You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1755 lines
65KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include <stdint.h>
  33. #include <float.h>
  34. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  35. #define NOISE_FLOOR_OFFSET 6.0f
  36. /**
  37. * SBR VLC tables
  38. */
  39. enum {
  40. T_HUFFMAN_ENV_1_5DB,
  41. F_HUFFMAN_ENV_1_5DB,
  42. T_HUFFMAN_ENV_BAL_1_5DB,
  43. F_HUFFMAN_ENV_BAL_1_5DB,
  44. T_HUFFMAN_ENV_3_0DB,
  45. F_HUFFMAN_ENV_3_0DB,
  46. T_HUFFMAN_ENV_BAL_3_0DB,
  47. F_HUFFMAN_ENV_BAL_3_0DB,
  48. T_HUFFMAN_NOISE_3_0DB,
  49. T_HUFFMAN_NOISE_BAL_3_0DB,
  50. };
  51. /**
  52. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  53. */
  54. enum {
  55. FIXFIX,
  56. FIXVAR,
  57. VARFIX,
  58. VARVAR,
  59. };
  60. enum {
  61. EXTENSION_ID_PS = 2,
  62. };
  63. static VLC vlc_sbr[10];
  64. static const int8_t vlc_sbr_lav[10] =
  65. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  66. static const DECLARE_ALIGNED(16, float, zero64)[64];
  67. #define SBR_INIT_VLC_STATIC(num, size) \
  68. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  69. sbr_tmp[num].sbr_bits , 1, 1, \
  70. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  71. size)
  72. #define SBR_VLC_ROW(name) \
  73. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  74. av_cold void ff_aac_sbr_init(void)
  75. {
  76. int n;
  77. static const struct {
  78. const void *sbr_codes, *sbr_bits;
  79. const unsigned int table_size, elem_size;
  80. } sbr_tmp[] = {
  81. SBR_VLC_ROW(t_huffman_env_1_5dB),
  82. SBR_VLC_ROW(f_huffman_env_1_5dB),
  83. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  84. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  85. SBR_VLC_ROW(t_huffman_env_3_0dB),
  86. SBR_VLC_ROW(f_huffman_env_3_0dB),
  87. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  88. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  89. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  90. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  91. };
  92. // SBR VLC table initialization
  93. SBR_INIT_VLC_STATIC(0, 1098);
  94. SBR_INIT_VLC_STATIC(1, 1092);
  95. SBR_INIT_VLC_STATIC(2, 768);
  96. SBR_INIT_VLC_STATIC(3, 1026);
  97. SBR_INIT_VLC_STATIC(4, 1058);
  98. SBR_INIT_VLC_STATIC(5, 1052);
  99. SBR_INIT_VLC_STATIC(6, 544);
  100. SBR_INIT_VLC_STATIC(7, 544);
  101. SBR_INIT_VLC_STATIC(8, 592);
  102. SBR_INIT_VLC_STATIC(9, 512);
  103. for (n = 1; n < 320; n++)
  104. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  105. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  106. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  107. for (n = 0; n < 320; n++)
  108. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  109. }
  110. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  111. {
  112. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  113. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  114. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  115. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  116. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  117. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0);
  118. }
  119. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  120. {
  121. ff_mdct_end(&sbr->mdct);
  122. ff_mdct_end(&sbr->mdct_ana);
  123. }
  124. static int qsort_comparison_function_int16(const void *a, const void *b)
  125. {
  126. return *(const int16_t *)a - *(const int16_t *)b;
  127. }
  128. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  129. {
  130. int i;
  131. for (i = 0; i <= last_el; i++)
  132. if (table[i] == needle)
  133. return 1;
  134. return 0;
  135. }
  136. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  137. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  138. {
  139. int k;
  140. if (sbr->bs_limiter_bands > 0) {
  141. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  142. 1.18509277094158210129f, //2^(0.49/2)
  143. 1.11987160404675912501f }; //2^(0.49/3)
  144. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  145. int16_t patch_borders[7];
  146. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  147. patch_borders[0] = sbr->kx[1];
  148. for (k = 1; k <= sbr->num_patches; k++)
  149. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  150. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  151. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  152. if (sbr->num_patches > 1)
  153. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  154. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  155. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  156. sizeof(sbr->f_tablelim[0]),
  157. qsort_comparison_function_int16);
  158. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  159. while (out < sbr->f_tablelim + sbr->n_lim) {
  160. if (*in >= *out * lim_bands_per_octave_warped) {
  161. *++out = *in++;
  162. } else if (*in == *out ||
  163. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  164. in++;
  165. sbr->n_lim--;
  166. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  167. *out = *in++;
  168. sbr->n_lim--;
  169. } else {
  170. *++out = *in++;
  171. }
  172. }
  173. } else {
  174. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  175. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  176. sbr->n_lim = 1;
  177. }
  178. }
  179. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  180. {
  181. unsigned int cnt = get_bits_count(gb);
  182. uint8_t bs_header_extra_1;
  183. uint8_t bs_header_extra_2;
  184. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  185. SpectrumParameters old_spectrum_params;
  186. sbr->start = 1;
  187. // Save last spectrum parameters variables to compare to new ones
  188. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  189. sbr->bs_amp_res_header = get_bits1(gb);
  190. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  191. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  192. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  193. skip_bits(gb, 2); // bs_reserved
  194. bs_header_extra_1 = get_bits1(gb);
  195. bs_header_extra_2 = get_bits1(gb);
  196. if (bs_header_extra_1) {
  197. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  198. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  199. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  200. } else {
  201. sbr->spectrum_params.bs_freq_scale = 2;
  202. sbr->spectrum_params.bs_alter_scale = 1;
  203. sbr->spectrum_params.bs_noise_bands = 2;
  204. }
  205. // Check if spectrum parameters changed
  206. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  207. sbr->reset = 1;
  208. if (bs_header_extra_2) {
  209. sbr->bs_limiter_bands = get_bits(gb, 2);
  210. sbr->bs_limiter_gains = get_bits(gb, 2);
  211. sbr->bs_interpol_freq = get_bits1(gb);
  212. sbr->bs_smoothing_mode = get_bits1(gb);
  213. } else {
  214. sbr->bs_limiter_bands = 2;
  215. sbr->bs_limiter_gains = 2;
  216. sbr->bs_interpol_freq = 1;
  217. sbr->bs_smoothing_mode = 1;
  218. }
  219. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  220. sbr_make_f_tablelim(sbr);
  221. return get_bits_count(gb) - cnt;
  222. }
  223. static int array_min_int16(const int16_t *array, int nel)
  224. {
  225. int i, min = array[0];
  226. for (i = 1; i < nel; i++)
  227. min = FFMIN(array[i], min);
  228. return min;
  229. }
  230. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  231. {
  232. int k, previous, present;
  233. float base, prod;
  234. base = powf((float)stop / start, 1.0f / num_bands);
  235. prod = start;
  236. previous = start;
  237. for (k = 0; k < num_bands-1; k++) {
  238. prod *= base;
  239. present = lrintf(prod);
  240. bands[k] = present - previous;
  241. previous = present;
  242. }
  243. bands[num_bands-1] = stop - previous;
  244. }
  245. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  246. {
  247. // Requirements (14496-3 sp04 p205)
  248. if (n_master <= 0) {
  249. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  250. return -1;
  251. }
  252. if (bs_xover_band >= n_master) {
  253. av_log(avctx, AV_LOG_ERROR,
  254. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  255. bs_xover_band);
  256. return -1;
  257. }
  258. return 0;
  259. }
  260. /// Master Frequency Band Table (14496-3 sp04 p194)
  261. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  262. SpectrumParameters *spectrum)
  263. {
  264. unsigned int temp, max_qmf_subbands;
  265. unsigned int start_min, stop_min;
  266. int k;
  267. const int8_t *sbr_offset_ptr;
  268. int16_t stop_dk[13];
  269. if (sbr->sample_rate < 32000) {
  270. temp = 3000;
  271. } else if (sbr->sample_rate < 64000) {
  272. temp = 4000;
  273. } else
  274. temp = 5000;
  275. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  276. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  277. switch (sbr->sample_rate) {
  278. case 16000:
  279. sbr_offset_ptr = sbr_offset[0];
  280. break;
  281. case 22050:
  282. sbr_offset_ptr = sbr_offset[1];
  283. break;
  284. case 24000:
  285. sbr_offset_ptr = sbr_offset[2];
  286. break;
  287. case 32000:
  288. sbr_offset_ptr = sbr_offset[3];
  289. break;
  290. case 44100: case 48000: case 64000:
  291. sbr_offset_ptr = sbr_offset[4];
  292. break;
  293. case 88200: case 96000: case 128000: case 176400: case 192000:
  294. sbr_offset_ptr = sbr_offset[5];
  295. break;
  296. default:
  297. av_log(ac->avctx, AV_LOG_ERROR,
  298. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  299. return -1;
  300. }
  301. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  302. if (spectrum->bs_stop_freq < 14) {
  303. sbr->k[2] = stop_min;
  304. make_bands(stop_dk, stop_min, 64, 13);
  305. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  306. for (k = 0; k < spectrum->bs_stop_freq; k++)
  307. sbr->k[2] += stop_dk[k];
  308. } else if (spectrum->bs_stop_freq == 14) {
  309. sbr->k[2] = 2*sbr->k[0];
  310. } else if (spectrum->bs_stop_freq == 15) {
  311. sbr->k[2] = 3*sbr->k[0];
  312. } else {
  313. av_log(ac->avctx, AV_LOG_ERROR,
  314. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  315. return -1;
  316. }
  317. sbr->k[2] = FFMIN(64, sbr->k[2]);
  318. // Requirements (14496-3 sp04 p205)
  319. if (sbr->sample_rate <= 32000) {
  320. max_qmf_subbands = 48;
  321. } else if (sbr->sample_rate == 44100) {
  322. max_qmf_subbands = 35;
  323. } else if (sbr->sample_rate >= 48000)
  324. max_qmf_subbands = 32;
  325. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  326. av_log(ac->avctx, AV_LOG_ERROR,
  327. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  328. return -1;
  329. }
  330. if (!spectrum->bs_freq_scale) {
  331. unsigned int dk;
  332. int k2diff;
  333. dk = spectrum->bs_alter_scale + 1;
  334. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  335. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  336. return -1;
  337. for (k = 1; k <= sbr->n_master; k++)
  338. sbr->f_master[k] = dk;
  339. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  340. if (k2diff < 0) {
  341. sbr->f_master[1]--;
  342. sbr->f_master[2]-= (k2diff < 1);
  343. } else if (k2diff) {
  344. sbr->f_master[sbr->n_master]++;
  345. }
  346. sbr->f_master[0] = sbr->k[0];
  347. for (k = 1; k <= sbr->n_master; k++)
  348. sbr->f_master[k] += sbr->f_master[k - 1];
  349. } else {
  350. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  351. int two_regions, num_bands_0;
  352. int vdk0_max, vdk1_min;
  353. int16_t vk0[49];
  354. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  355. two_regions = 1;
  356. sbr->k[1] = 2 * sbr->k[0];
  357. } else {
  358. two_regions = 0;
  359. sbr->k[1] = sbr->k[2];
  360. }
  361. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  362. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  363. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  364. return -1;
  365. }
  366. vk0[0] = 0;
  367. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  368. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  369. vdk0_max = vk0[num_bands_0];
  370. vk0[0] = sbr->k[0];
  371. for (k = 1; k <= num_bands_0; k++) {
  372. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  373. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  374. return -1;
  375. }
  376. vk0[k] += vk0[k-1];
  377. }
  378. if (two_regions) {
  379. int16_t vk1[49];
  380. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  381. : 1.0f; // bs_alter_scale = {0,1}
  382. int num_bands_1 = lrintf(half_bands * invwarp *
  383. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  384. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  385. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  386. if (vdk1_min < vdk0_max) {
  387. int change;
  388. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  389. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  390. vk1[1] += change;
  391. vk1[num_bands_1] -= change;
  392. }
  393. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  394. vk1[0] = sbr->k[1];
  395. for (k = 1; k <= num_bands_1; k++) {
  396. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  397. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  398. return -1;
  399. }
  400. vk1[k] += vk1[k-1];
  401. }
  402. sbr->n_master = num_bands_0 + num_bands_1;
  403. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  404. return -1;
  405. memcpy(&sbr->f_master[0], vk0,
  406. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  407. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  408. num_bands_1 * sizeof(sbr->f_master[0]));
  409. } else {
  410. sbr->n_master = num_bands_0;
  411. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  412. return -1;
  413. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  414. }
  415. }
  416. return 0;
  417. }
  418. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  419. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  420. {
  421. int i, k, sb = 0;
  422. int msb = sbr->k[0];
  423. int usb = sbr->kx[1];
  424. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  425. sbr->num_patches = 0;
  426. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  427. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  428. } else
  429. k = sbr->n_master;
  430. do {
  431. int odd = 0;
  432. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  433. sb = sbr->f_master[i];
  434. odd = (sb + sbr->k[0]) & 1;
  435. }
  436. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  437. // After this check the final number of patches can still be six which is
  438. // illegal however the Coding Technologies decoder check stream has a final
  439. // count of 6 patches
  440. if (sbr->num_patches > 5) {
  441. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  442. return -1;
  443. }
  444. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  445. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  446. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  447. usb = sb;
  448. msb = sb;
  449. sbr->num_patches++;
  450. } else
  451. msb = sbr->kx[1];
  452. if (sbr->f_master[k] - sb < 3)
  453. k = sbr->n_master;
  454. } while (sb != sbr->kx[1] + sbr->m[1]);
  455. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  456. sbr->num_patches--;
  457. return 0;
  458. }
  459. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  460. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  461. {
  462. int k, temp;
  463. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  464. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  465. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  466. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  467. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  468. sbr->kx[1] = sbr->f_tablehigh[0];
  469. // Requirements (14496-3 sp04 p205)
  470. if (sbr->kx[1] + sbr->m[1] > 64) {
  471. av_log(ac->avctx, AV_LOG_ERROR,
  472. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  473. return -1;
  474. }
  475. if (sbr->kx[1] > 32) {
  476. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  477. return -1;
  478. }
  479. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  480. temp = sbr->n[1] & 1;
  481. for (k = 1; k <= sbr->n[0]; k++)
  482. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  483. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  484. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  485. if (sbr->n_q > 5) {
  486. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  487. return -1;
  488. }
  489. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  490. temp = 0;
  491. for (k = 1; k <= sbr->n_q; k++) {
  492. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  493. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  494. }
  495. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  496. return -1;
  497. sbr_make_f_tablelim(sbr);
  498. sbr->data[0].f_indexnoise = 0;
  499. sbr->data[1].f_indexnoise = 0;
  500. return 0;
  501. }
  502. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  503. int elements)
  504. {
  505. int i;
  506. for (i = 0; i < elements; i++) {
  507. vec[i] = get_bits1(gb);
  508. }
  509. }
  510. /** ceil(log2(index+1)) */
  511. static const int8_t ceil_log2[] = {
  512. 0, 1, 2, 2, 3, 3,
  513. };
  514. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  515. GetBitContext *gb, SBRData *ch_data)
  516. {
  517. int i;
  518. unsigned bs_pointer = 0;
  519. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  520. int abs_bord_trail = 16;
  521. int num_rel_lead, num_rel_trail;
  522. unsigned bs_num_env_old = ch_data->bs_num_env;
  523. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  524. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  525. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  526. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  527. case FIXFIX:
  528. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  529. num_rel_lead = ch_data->bs_num_env - 1;
  530. if (ch_data->bs_num_env == 1)
  531. ch_data->bs_amp_res = 0;
  532. if (ch_data->bs_num_env > 4) {
  533. av_log(ac->avctx, AV_LOG_ERROR,
  534. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  535. ch_data->bs_num_env);
  536. return -1;
  537. }
  538. ch_data->t_env[0] = 0;
  539. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  540. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  541. ch_data->bs_num_env;
  542. for (i = 0; i < num_rel_lead; i++)
  543. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  544. ch_data->bs_freq_res[1] = get_bits1(gb);
  545. for (i = 1; i < ch_data->bs_num_env; i++)
  546. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  547. break;
  548. case FIXVAR:
  549. abs_bord_trail += get_bits(gb, 2);
  550. num_rel_trail = get_bits(gb, 2);
  551. ch_data->bs_num_env = num_rel_trail + 1;
  552. ch_data->t_env[0] = 0;
  553. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  554. for (i = 0; i < num_rel_trail; i++)
  555. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  556. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  557. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  558. for (i = 0; i < ch_data->bs_num_env; i++)
  559. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  560. break;
  561. case VARFIX:
  562. ch_data->t_env[0] = get_bits(gb, 2);
  563. num_rel_lead = get_bits(gb, 2);
  564. ch_data->bs_num_env = num_rel_lead + 1;
  565. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  566. for (i = 0; i < num_rel_lead; i++)
  567. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  568. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  569. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  570. break;
  571. case VARVAR:
  572. ch_data->t_env[0] = get_bits(gb, 2);
  573. abs_bord_trail += get_bits(gb, 2);
  574. num_rel_lead = get_bits(gb, 2);
  575. num_rel_trail = get_bits(gb, 2);
  576. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  577. if (ch_data->bs_num_env > 5) {
  578. av_log(ac->avctx, AV_LOG_ERROR,
  579. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  580. ch_data->bs_num_env);
  581. return -1;
  582. }
  583. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  584. for (i = 0; i < num_rel_lead; i++)
  585. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  586. for (i = 0; i < num_rel_trail; i++)
  587. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  588. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  589. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  590. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  591. break;
  592. }
  593. if (bs_pointer > ch_data->bs_num_env + 1) {
  594. av_log(ac->avctx, AV_LOG_ERROR,
  595. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  596. bs_pointer);
  597. return -1;
  598. }
  599. for (i = 1; i <= ch_data->bs_num_env; i++) {
  600. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  601. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  602. return -1;
  603. }
  604. }
  605. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  606. ch_data->t_q[0] = ch_data->t_env[0];
  607. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  608. if (ch_data->bs_num_noise > 1) {
  609. unsigned int idx;
  610. if (ch_data->bs_frame_class == FIXFIX) {
  611. idx = ch_data->bs_num_env >> 1;
  612. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  613. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  614. } else { // VARFIX
  615. if (!bs_pointer)
  616. idx = 1;
  617. else if (bs_pointer == 1)
  618. idx = ch_data->bs_num_env - 1;
  619. else // bs_pointer > 1
  620. idx = bs_pointer - 1;
  621. }
  622. ch_data->t_q[1] = ch_data->t_env[idx];
  623. }
  624. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  625. ch_data->e_a[1] = -1;
  626. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  627. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  628. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  629. ch_data->e_a[1] = bs_pointer - 1;
  630. return 0;
  631. }
  632. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  633. //These variables are saved from the previous frame rather than copied
  634. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  635. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  636. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  637. //These variables are read from the bitstream and therefore copied
  638. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  639. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  640. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  641. dst->bs_num_env = src->bs_num_env;
  642. dst->bs_amp_res = src->bs_amp_res;
  643. dst->bs_num_noise = src->bs_num_noise;
  644. dst->bs_frame_class = src->bs_frame_class;
  645. dst->e_a[1] = src->e_a[1];
  646. }
  647. /// Read how the envelope and noise floor data is delta coded
  648. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  649. SBRData *ch_data)
  650. {
  651. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  652. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  653. }
  654. /// Read inverse filtering data
  655. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  656. SBRData *ch_data)
  657. {
  658. int i;
  659. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  660. for (i = 0; i < sbr->n_q; i++)
  661. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  662. }
  663. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  664. SBRData *ch_data, int ch)
  665. {
  666. int bits;
  667. int i, j, k;
  668. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  669. int t_lav, f_lav;
  670. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  671. const int odd = sbr->n[1] & 1;
  672. if (sbr->bs_coupling && ch) {
  673. if (ch_data->bs_amp_res) {
  674. bits = 5;
  675. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  676. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  677. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  678. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  679. } else {
  680. bits = 6;
  681. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  682. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  683. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  684. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  685. }
  686. } else {
  687. if (ch_data->bs_amp_res) {
  688. bits = 6;
  689. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  690. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  691. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  692. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  693. } else {
  694. bits = 7;
  695. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  696. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  697. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  698. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  699. }
  700. }
  701. for (i = 0; i < ch_data->bs_num_env; i++) {
  702. if (ch_data->bs_df_env[i]) {
  703. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  704. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  705. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  706. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  707. } else if (ch_data->bs_freq_res[i + 1]) {
  708. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  709. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  710. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  711. }
  712. } else {
  713. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  714. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  715. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  716. }
  717. }
  718. } else {
  719. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  720. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  721. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  722. }
  723. }
  724. //assign 0th elements of env_facs from last elements
  725. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  726. sizeof(ch_data->env_facs[0]));
  727. }
  728. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  729. SBRData *ch_data, int ch)
  730. {
  731. int i, j;
  732. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  733. int t_lav, f_lav;
  734. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  735. if (sbr->bs_coupling && ch) {
  736. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  737. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  738. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  739. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  740. } else {
  741. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  742. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  743. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  744. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  745. }
  746. for (i = 0; i < ch_data->bs_num_noise; i++) {
  747. if (ch_data->bs_df_noise[i]) {
  748. for (j = 0; j < sbr->n_q; j++)
  749. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  750. } else {
  751. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  752. for (j = 1; j < sbr->n_q; j++)
  753. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  754. }
  755. }
  756. //assign 0th elements of noise_facs from last elements
  757. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  758. sizeof(ch_data->noise_facs[0]));
  759. }
  760. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  761. GetBitContext *gb,
  762. int bs_extension_id, int *num_bits_left)
  763. {
  764. //TODO - implement ps_data for parametric stereo parsing
  765. switch (bs_extension_id) {
  766. case EXTENSION_ID_PS:
  767. if (!ac->m4ac.ps) {
  768. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  769. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  770. *num_bits_left = 0;
  771. } else {
  772. #if 0
  773. *num_bits_left -= ff_ps_data(gb, ps);
  774. #else
  775. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  776. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  777. *num_bits_left = 0;
  778. #endif
  779. }
  780. break;
  781. default:
  782. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  783. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  784. *num_bits_left = 0;
  785. break;
  786. }
  787. }
  788. static int read_sbr_single_channel_element(AACContext *ac,
  789. SpectralBandReplication *sbr,
  790. GetBitContext *gb)
  791. {
  792. if (get_bits1(gb)) // bs_data_extra
  793. skip_bits(gb, 4); // bs_reserved
  794. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  795. return -1;
  796. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  797. read_sbr_invf(sbr, gb, &sbr->data[0]);
  798. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  799. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  800. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  801. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  802. return 0;
  803. }
  804. static int read_sbr_channel_pair_element(AACContext *ac,
  805. SpectralBandReplication *sbr,
  806. GetBitContext *gb)
  807. {
  808. if (get_bits1(gb)) // bs_data_extra
  809. skip_bits(gb, 8); // bs_reserved
  810. if ((sbr->bs_coupling = get_bits1(gb))) {
  811. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  812. return -1;
  813. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  814. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  815. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  816. read_sbr_invf(sbr, gb, &sbr->data[0]);
  817. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  818. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  819. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  820. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  821. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  822. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  823. } else {
  824. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  825. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  826. return -1;
  827. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  828. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  829. read_sbr_invf(sbr, gb, &sbr->data[0]);
  830. read_sbr_invf(sbr, gb, &sbr->data[1]);
  831. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  832. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  833. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  834. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  835. }
  836. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  837. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  838. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  839. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  840. return 0;
  841. }
  842. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  843. GetBitContext *gb, int id_aac)
  844. {
  845. unsigned int cnt = get_bits_count(gb);
  846. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  847. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  848. sbr->start = 0;
  849. return get_bits_count(gb) - cnt;
  850. }
  851. } else if (id_aac == TYPE_CPE) {
  852. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  853. sbr->start = 0;
  854. return get_bits_count(gb) - cnt;
  855. }
  856. } else {
  857. av_log(ac->avctx, AV_LOG_ERROR,
  858. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  859. sbr->start = 0;
  860. return get_bits_count(gb) - cnt;
  861. }
  862. if (get_bits1(gb)) { // bs_extended_data
  863. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  864. if (num_bits_left == 15)
  865. num_bits_left += get_bits(gb, 8); // bs_esc_count
  866. num_bits_left <<= 3;
  867. while (num_bits_left > 7) {
  868. num_bits_left -= 2;
  869. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  870. }
  871. }
  872. return get_bits_count(gb) - cnt;
  873. }
  874. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  875. {
  876. int err;
  877. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  878. if (err >= 0)
  879. err = sbr_make_f_derived(ac, sbr);
  880. if (err < 0) {
  881. av_log(ac->avctx, AV_LOG_ERROR,
  882. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  883. sbr->start = 0;
  884. }
  885. }
  886. /**
  887. * Decode Spectral Band Replication extension data; reference: table 4.55.
  888. *
  889. * @param crc flag indicating the presence of CRC checksum
  890. * @param cnt length of TYPE_FIL syntactic element in bytes
  891. *
  892. * @return Returns number of bytes consumed from the TYPE_FIL element.
  893. */
  894. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  895. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  896. {
  897. unsigned int num_sbr_bits = 0, num_align_bits;
  898. unsigned bytes_read;
  899. GetBitContext gbc = *gb_host, *gb = &gbc;
  900. skip_bits_long(gb_host, cnt*8 - 4);
  901. sbr->reset = 0;
  902. if (!sbr->sample_rate)
  903. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  904. if (!ac->m4ac.ext_sample_rate)
  905. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  906. if (crc) {
  907. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  908. num_sbr_bits += 10;
  909. }
  910. //Save some state from the previous frame.
  911. sbr->kx[0] = sbr->kx[1];
  912. sbr->m[0] = sbr->m[1];
  913. num_sbr_bits++;
  914. if (get_bits1(gb)) // bs_header_flag
  915. num_sbr_bits += read_sbr_header(sbr, gb);
  916. if (sbr->reset)
  917. sbr_reset(ac, sbr);
  918. if (sbr->start)
  919. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  920. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  921. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  922. if (bytes_read > cnt) {
  923. av_log(ac->avctx, AV_LOG_ERROR,
  924. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  925. }
  926. return cnt;
  927. }
  928. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  929. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  930. {
  931. int k, e;
  932. int ch;
  933. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  934. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  935. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  936. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  937. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  938. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  939. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  940. float fac = temp1 / (1.0f + temp2);
  941. sbr->data[0].env_facs[e][k] = fac;
  942. sbr->data[1].env_facs[e][k] = fac * temp2;
  943. }
  944. }
  945. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  946. for (k = 0; k < sbr->n_q; k++) {
  947. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  948. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  949. float fac = temp1 / (1.0f + temp2);
  950. sbr->data[0].noise_facs[e][k] = fac;
  951. sbr->data[1].noise_facs[e][k] = fac * temp2;
  952. }
  953. }
  954. } else { // SCE or one non-coupled CPE
  955. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  956. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  957. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  958. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  959. sbr->data[ch].env_facs[e][k] =
  960. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  961. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  962. for (k = 0; k < sbr->n_q; k++)
  963. sbr->data[ch].noise_facs[e][k] =
  964. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  965. }
  966. }
  967. }
  968. /**
  969. * Analysis QMF Bank (14496-3 sp04 p206)
  970. *
  971. * @param x pointer to the beginning of the first sample window
  972. * @param W array of complex-valued samples split into subbands
  973. */
  974. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  975. float z[320], float W[2][32][32][2],
  976. float scale)
  977. {
  978. int i, k;
  979. memcpy(W[0], W[1], sizeof(W[0]));
  980. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  981. if (scale != 1.0f)
  982. dsp->vector_fmul_scalar(x+288, in, scale, 1024);
  983. else
  984. memcpy(x+288, in, 1024*sizeof(*x));
  985. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  986. // are not supported
  987. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  988. for (k = 0; k < 64; k++) {
  989. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  990. z[k] = f;
  991. }
  992. //Shuffle to IMDCT
  993. z[64] = z[0];
  994. for (k = 1; k < 32; k++) {
  995. z[64+2*k-1] = z[ k];
  996. z[64+2*k ] = -z[64-k];
  997. }
  998. z[64+63] = z[32];
  999. ff_imdct_half(mdct, z, z+64);
  1000. for (k = 0; k < 32; k++) {
  1001. W[1][i][k][0] = -z[63-k];
  1002. W[1][i][k][1] = z[k];
  1003. }
  1004. x += 32;
  1005. }
  1006. }
  1007. /**
  1008. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1009. * (14496-3 sp04 p206)
  1010. */
  1011. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1012. float *out, float X[2][32][64],
  1013. float mdct_buf[2][64],
  1014. float *v0, int *v_off, const unsigned int div,
  1015. float bias, float scale)
  1016. {
  1017. int i, n;
  1018. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1019. int scale_and_bias = scale != 1.0f || bias != 0.0f;
  1020. float *v;
  1021. for (i = 0; i < 32; i++) {
  1022. if (*v_off == 0) {
  1023. int saved_samples = (1280 - 128) >> div;
  1024. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1025. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1026. } else {
  1027. *v_off -= 128 >> div;
  1028. }
  1029. v = v0 + *v_off;
  1030. if (div) {
  1031. for (n = 0; n < 32; n++) {
  1032. X[0][i][ n] = -X[0][i][n];
  1033. X[0][i][32+n] = X[1][i][31-n];
  1034. }
  1035. ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
  1036. for (n = 0; n < 32; n++) {
  1037. v[ n] = mdct_buf[0][63 - 2*n];
  1038. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1039. }
  1040. } else {
  1041. for (n = 1; n < 64; n+=2) {
  1042. X[1][i][n] = -X[1][i][n];
  1043. }
  1044. ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
  1045. ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
  1046. for (n = 0; n < 64; n++) {
  1047. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1048. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1049. }
  1050. }
  1051. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1052. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1053. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1061. if (scale_and_bias)
  1062. for (n = 0; n < 64 >> div; n++)
  1063. out[n] = out[n] * scale + bias;
  1064. out += 64 >> div;
  1065. }
  1066. }
  1067. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1068. {
  1069. int i;
  1070. float real_sum = 0.0f;
  1071. float imag_sum = 0.0f;
  1072. if (lag) {
  1073. for (i = 1; i < 38; i++) {
  1074. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1075. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1076. }
  1077. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1078. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1079. if (lag == 1) {
  1080. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1081. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1082. }
  1083. } else {
  1084. for (i = 1; i < 38; i++) {
  1085. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1086. }
  1087. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1088. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1089. }
  1090. }
  1091. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1092. * (14496-3 sp04 p214)
  1093. * Warning: This routine does not seem numerically stable.
  1094. */
  1095. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1096. const float X_low[32][40][2], int k0)
  1097. {
  1098. int k;
  1099. for (k = 0; k < k0; k++) {
  1100. float phi[3][2][2], dk;
  1101. autocorrelate(X_low[k], phi, 0);
  1102. autocorrelate(X_low[k], phi, 1);
  1103. autocorrelate(X_low[k], phi, 2);
  1104. dk = phi[2][1][0] * phi[1][0][0] -
  1105. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1106. if (!dk) {
  1107. alpha1[k][0] = 0;
  1108. alpha1[k][1] = 0;
  1109. } else {
  1110. float temp_real, temp_im;
  1111. temp_real = phi[0][0][0] * phi[1][1][0] -
  1112. phi[0][0][1] * phi[1][1][1] -
  1113. phi[0][1][0] * phi[1][0][0];
  1114. temp_im = phi[0][0][0] * phi[1][1][1] +
  1115. phi[0][0][1] * phi[1][1][0] -
  1116. phi[0][1][1] * phi[1][0][0];
  1117. alpha1[k][0] = temp_real / dk;
  1118. alpha1[k][1] = temp_im / dk;
  1119. }
  1120. if (!phi[1][0][0]) {
  1121. alpha0[k][0] = 0;
  1122. alpha0[k][1] = 0;
  1123. } else {
  1124. float temp_real, temp_im;
  1125. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1126. alpha1[k][1] * phi[1][1][1];
  1127. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1128. alpha1[k][0] * phi[1][1][1];
  1129. alpha0[k][0] = -temp_real / phi[1][0][0];
  1130. alpha0[k][1] = -temp_im / phi[1][0][0];
  1131. }
  1132. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1133. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1134. alpha1[k][0] = 0;
  1135. alpha1[k][1] = 0;
  1136. alpha0[k][0] = 0;
  1137. alpha0[k][1] = 0;
  1138. }
  1139. }
  1140. }
  1141. /// Chirp Factors (14496-3 sp04 p214)
  1142. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1143. {
  1144. int i;
  1145. float new_bw;
  1146. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1147. for (i = 0; i < sbr->n_q; i++) {
  1148. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1149. new_bw = 0.6f;
  1150. } else
  1151. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1152. if (new_bw < ch_data->bw_array[i]) {
  1153. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1154. } else
  1155. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1156. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1157. }
  1158. }
  1159. /// Generate the subband filtered lowband
  1160. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1161. float X_low[32][40][2], const float W[2][32][32][2])
  1162. {
  1163. int i, k;
  1164. const int t_HFGen = 8;
  1165. const int i_f = 32;
  1166. memset(X_low, 0, 32*sizeof(*X_low));
  1167. for (k = 0; k < sbr->kx[1]; k++) {
  1168. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1169. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1170. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1171. }
  1172. }
  1173. for (k = 0; k < sbr->kx[0]; k++) {
  1174. for (i = 0; i < t_HFGen; i++) {
  1175. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1176. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1177. }
  1178. }
  1179. return 0;
  1180. }
  1181. /// High Frequency Generator (14496-3 sp04 p215)
  1182. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1183. float X_high[64][40][2], const float X_low[32][40][2],
  1184. const float (*alpha0)[2], const float (*alpha1)[2],
  1185. const float bw_array[5], const uint8_t *t_env,
  1186. int bs_num_env)
  1187. {
  1188. int i, j, x;
  1189. int g = 0;
  1190. int k = sbr->kx[1];
  1191. for (j = 0; j < sbr->num_patches; j++) {
  1192. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1193. float alpha[4];
  1194. const int p = sbr->patch_start_subband[j] + x;
  1195. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1196. g++;
  1197. g--;
  1198. if (g < 0) {
  1199. av_log(ac->avctx, AV_LOG_ERROR,
  1200. "ERROR : no subband found for frequency %d\n", k);
  1201. return -1;
  1202. }
  1203. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1204. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1205. alpha[2] = alpha0[p][0] * bw_array[g];
  1206. alpha[3] = alpha0[p][1] * bw_array[g];
  1207. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1208. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1209. X_high[k][idx][0] =
  1210. X_low[p][idx - 2][0] * alpha[0] -
  1211. X_low[p][idx - 2][1] * alpha[1] +
  1212. X_low[p][idx - 1][0] * alpha[2] -
  1213. X_low[p][idx - 1][1] * alpha[3] +
  1214. X_low[p][idx][0];
  1215. X_high[k][idx][1] =
  1216. X_low[p][idx - 2][1] * alpha[0] +
  1217. X_low[p][idx - 2][0] * alpha[1] +
  1218. X_low[p][idx - 1][1] * alpha[2] +
  1219. X_low[p][idx - 1][0] * alpha[3] +
  1220. X_low[p][idx][1];
  1221. }
  1222. }
  1223. }
  1224. if (k < sbr->m[1] + sbr->kx[1])
  1225. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1226. return 0;
  1227. }
  1228. /// Generate the subband filtered lowband
  1229. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
  1230. const float X_low[32][40][2], const float Y[2][38][64][2],
  1231. int ch)
  1232. {
  1233. int k, i;
  1234. const int i_f = 32;
  1235. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1236. memset(X, 0, 2*sizeof(*X));
  1237. for (k = 0; k < sbr->kx[0]; k++) {
  1238. for (i = 0; i < i_Temp; i++) {
  1239. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1240. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1241. }
  1242. }
  1243. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1244. for (i = 0; i < i_Temp; i++) {
  1245. X[0][i][k] = Y[0][i + i_f][k][0];
  1246. X[1][i][k] = Y[0][i + i_f][k][1];
  1247. }
  1248. }
  1249. for (k = 0; k < sbr->kx[1]; k++) {
  1250. for (i = i_Temp; i < i_f; i++) {
  1251. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1252. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1253. }
  1254. }
  1255. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1256. for (i = i_Temp; i < i_f; i++) {
  1257. X[0][i][k] = Y[1][i][k][0];
  1258. X[1][i][k] = Y[1][i][k][1];
  1259. }
  1260. }
  1261. return 0;
  1262. }
  1263. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1264. * (14496-3 sp04 p217)
  1265. */
  1266. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1267. SBRData *ch_data, int e_a[2])
  1268. {
  1269. int e, i, m;
  1270. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1271. for (e = 0; e < ch_data->bs_num_env; e++) {
  1272. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1273. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1274. int k;
  1275. for (i = 0; i < ilim; i++)
  1276. for (m = table[i]; m < table[i + 1]; m++)
  1277. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1278. // ch_data->bs_num_noise > 1 => 2 noise floors
  1279. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1280. for (i = 0; i < sbr->n_q; i++)
  1281. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1282. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1283. for (i = 0; i < sbr->n[1]; i++) {
  1284. if (ch_data->bs_add_harmonic_flag) {
  1285. const unsigned int m_midpoint =
  1286. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1287. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1288. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1289. }
  1290. }
  1291. for (i = 0; i < ilim; i++) {
  1292. int additional_sinusoid_present = 0;
  1293. for (m = table[i]; m < table[i + 1]; m++) {
  1294. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1295. additional_sinusoid_present = 1;
  1296. break;
  1297. }
  1298. }
  1299. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1300. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1301. }
  1302. }
  1303. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1304. }
  1305. /// Estimation of current envelope (14496-3 sp04 p218)
  1306. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1307. SpectralBandReplication *sbr, SBRData *ch_data)
  1308. {
  1309. int e, i, m;
  1310. if (sbr->bs_interpol_freq) {
  1311. for (e = 0; e < ch_data->bs_num_env; e++) {
  1312. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1313. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1314. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1315. for (m = 0; m < sbr->m[1]; m++) {
  1316. float sum = 0.0f;
  1317. for (i = ilb; i < iub; i++) {
  1318. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1319. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1320. }
  1321. e_curr[e][m] = sum * recip_env_size;
  1322. }
  1323. }
  1324. } else {
  1325. int k, p;
  1326. for (e = 0; e < ch_data->bs_num_env; e++) {
  1327. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1328. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1329. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1330. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1331. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1332. float sum = 0.0f;
  1333. const int den = env_size * (table[p + 1] - table[p]);
  1334. for (k = table[p]; k < table[p + 1]; k++) {
  1335. for (i = ilb; i < iub; i++) {
  1336. sum += X_high[k][i][0] * X_high[k][i][0] +
  1337. X_high[k][i][1] * X_high[k][i][1];
  1338. }
  1339. }
  1340. sum /= den;
  1341. for (k = table[p]; k < table[p + 1]; k++) {
  1342. e_curr[e][k - sbr->kx[1]] = sum;
  1343. }
  1344. }
  1345. }
  1346. }
  1347. }
  1348. /**
  1349. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1350. * and Calculation of gain (14496-3 sp04 p219)
  1351. */
  1352. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1353. SBRData *ch_data, const int e_a[2])
  1354. {
  1355. int e, k, m;
  1356. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1357. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1358. for (e = 0; e < ch_data->bs_num_env; e++) {
  1359. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1360. for (k = 0; k < sbr->n_lim; k++) {
  1361. float gain_boost, gain_max;
  1362. float sum[2] = { 0.0f, 0.0f };
  1363. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1364. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1365. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1366. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1367. if (!sbr->s_mapped[e][m]) {
  1368. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1369. ((1.0f + sbr->e_curr[e][m]) *
  1370. (1.0f + sbr->q_mapped[e][m] * delta)));
  1371. } else {
  1372. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1373. ((1.0f + sbr->e_curr[e][m]) *
  1374. (1.0f + sbr->q_mapped[e][m])));
  1375. }
  1376. }
  1377. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1378. sum[0] += sbr->e_origmapped[e][m];
  1379. sum[1] += sbr->e_curr[e][m];
  1380. }
  1381. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1382. gain_max = FFMIN(100000, gain_max);
  1383. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1384. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1385. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1386. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1387. }
  1388. sum[0] = sum[1] = 0.0f;
  1389. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1390. sum[0] += sbr->e_origmapped[e][m];
  1391. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1392. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1393. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1394. }
  1395. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1396. gain_boost = FFMIN(1.584893192, gain_boost);
  1397. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1398. sbr->gain[e][m] *= gain_boost;
  1399. sbr->q_m[e][m] *= gain_boost;
  1400. sbr->s_m[e][m] *= gain_boost;
  1401. }
  1402. }
  1403. }
  1404. }
  1405. /// Assembling HF Signals (14496-3 sp04 p220)
  1406. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1407. SpectralBandReplication *sbr, SBRData *ch_data,
  1408. const int e_a[2])
  1409. {
  1410. int e, i, j, m;
  1411. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1412. const int kx = sbr->kx[1];
  1413. const int m_max = sbr->m[1];
  1414. static const float h_smooth[5] = {
  1415. 0.33333333333333,
  1416. 0.30150283239582,
  1417. 0.21816949906249,
  1418. 0.11516383427084,
  1419. 0.03183050093751,
  1420. };
  1421. static const int8_t phi[2][4] = {
  1422. { 1, 0, -1, 0}, // real
  1423. { 0, 1, 0, -1}, // imaginary
  1424. };
  1425. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1426. int indexnoise = ch_data->f_indexnoise;
  1427. int indexsine = ch_data->f_indexsine;
  1428. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1429. if (sbr->reset) {
  1430. for (i = 0; i < h_SL; i++) {
  1431. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1432. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1433. }
  1434. } else if (h_SL) {
  1435. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1436. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1437. }
  1438. for (e = 0; e < ch_data->bs_num_env; e++) {
  1439. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1440. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1441. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1442. }
  1443. }
  1444. for (e = 0; e < ch_data->bs_num_env; e++) {
  1445. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1446. int phi_sign = (1 - 2*(kx & 1));
  1447. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1448. for (m = 0; m < m_max; m++) {
  1449. const int idx1 = i + h_SL;
  1450. float g_filt = 0.0f;
  1451. for (j = 0; j <= h_SL; j++)
  1452. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1453. Y[1][i][m + kx][0] =
  1454. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1455. Y[1][i][m + kx][1] =
  1456. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1457. }
  1458. } else {
  1459. for (m = 0; m < m_max; m++) {
  1460. const float g_filt = g_temp[i + h_SL][m];
  1461. Y[1][i][m + kx][0] =
  1462. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1463. Y[1][i][m + kx][1] =
  1464. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1465. }
  1466. }
  1467. if (e != e_a[0] && e != e_a[1]) {
  1468. for (m = 0; m < m_max; m++) {
  1469. indexnoise = (indexnoise + 1) & 0x1ff;
  1470. if (sbr->s_m[e][m]) {
  1471. Y[1][i][m + kx][0] +=
  1472. sbr->s_m[e][m] * phi[0][indexsine];
  1473. Y[1][i][m + kx][1] +=
  1474. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1475. } else {
  1476. float q_filt;
  1477. if (h_SL) {
  1478. const int idx1 = i + h_SL;
  1479. q_filt = 0.0f;
  1480. for (j = 0; j <= h_SL; j++)
  1481. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1482. } else {
  1483. q_filt = q_temp[i][m];
  1484. }
  1485. Y[1][i][m + kx][0] +=
  1486. q_filt * sbr_noise_table[indexnoise][0];
  1487. Y[1][i][m + kx][1] +=
  1488. q_filt * sbr_noise_table[indexnoise][1];
  1489. }
  1490. phi_sign = -phi_sign;
  1491. }
  1492. } else {
  1493. indexnoise = (indexnoise + m_max) & 0x1ff;
  1494. for (m = 0; m < m_max; m++) {
  1495. Y[1][i][m + kx][0] +=
  1496. sbr->s_m[e][m] * phi[0][indexsine];
  1497. Y[1][i][m + kx][1] +=
  1498. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1499. phi_sign = -phi_sign;
  1500. }
  1501. }
  1502. indexsine = (indexsine + 1) & 3;
  1503. }
  1504. }
  1505. ch_data->f_indexnoise = indexnoise;
  1506. ch_data->f_indexsine = indexsine;
  1507. }
  1508. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1509. float* L, float* R)
  1510. {
  1511. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1512. int ch;
  1513. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1514. if (sbr->start) {
  1515. sbr_dequant(sbr, id_aac);
  1516. }
  1517. for (ch = 0; ch < nch; ch++) {
  1518. /* decode channel */
  1519. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1520. (float*)sbr->qmf_filter_scratch,
  1521. sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
  1522. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1523. if (sbr->start) {
  1524. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1525. sbr_chirp(sbr, &sbr->data[ch]);
  1526. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1527. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1528. sbr->data[ch].bs_num_env);
  1529. // hf_adj
  1530. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1531. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1532. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1533. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1534. sbr->data[ch].e_a);
  1535. }
  1536. /* synthesis */
  1537. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1538. }
  1539. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1540. sbr->data[0].synthesis_filterbank_samples,
  1541. &sbr->data[0].synthesis_filterbank_samples_offset,
  1542. downsampled,
  1543. ac->add_bias, -1024 * ac->sf_scale);
  1544. if (nch == 2)
  1545. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1546. sbr->data[1].synthesis_filterbank_samples,
  1547. &sbr->data[1].synthesis_filterbank_samples_offset,
  1548. downsampled,
  1549. ac->add_bias, -1024 * ac->sf_scale);
  1550. }