  173. if(freq == flac_samplerates[i]) {
  174. s->samplerate = flac_samplerates[i];
  175. s->sr_code[0] = i;
  176. s->sr_code[1] = 0;
  177. break;
  178. }
  179. }
  180. /* if not in table, samplerate is non-standard */
  181. if(i == 12) {
  182. if(freq % 1000 == 0 && freq < 255000) {
  183. s->sr_code[0] = 12;
  184. s->sr_code[1] = freq / 1000;
  185. } else if(freq % 10 == 0 && freq < 655350) {
  186. s->sr_code[0] = 14;
  187. s->sr_code[1] = freq / 10;
  188. } else if(freq < 65535) {
  189. s->sr_code[0] = 13;
  190. s->sr_code[1] = freq;
  191. } else {
  192. return -1;
  193. }
  194. s->samplerate = freq;
  195. }
  196. /* set compression option defaults based on avctx->compression_level */
  197. if(avctx->compression_level < 0) {
  198. s->options.compression_level = 5;
  199. } else {
  200. s->options.compression_level = avctx->compression_level;
  201. }
  202. av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
  203. level= s->options.compression_level;
  204. if(level > 12) {
  205. av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
  206. s->options.compression_level);
  207. return -1;
  208. }
  209. s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
  210. s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
  211. s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
  212. s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
  213. s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
  214. ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
  215. ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL,
  216. ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
  217. ORDER_METHOD_SEARCH})[level];
  218. s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
  219. s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
  220. /* set compression option overrides from AVCodecContext */
  221. if(avctx->use_lpc >= 0) {
  222. s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
  223. }
  224. if(s->options.use_lpc == 1)
  225. av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
  226. else if(s->options.use_lpc > 1)
  227. av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
  228. if(avctx->min_prediction_order >= 0) {
  229. if(s->options.use_lpc) {
  230. if(avctx->min_prediction_order < MIN_LPC_ORDER ||
  231. avctx->min_prediction_order > MAX_LPC_ORDER) {
  232. av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
  233. avctx->min_prediction_order);
  234. return -1;
  235. }
  236. } else {
  237. if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
  238. av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
  239. avctx->min_prediction_order);
  240. return -1;
  241. }
  242. }
  243. s->options.min_prediction_order = avctx->min_prediction_order;
  244. }
  245. if(avctx->max_prediction_order >= 0) {
  246. if(s->options.use_lpc) {
  247. if(avctx->max_prediction_order < MIN_LPC_ORDER ||
  248. avctx->max_prediction_order > MAX_LPC_ORDER) {
  249. av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
  250. avctx->max_prediction_order);
  251. return -1;
  252. }
  253. } else {
  254. if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
  255. av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
  256. avctx->max_prediction_order);
  257. return -1;
  258. }
  259. }
  260. s->options.max_prediction_order = avctx->max_prediction_order;
  261. }
  262. if(s->options.max_prediction_order < s->options.min_prediction_order) {
  263. av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
  264. s->options.min_prediction_order, s->options.max_prediction_order);
  265. return -1;
  266. }
  267. av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
  268. s->options.min_prediction_order, s->options.max_prediction_order);
  269. if(avctx->prediction_order_method >= 0) {
  270. if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
  271. av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
  272. avctx->prediction_order_method);
  273. return -1;
  274. }
  275. s->options.prediction_order_method = avctx->prediction_order_method;
  276. }
  277. switch(s->options.prediction_order_method) {
  278. case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  279. "estimate"); break;
  280. case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  281. "2-level"); break;
  282. case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  283. "4-level"); break;
  284. case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  285. "8-level"); break;
  286. case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  287. "full search"); break;
  288. case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
  289. "log search"); break;
  290. }
  291. if(avctx->min_partition_order >= 0) {
  292. if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
  293. av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
  294. avctx->min_partition_order);
  295. return -1;
  296. }
  297. s->options.min_partition_order = avctx->min_partition_order;
  298. }
  299. if(avctx->max_partition_order >= 0) {
  300. if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
  301. av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
  302. avctx->max_partition_order);
  303. return -1;
  304. }
  305. s->options.max_partition_order = avctx->max_partition_order;
  306. }
  307. if(s->options.max_partition_order < s->options.min_partition_order) {
  308. av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
  309. s->options.min_partition_order, s->options.max_partition_order);
  310. return -1;
  311. }
  312. av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
  313. s->options.min_partition_order, s->options.max_partition_order);
  314. if(avctx->frame_size > 0) {
  315. if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
  316. avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
  317. av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
  318. avctx->frame_size);
  319. return -1;
  320. }
  321. s->blocksize = avctx->frame_size;
  322. } else {
  323. s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
  324. avctx->frame_size = s->blocksize;
  325. }
  326. av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
  327. /* set LPC precision */
  328. if(avctx->lpc_coeff_precision > 0) {
  329. if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
  330. av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
  331. avctx->lpc_coeff_precision);
  332. return -1;
  333. }
  334. s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
  335. } else {
  336. /* select LPC precision based on block size */
  337. if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
  338. else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
  339. else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
  340. else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
  341. else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
  342. else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
  343. else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
  344. else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
  345. else s->options.lpc_coeff_precision = 15;
  346. }
  347. av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
  348. s->options.lpc_coeff_precision);
  349. /* set maximum encoded frame size in verbatim mode */
  350. if(s->channels == 2) {
  351. s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
  352. } else {
  353. s->max_framesize = 14 + (s->blocksize * s->channels * 2);
  354. }
  355. streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
  356. write_streaminfo(s, streaminfo);
  357. avctx->extradata = streaminfo;
  358. avctx->extradata_size = FLAC_STREAMINFO_SIZE;
  359. s->frame_count = 0;
  360. avctx->coded_frame = avcodec_alloc_frame();
  361. avctx->coded_frame->key_frame = 1;
  362. return 0;
  363. }
  364. static void init_frame(FlacEncodeContext *s)
  365. {
  366. int i, ch;
  367. FlacFrame *frame;
  368. frame = &s->frame;
  369. for(i=0; i<16; i++) {
  370. if(s->blocksize == flac_blocksizes[i]) {
  371. frame->blocksize = flac_blocksizes[i];
  372. frame->bs_code[0] = i;
  373. frame->bs_code[1] = 0;
  374. break;
  375. }
  376. }
  377. if(i == 16) {
  378. frame->blocksize = s->blocksize;
  379. if(frame->blocksize <= 256) {
  380. frame->bs_code[0] = 6;
  381. frame->bs_code[1] = frame->blocksize-1;
  382. } else {
  383. frame->bs_code[0] = 7;
  384. frame->bs_code[1] = frame->blocksize-1;
  385. }
  386. }
  387. for(ch=0; ch<s->channels; ch++) {
  388. frame->subframes[ch].obits = 16;
  389. }
  390. }
  391. /**
  392. * Copy channel-interleaved input samples into separate subframes
  393. */
  394. static void copy_samples(FlacEncodeContext *s, int16_t *samples)
  395. {
  396. int i, j, ch;
  397. FlacFrame *frame;
  398. frame = &s->frame;
  399. for(i=0,j=0; i<frame->blocksize; i++) {
  400. for(ch=0; ch<s->channels; ch++,j++) {
  401. frame->subframes[ch].samples[i] = samples[j];
  402. }
  403. }
  404. }
  405. #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
  406. /**
  407. * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
  408. */
  409. static int find_optimal_param(uint32_t sum, int n)
  410. {
  411. int k;
  412. uint32_t sum2;
  413. if(sum <= n>>1)
  414. return 0;
  415. sum2 = sum-(n>>1);
  416. k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
  417. return FFMIN(k, MAX_RICE_PARAM);
  418. }
  419. static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
  420. uint32_t *sums, int n, int pred_order)
  421. {
  422. int i;
  423. int k, cnt, part;
  424. uint32_t all_bits;
  425. part = (1 << porder);
  426. all_bits = 4 * part;
  427. cnt = (n >> porder) - pred_order;
  428. for(i=0; i<part; i++) {
  429. k = find_optimal_param(sums[i], cnt);
  430. rc->params[i] = k;
  431. all_bits += rice_encode_count(sums[i], cnt, k);
  432. cnt = n >> porder;
  433. }
  434. rc->porder = porder;
  435. return all_bits;
  436. }
  437. static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
  438. uint32_t sums[][MAX_PARTITIONS])
  439. {
  440. int i, j;
  441. int parts;
  442. uint32_t *res, *res_end;
  443. /* sums for highest level */
  444. parts = (1 << pmax);
  445. res = &data[pred_order];
  446. res_end = &data[n >> pmax];
  447. for(i=0; i<parts; i++) {
  448. uint32_t sum = 0;
  449. while(res < res_end){
  450. sum += *(res++);
  451. }
  452. sums[pmax][i] = sum;
  453. res_end+= n >> pmax;
  454. }
  455. /* sums for lower levels */
  456. for(i=pmax-1; i>=pmin; i--) {
  457. parts = (1 << i);
  458. for(j=0; j<parts; j++) {
  459. sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
  460. }
  461. }
  462. }
  463. static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
  464. int32_t *data, int n, int pred_order)
  465. {
  466. int i;
  467. uint32_t bits[MAX_PARTITION_ORDER+1];
  468. int opt_porder;
  469. RiceContext tmp_rc;
  470. uint32_t *udata;
  471. uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
  472. assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
  473. assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
  474. assert(pmin <= pmax);
  475. udata = av_malloc(n * sizeof(uint32_t));
  476. for(i=0; i<n; i++) {
  477. udata[i] = (2*data[i]) ^ (data[i]>>31);
  478. }
  479. calc_sums(pmin, pmax, udata, n, pred_order, sums);
  480. opt_porder = pmin;
  481. bits[pmin] = UINT32_MAX;
  482. for(i=pmin; i<=pmax; i++) {
  483. bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
  484. if(bits[i] <= bits[opt_porder]) {
  485. opt_porder = i;
  486. *rc= tmp_rc;
  487. }
  488. }
  489. av_freep(&udata);
  490. return bits[opt_porder];
  491. }
  492. static int get_max_p_order(int max_porder, int n, int order)
  493. {
  494. int porder = FFMIN(max_porder, av_log2(n^(n-1)));
  495. if(order > 0)
  496. porder = FFMIN(porder, av_log2(n/order));
  497. return porder;
  498. }
  499. static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
  500. int32_t *data, int n, int pred_order,
  501. int bps)
  502. {
  503. uint32_t bits;
  504. pmin = get_max_p_order(pmin, n, pred_order);
  505. pmax = get_max_p_order(pmax, n, pred_order);
  506. bits = pred_order*bps + 6;
  507. bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
  508. return bits;
  509. }
  510. static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
  511. int32_t *data, int n, int pred_order,
  512. int bps, int precision)
  513. {
  514. uint32_t bits;
  515. pmin = get_max_p_order(pmin, n, pred_order);
  516. pmax = get_max_p_order(pmax, n, pred_order);
  517. bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
  518. bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
  519. return bits;
  520. }
  521. /**
  522. * Apply Welch window function to audio block
  523. */
  524. static void apply_welch_window(const int32_t *data, int len, double *w_data)
  525. {
  526. int i, n2;
  527. double w;
  528. double c;
  529. assert(!(len&1)); //the optimization in r11881 does not support odd len
  530. //if someone wants odd len extend the change in r11881
  531. n2 = (len >> 1);
  532. c = 2.0 / (len - 1.0);
  533. w_data+=n2;
  534. data+=n2;
  535. for(i=0; i<n2; i++) {
  536. w = c - n2 + i;
  537. w = 1.0 - (w * w);
  538. w_data[-i-1] = data[-i-1] * w;
  539. w_data[+i ] = data[+i ] * w;
  540. }
  541. }
  542. /**
  543. * Calculates autocorrelation data from audio samples
  544. * A Welch window function is applied before calculation.
  545. */
  546. void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
  547. double *autoc)
  548. {
  549. int i, j;
  550. double tmp[len + lag + 1];
  551. double *data1= tmp + lag;
  552. apply_welch_window(data, len, data1);
  553. for(j=0; j<lag; j++)
  554. data1[j-lag]= 0.0;
  555. data1[len] = 0.0;
  556. for(j=0; j<lag; j+=2){
  557. double sum0 = 1.0, sum1 = 1.0;
  558. for(i=0; i<len; i++){
  559. sum0 += data1[i] * data1[i-j];
  560. sum1 += data1[i] * data1[i-j-1];
  561. }
  562. autoc[j ] = sum0;
  563. autoc[j+1] = sum1;
  564. }
  565. if(j==lag){
  566. double sum = 1.0;
  567. for(i=0; i<len; i+=2){
  568. sum += data1[i ] * data1[i-j ]
  569. + data1[i+1] * data1[i-j+1];
  570. }
  571. autoc[j] = sum;
  572. }
  573. }
  574. /**
  575. * Levinson-Durbin recursion.
  576. * Produces LPC coefficients from autocorrelation data.
  577. */
  578. static void compute_lpc_coefs(const double *autoc, int max_order,
  579. double lpc[][MAX_LPC_ORDER], double *ref)
  580. {
  581. int i, j, i2;
  582. double r, err, tmp;
  583. double lpc_tmp[MAX_LPC_ORDER];
  584. for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
  585. err = autoc[0];
  586. for(i=0; i<max_order; i++) {
  587. r = -autoc[i+1];
  588. for(j=0; j<i; j++) {
  589. r -= lpc_tmp[j] * autoc[i-j];
  590. }
  591. r /= err;
  592. ref[i] = fabs(r);
  593. err *= 1.0 - (r * r);
  594. i2 = (i >> 1);
  595. lpc_tmp[i] = r;
  596. for(j=0; j<i2; j++) {
  597. tmp = lpc_tmp[j];
  598. lpc_tmp[j] += r * lpc_tmp[i-1-j];
  599. lpc_tmp[i-1-j] += r * tmp;
  600. }
  601. if(i & 1) {
  602. lpc_tmp[j] += lpc_tmp[j] * r;
  603. }
  604. for(j=0; j<=i; j++) {
  605. lpc[i][j] = -lpc_tmp[j];
  606. }
  607. }
  608. }
  609. /**
  610. * Quantize LPC coefficients
  611. */
  612. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  613. int32_t *lpc_out, int *shift)
  614. {
  615. int i;
  616. double cmax, error;
  617. int32_t qmax;
  618. int sh;
  619. /* define maximum levels */
  620. qmax = (1 << (precision - 1)) - 1;
  621. /* find maximum coefficient value */
  622. cmax = 0.0;
  623. for(i=0; i<order; i++) {
  624. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  625. }
  626. /* if maximum value quantizes to zero, return all zeros */
  627. if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
  628. *shift = 0;
  629. memset(lpc_out, 0, sizeof(int32_t) * order);
  630. return;
  631. }
  632. /* calculate level shift which scales max coeff to available bits */
  633. sh = MAX_LPC_SHIFT;
  634. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  635. sh--;
  636. }
  637. /* since negative shift values are unsupported in decoder, scale down
  638. coefficients instead */
  639. if(sh == 0 && cmax > qmax) {
  640. double scale = ((double)qmax) / cmax;
  641. for(i=0; i<order; i++) {
  642. lpc_in[i] *= scale;
  643. }
  644. }
  645. /* output quantized coefficients and level shift */
  646. error=0;
  647. for(i=0; i<order; i++) {
  648. error += lpc_in[i] * (1 << sh);
  649. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  650. error -= lpc_out[i];
  651. }
  652. *shift = sh;
  653. }
  654. static int estimate_best_order(double *ref, int max_order)
  655. {
  656. int i, est;
  657. est = 1;
  658. for(i=max_order-1; i>=0; i--) {
  659. if(ref[i] > 0.10) {
  660. est = i+1;
  661. break;
  662. }
  663. }
  664. return est;
  665. }
  666. /**
  667. * Calculate LPC coefficients for multiple orders
  668. */
  669. static int lpc_calc_coefs(FlacEncodeContext *s,
  670. const int32_t *samples, int blocksize, int max_order,
  671. int precision, int32_t coefs[][MAX_LPC_ORDER],
  672. int *shift, int use_lpc, int omethod)
  673. {
  674. double autoc[MAX_LPC_ORDER+1];
  675. double ref[MAX_LPC_ORDER];
  676. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  677. int i, j, pass;
  678. int opt_order;
  679. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
  680. if(use_lpc == 1){
  681. s->dsp.flac_compute_autocorr(samples, blocksize, max_order, autoc);
  682. compute_lpc_coefs(autoc, max_order, lpc, ref);
  683. }else{
  684. LLSModel m[2];
  685. double var[MAX_LPC_ORDER+1], weight;
  686. for(pass=0; pass<use_lpc-1; pass++){
  687. av_init_lls(&m[pass&1], max_order);
  688. weight=0;
  689. for(i=max_order; i<blocksize; i++){
  690. for(j=0; j<=max_order; j++)
  691. var[j]= samples[i-j];
  692. if(pass){
  693. double eval, inv, rinv;
  694. eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  695. eval= (512>>pass) + fabs(eval - var[0]);
  696. inv = 1/eval;
  697. rinv = sqrt(inv);
  698. for(j=0; j<=max_order; j++)
  699. var[j] *= rinv;
  700. weight += inv;
  701. }else
  702. weight++;
  703. av_update_lls(&m[pass&1], var, 1.0);
  704. }
  705. av_solve_lls(&m[pass&1], 0.001, 0);
  706. }
  707. for(i=0; i<max_order; i++){
  708. for(j=0; j<max_order; j++)
  709. lpc[i][j]= m[(pass-1)&1].coeff[i][j];
  710. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  711. }
  712. for(i=max_order-1; i>0; i--)
  713. ref[i] = ref[i-1] - ref[i];
  714. }
  715. opt_order = max_order;
  716. if(omethod == ORDER_METHOD_EST) {
  717. opt_order = estimate_best_order(ref, max_order);
  718. i = opt_order-1;
  719. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
  720. } else {
  721. for(i=0; i<max_order; i++) {
  722. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
  723. }
  724. }
  725. return opt_order;
  726. }
  727. static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
  728. {
  729. assert(n > 0);
  730. memcpy(res, smp, n * sizeof(int32_t));
  731. }
  732. static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
  733. int order)
  734. {
  735. int i;
  736. for(i=0; i<order; i++) {
  737. res[i] = smp[i];
  738. }
  739. if(order==0){
  740. for(i=order; i<n; i++)
  741. res[i]= smp[i];
  742. }else if(order==1){
  743. for(i=order; i<n; i++)
  744. res[i]= smp[i] - smp[i-1];
  745. }else if(order==2){
  746. int a = smp[order-1] - smp[order-2];
  747. for(i=order; i<n; i+=2) {
  748. int b = smp[i] - smp[i-1];
  749. res[i]= b - a;
  750. a = smp[i+1] - smp[i];
  751. res[i+1]= a - b;
  752. }
  753. }else if(order==3){
  754. int a = smp[order-1] - smp[order-2];
  755. int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
  756. for(i=order; i<n; i+=2) {
  757. int b = smp[i] - smp[i-1];
  758. int d = b - a;
  759. res[i]= d - c;
  760. a = smp[i+1] - smp[i];
  761. c = a - b;
  762. res[i+1]= c - d;
  763. }
  764. }else{
  765. int a = smp[order-1] - smp[order-2];
  766. int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
  767. int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
  768. for(i=order; i<n; i+=2) {
  769. int b = smp[i] - smp[i-1];
  770. int d = b - a;
  771. int f = d - c;
  772. res[i]= f - e;
  773. a = smp[i+1] - smp[i];
  774. c = a - b;
  775. e = c - d;
  776. res[i+1]= e - f;
  777. }
  778. }
  779. }
  780. #define LPC1(x) {\
  781. int c = coefs[(x)-1];\
  782. p0 += c*s;\
  783. s = smp[i-(x)+1];\
  784. p1 += c*s;\
  785. }
  786. static av_always_inline void encode_residual_lpc_unrolled(
  787. int32_t *res, const int32_t *smp, int n,
  788. int order, const int32_t *coefs, int shift, int big)
  789. {
  790. int i;
  791. for(i=order; i<n; i+=2) {
  792. int s = smp[i-order];
  793. int p0 = 0, p1 = 0;
  794. if(big) {
  795. switch(order) {
  796. case 32: LPC1(32)
  797. case 31: LPC1(31)
  798. case 30: LPC1(30)
  799. case 29: LPC1(29)
  800. case 28: LPC1(28)
  801. case 27: LPC1(27)
  802. case 26: LPC1(26)
  803. case 25: LPC1(25)
  804. case 24: LPC1(24)
  805. case 23: LPC1(23)
  806. case 22: LPC1(22)
  807. case 21: LPC1(21)
  808. case 20: LPC1(20)
  809. case 19: LPC1(19)
  810. case 18: LPC1(18)
  811. case 17: LPC1(17)
  812. case 16: LPC1(16)
  813. case 15: LPC1(15)
  814. case 14: LPC1(14)
  815. case 13: LPC1(13)
  816. case 12: LPC1(12)
  817. case 11: LPC1(11)
  818. case 10: LPC1(10)
  819. case 9: LPC1( 9)
  820. LPC1( 8)
  821. LPC1( 7)
  822. LPC1( 6)
  823. LPC1( 5)
  824. LPC1( 4)
  825. LPC1( 3)
  826. LPC1( 2)
  827. LPC1( 1)
  828. }
  829. } else {
  830. switch(order) {
  831. case 8: LPC1( 8)
  832. case 7: LPC1( 7)
  833. case 6: LPC1( 6)
  834. case 5: LPC1( 5)
  835. case 4: LPC1( 4)
  836. case 3: LPC1( 3)
  837. case 2: LPC1( 2)
  838. case 1: LPC1( 1)
  839. }
  840. }
  841. res[i ] = smp[i ] - (p0 >> shift);
  842. res[i+1] = smp[i+1] - (p1 >> shift);
  843. }
  844. }
  845. static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
  846. int order, const int32_t *coefs, int shift)
  847. {
  848. int i;
  849. for(i=0; i<order; i++) {
  850. res[i] = smp[i];
  851. }
  852. #ifdef CONFIG_SMALL
  853. for(i=order; i<n; i+=2) {
  854. int j;
  855. int s = smp[i];
  856. int p0 = 0, p1 = 0;
  857. for(j=0; j<order; j++) {
  858. int c = coefs[j];
  859. p1 += c*s;
  860. s = smp[i-j-1];
  861. p0 += c*s;
  862. }
  863. res[i ] = smp[i ] - (p0 >> shift);
  864. res[i+1] = smp[i+1] - (p1 >> shift);
  865. }
  866. #else
  867. switch(order) {
  868. case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
  869. case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
  870. case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
  871. case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
  872. case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
  873. case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
  874. case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
  875. case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
  876. default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
  877. }
  878. #endif
  879. }
  880. static int encode_residual(FlacEncodeContext *ctx, int ch)
  881. {
  882. int i, n;
  883. int min_order, max_order, opt_order, precision, omethod;
  884. int min_porder, max_porder;
  885. FlacFrame *frame;
  886. FlacSubframe *sub;
  887. int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
  888. int shift[MAX_LPC_ORDER];
  889. int32_t *res, *smp;
  890. frame = &ctx->frame;
  891. sub = &frame->subframes[ch];
  892. res = sub->residual;
  893. smp = sub->samples;
  894. n = frame->blocksize;
  895. /* CONSTANT */
  896. for(i=1; i<n; i++) {
  897. if(smp[i] != smp[0]) break;
  898. }
  899. if(i == n) {
  900. sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
  901. res[0] = smp[0];
  902. return sub->obits;
  903. }
  904. /* VERBATIM */
  905. if(n < 5) {
  906. sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
  907. encode_residual_verbatim(res, smp, n);
  908. return sub->obits * n;
  909. }
  910. min_order = ctx->options.min_prediction_order;
  911. max_order = ctx->options.max_prediction_order;
  912. min_porder = ctx->options.min_partition_order;
  913. max_porder = ctx->options.max_partition_order;
  914. precision = ctx->options.lpc_coeff_precision;
  915. omethod = ctx->options.prediction_order_method;
  916. /* FIXED */
  917. if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
  918. uint32_t bits[MAX_FIXED_ORDER+1];
  919. if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
  920. opt_order = 0;
  921. bits[0] = UINT32_MAX;
  922. for(i=min_order; i<=max_order; i++) {
  923. encode_residual_fixed(res, smp, n, i);
  924. bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
  925. n, i, sub->obits);
  926. if(bits[i] < bits[opt_order]) {
  927. opt_order = i;
  928. }
  929. }
  930. sub->order = opt_order;
  931. sub->type = FLAC_SUBFRAME_FIXED;
  932. sub->type_code = sub->type | sub->order;
  933. if(sub->order != max_order) {
  934. encode_residual_fixed(res, smp, n, sub->order);
  935. return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
  936. sub->order, sub->obits);
  937. }
  938. return bits[sub->order];
  939. }
  940. /* LPC */
  941. opt_order = lpc_calc_coefs(ctx, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod);
  942. if(omethod == ORDER_METHOD_2LEVEL ||
  943. omethod == ORDER_METHOD_4LEVEL ||
  944. omethod == ORDER_METHOD_8LEVEL) {
  945. int levels = 1 << omethod;
  946. uint32_t bits[levels];
  947. int order;
  948. int opt_index = levels-1;
  949. opt_order = max_order-1;
  950. bits[opt_index] = UINT32_MAX;
  951. for(i=levels-1; i>=0; i--) {
  952. order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
  953. if(order < 0) order = 0;
  954. encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
  955. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  956. res, n, order+1, sub->obits, precision);
  957. if(bits[i] < bits[opt_index]) {
  958. opt_index = i;
  959. opt_order = order;
  960. }
  961. }
  962. opt_order++;
  963. } else if(omethod == ORDER_METHOD_SEARCH) {
  964. // brute-force optimal order search
  965. uint32_t bits[MAX_LPC_ORDER];
  966. opt_order = 0;
  967. bits[0] = UINT32_MAX;
  968. for(i=min_order-1; i<max_order; i++) {
  969. encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
  970. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  971. res, n, i+1, sub->obits, precision);
  972. if(bits[i] < bits[opt_order]) {
  973. opt_order = i;
  974. }
  975. }
  976. opt_order++;
  977. } else if(omethod == ORDER_METHOD_LOG) {
  978. uint32_t bits[MAX_LPC_ORDER];
  979. int step;
  980. opt_order= min_order - 1 + (max_order-min_order)/3;
  981. memset(bits, -1, sizeof(bits));
  982. for(step=16 ;step; step>>=1){
  983. int last= opt_order;
  984. for(i=last-step; i<=last+step; i+= step){
  985. if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
  986. continue;
  987. encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
  988. bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
  989. res, n, i+1, sub->obits, precision);
  990. if(bits[i] < bits[opt_order])
  991. opt_order= i;
  992. }
  993. }
  994. opt_order++;
  995. }
  996. sub->order = opt_order;
  997. sub->type = FLAC_SUBFRAME_LPC;
  998. sub->type_code = sub->type | (sub->order-1);
  999. sub->shift = shift[sub->order-1];
  1000. for(i=0; i<sub->order; i++) {
  1001. sub->coefs[i] = coefs[sub->order-1][i];
  1002. }
  1003. encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
  1004. return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
  1005. sub->obits, precision);
  1006. }
  1007. static int encode_residual_v(FlacEncodeContext *ctx, int ch)
  1008. {
  1009. int i, n;
  1010. FlacFrame *frame;
  1011. FlacSubframe *sub;
  1012. int32_t *res, *smp;
  1013. frame = &ctx->frame;
  1014. sub = &frame->subframes[ch];
  1015. res = sub->residual;
  1016. smp = sub->samples;
  1017. n = frame->blocksize;
  1018. /* CONSTANT */
  1019. for(i=1; i<n; i++) {
  1020. if(smp[i] != smp[0]) break;
  1021. }
  1022. if(i == n) {
  1023. sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
  1024. res[0] = smp[0];
  1025. return sub->obits;
  1026. }
  1027. /* VERBATIM */
  1028. sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
  1029. encode_residual_verbatim(res, smp, n);
  1030. return sub->obits * n;
  1031. }
  1032. static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
  1033. {
  1034. int i, best;
  1035. int32_t lt, rt;
  1036. uint64_t sum[4];
  1037. uint64_t score[4];
  1038. int k;
  1039. /* calculate sum of 2nd order residual for each channel */
  1040. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  1041. for(i=2; i<n; i++) {
  1042. lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
  1043. rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
  1044. sum[2] += FFABS((lt + rt) >> 1);
  1045. sum[3] += FFABS(lt - rt);
  1046. sum[0] += FFABS(lt);
  1047. sum[1] += FFABS(rt);
  1048. }
  1049. /* estimate bit counts */
  1050. for(i=0; i<4; i++) {
  1051. k = find_optimal_param(2*sum[i], n);
  1052. sum[i] = rice_encode_count(2*sum[i], n, k);
  1053. }
  1054. /* calculate score for each mode */
  1055. score[0] = sum[0] + sum[1];
  1056. score[1] = sum[0] + sum[3];
  1057. score[2] = sum[1] + sum[3];
  1058. score[3] = sum[2] + sum[3];
  1059. /* return mode with lowest score */
  1060. best = 0;
  1061. for(i=1; i<4; i++) {
  1062. if(score[i] < score[best]) {
  1063. best = i;
  1064. }
  1065. }
  1066. if(best == 0) {
  1067. return FLAC_CHMODE_LEFT_RIGHT;
  1068. } else if(best == 1) {
  1069. return FLAC_CHMODE_LEFT_SIDE;
  1070. } else if(best == 2) {
  1071. return FLAC_CHMODE_RIGHT_SIDE;
  1072. } else {
  1073. return FLAC_CHMODE_MID_SIDE;
  1074. }
  1075. }
  1076. /**
  1077. * Perform stereo channel decorrelation
  1078. */
  1079. static void channel_decorrelation(FlacEncodeContext *ctx)
  1080. {
  1081. FlacFrame *frame;
  1082. int32_t *left, *right;
  1083. int i, n;
  1084. frame = &ctx->frame;
  1085. n = frame->blocksize;
  1086. left = frame->subframes[0].samples;
  1087. right = frame->subframes[1].samples;
  1088. if(ctx->channels != 2) {
  1089. frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
  1090. return;
  1091. }
  1092. frame->ch_mode = estimate_stereo_mode(left, right, n);
  1093. /* perform decorrelation and adjust bits-per-sample */
  1094. if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
  1095. return;
  1096. }
  1097. if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
  1098. int32_t tmp;
  1099. for(i=0; i<n; i++) {
  1100. tmp = left[i];
  1101. left[i] = (tmp + right[i]) >> 1;
  1102. right[i] = tmp - right[i];
  1103. }
  1104. frame->subframes[1].obits++;
  1105. } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
  1106. for(i=0; i<n; i++) {
  1107. right[i] = left[i] - right[i];
  1108. }
  1109. frame->subframes[1].obits++;
  1110. } else {
  1111. for(i=0; i<n; i++) {
  1112. left[i] -= right[i];
  1113. }
  1114. frame->subframes[0].obits++;
  1115. }
  1116. }
  1117. static void put_sbits(PutBitContext *pb, int bits, int32_t val)
  1118. {
  1119. assert(bits >= 0 && bits <= 31);
  1120. put_bits(pb, bits, val & ((1<<bits)-1));
  1121. }
  1122. static void write_utf8(PutBitContext *pb, uint32_t val)
  1123. {
  1124. uint8_t tmp;
  1125. PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
  1126. }
  1127. static void output_frame_header(FlacEncodeContext *s)
  1128. {
  1129. FlacFrame *frame;
  1130. int crc;
  1131. frame = &s->frame;
  1132. put_bits(&s->pb, 16, 0xFFF8);
  1133. put_bits(&s->pb, 4, frame->bs_code[0]);
  1134. put_bits(&s->pb, 4, s->sr_code[0]);
  1135. if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
  1136. put_bits(&s->pb, 4, s->ch_code);
  1137. } else {
  1138. put_bits(&s->pb, 4, frame->ch_mode);
  1139. }
  1140. put_bits(&s->pb, 3, 4); /* bits-per-sample code */
  1141. put_bits(&s->pb, 1, 0);
  1142. write_utf8(&s->pb, s->frame_count);
  1143. if(frame->bs_code[0] == 6) {
  1144. put_bits(&s->pb, 8, frame->bs_code[1]);
  1145. } else if(frame->bs_code[0] == 7) {
  1146. put_bits(&s->pb, 16, frame->bs_code[1]);
  1147. }
  1148. if(s->sr_code[0] == 12) {
  1149. put_bits(&s->pb, 8, s->sr_code[1]);
  1150. } else if(s->sr_code[0] > 12) {
  1151. put_bits(&s->pb, 16, s->sr_code[1]);
  1152. }
  1153. flush_put_bits(&s->pb);
  1154. crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
  1155. s->pb.buf, put_bits_count(&s->pb)>>3);
  1156. put_bits(&s->pb, 8, crc);
  1157. }
  1158. static void output_subframe_constant(FlacEncodeContext *s, int ch)
  1159. {
  1160. FlacSubframe *sub;
  1161. int32_t res;
  1162. sub = &s->frame.subframes[ch];
  1163. res = sub->residual[0];
  1164. put_sbits(&s->pb, sub->obits, res);
  1165. }
  1166. static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
  1167. {
  1168. int i;
  1169. FlacFrame *frame;
  1170. FlacSubframe *sub;
  1171. int32_t res;
  1172. frame = &s->frame;
  1173. sub = &frame->subframes[ch];
  1174. for(i=0; i<frame->blocksize; i++) {
  1175. res = sub->residual[i];
  1176. put_sbits(&s->pb, sub->obits, res);
  1177. }
  1178. }
  1179. static void output_residual(FlacEncodeContext *ctx, int ch)
  1180. {
  1181. int i, j, p, n, parts;
  1182. int k, porder, psize, res_cnt;
  1183. FlacFrame *frame;
  1184. FlacSubframe *sub;
  1185. int32_t *res;
  1186. frame = &ctx->frame;
  1187. sub = &frame->subframes[ch];
  1188. res = sub->residual;
  1189. n = frame->blocksize;
  1190. /* rice-encoded block */
  1191. put_bits(&ctx->pb, 2, 0);
  1192. /* partition order */
  1193. porder = sub->rc.porder;
  1194. psize = n >> porder;
  1195. parts = (1 << porder);
  1196. put_bits(&ctx->pb, 4, porder);
  1197. res_cnt = psize - sub->order;
  1198. /* residual */
  1199. j = sub->order;
  1200. for(p=0; p<parts; p++) {
  1201. k = sub->rc.params[p];
  1202. put_bits(&ctx->pb, 4, k);
  1203. if(p == 1) res_cnt = psize;
  1204. for(i=0; i<res_cnt && j<n; i++, j++) {
  1205. set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
  1206. }
  1207. }
  1208. }
  1209. static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
  1210. {
  1211. int i;
  1212. FlacFrame *frame;
  1213. FlacSubframe *sub;
  1214. frame = &ctx->frame;
  1215. sub = &frame->subframes[ch];
  1216. /* warm-up samples */
  1217. for(i=0; i<sub->order; i++) {
  1218. put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
  1219. }
  1220. /* residual */
  1221. output_residual(ctx, ch);
  1222. }
  1223. static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
  1224. {
  1225. int i, cbits;
  1226. FlacFrame *frame;
  1227. FlacSubframe *sub;
  1228. frame = &ctx->frame;
  1229. sub = &frame->subframes[ch];
  1230. /* warm-up samples */
  1231. for(i=0; i<sub->order; i++) {
  1232. put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
  1233. }
  1234. /* LPC coefficients */
  1235. cbits = ctx->options.lpc_coeff_precision;
  1236. put_bits(&ctx->pb, 4, cbits-1);
  1237. put_sbits(&ctx->pb, 5, sub->shift);
  1238. for(i=0; i<sub->order; i++) {
  1239. put_sbits(&ctx->pb, cbits, sub->coefs[i]);
  1240. }
  1241. /* residual */
  1242. output_residual(ctx, ch);
  1243. }
  1244. static void output_subframes(FlacEncodeContext *s)
  1245. {
  1246. FlacFrame *frame;
  1247. FlacSubframe *sub;
  1248. int ch;
  1249. frame = &s->frame;
  1250. for(ch=0; ch<s->channels; ch++) {
  1251. sub = &frame->subframes[ch];
  1252. /* subframe header */
  1253. put_bits(&s->pb, 1, 0);
  1254. put_bits(&s->pb, 6, sub->type_code);
  1255. put_bits(&s->pb, 1, 0); /* no wasted bits */
  1256. /* subframe */
  1257. if(sub->type == FLAC_SUBFRAME_CONSTANT) {
  1258. output_subframe_constant(s, ch);
  1259. } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
  1260. output_subframe_verbatim(s, ch);
  1261. } else if(sub->type == FLAC_SUBFRAME_FIXED) {
  1262. output_subframe_fixed(s, ch);
  1263. } else if(sub->type == FLAC_SUBFRAME_LPC) {
  1264. output_subframe_lpc(s, ch);
  1265. }
  1266. }
  1267. }
  1268. static void output_frame_footer(FlacEncodeContext *s)
  1269. {
  1270. int crc;
  1271. flush_put_bits(&s->pb);
  1272. crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1273. s->pb.buf, put_bits_count(&s->pb)>>3));
  1274. put_bits(&s->pb, 16, crc);
  1275. flush_put_bits(&s->pb);
  1276. }
  1277. static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
  1278. int buf_size, void *data)
  1279. {
  1280. int ch;
  1281. FlacEncodeContext *s;
  1282. int16_t *samples = data;
  1283. int out_bytes;
  1284. s = avctx->priv_data;
  1285. s->blocksize = avctx->frame_size;
  1286. init_frame(s);
  1287. copy_samples(s, samples);
  1288. channel_decorrelation(s);
  1289. for(ch=0; ch<s->channels; ch++) {
  1290. encode_residual(s, ch);
  1291. }
  1292. init_put_bits(&s->pb, frame, buf_size);
  1293. output_frame_header(s);
  1294. output_subframes(s);
  1295. output_frame_footer(s);
  1296. out_bytes = put_bits_count(&s->pb) >> 3;
  1297. if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
  1298. /* frame too large. use verbatim mode */
  1299. for(ch=0; ch<s->channels; ch++) {
  1300. encode_residual_v(s, ch);
  1301. }
  1302. init_put_bits(&s->pb, frame, buf_size);
  1303. output_frame_header(s);
  1304. output_subframes(s);
  1305. output_frame_footer(s);
  1306. out_bytes = put_bits_count(&s->pb) >> 3;
  1307. if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
  1308. /* still too large. must be an error. */
  1309. av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
  1310. return -1;
  1311. }
  1312. }
  1313. s->frame_count++;
  1314. return out_bytes;
  1315. }
  1316. static int flac_encode_close(AVCodecContext *avctx)
  1317. {
  1318. av_freep(&avctx->extradata);
  1319. avctx->extradata_size = 0;
  1320. av_freep(&avctx->coded_frame);
  1321. return 0;
  1322. }
  1323. AVCodec flac_encoder = {
  1324. "flac",
  1325. CODEC_TYPE_AUDIO,
  1326. CODEC_ID_FLAC,
  1327. sizeof(FlacEncodeContext),
  1328. flac_encode_init,
  1329. flac_encode_frame,
  1330. flac_encode_close,
  1331. NULL,
  1332. .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
  1333. };