You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2429 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_MMAP
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
  124. [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
  125. [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
  126. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  127. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  128. [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
  129. [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
  130. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  131. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  134. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  141. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  151. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  152. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  153. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  154. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  155. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  156. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  157. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  158. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  159. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  161. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  164. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  165. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  166. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  168. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  169. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  170. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  177. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  178. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  179. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  180. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  181. [AV_PIX_FMT_YA8] = { 1, 1 },
  182. [AV_PIX_FMT_YA16BE] = { 1, 1 },
  183. [AV_PIX_FMT_YA16LE] = { 1, 1 },
  184. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  185. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  186. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  187. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  188. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  205. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  206. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  207. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  208. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  209. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  210. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  211. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  212. [AV_PIX_FMT_GBRP] = { 1, 1 },
  213. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  216. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  217. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  219. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  220. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  221. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  222. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  223. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  224. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  225. [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
  226. [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
  227. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  228. [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
  229. [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
  230. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  231. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  232. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  233. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  234. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  235. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  236. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  237. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  238. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  239. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  240. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  241. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  242. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  243. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  244. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  245. [AV_PIX_FMT_P010LE] = { 1, 1 },
  246. [AV_PIX_FMT_P010BE] = { 1, 1 },
  247. [AV_PIX_FMT_P016LE] = { 1, 1 },
  248. [AV_PIX_FMT_P016BE] = { 1, 1 },
  249. [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
  250. [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
  251. [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
  252. [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
  253. [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
  254. [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
  255. };
  256. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  257. {
  258. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  259. format_entries[pix_fmt].is_supported_in : 0;
  260. }
  261. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  262. {
  263. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  264. format_entries[pix_fmt].is_supported_out : 0;
  265. }
  266. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  267. {
  268. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  269. format_entries[pix_fmt].is_supported_endianness : 0;
  270. }
  271. static double getSplineCoeff(double a, double b, double c, double d,
  272. double dist)
  273. {
  274. if (dist <= 1.0)
  275. return ((d * dist + c) * dist + b) * dist + a;
  276. else
  277. return getSplineCoeff(0.0,
  278. b + 2.0 * c + 3.0 * d,
  279. c + 3.0 * d,
  280. -b - 3.0 * c - 6.0 * d,
  281. dist - 1.0);
  282. }
  283. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  284. {
  285. if (pos == -1 || pos <= -513) {
  286. pos = (128 << chr_subsample) - 128;
  287. }
  288. pos += 128; // relative to ideal left edge
  289. return pos >> chr_subsample;
  290. }
  291. typedef struct {
  292. int flag; ///< flag associated to the algorithm
  293. const char *description; ///< human-readable description
  294. int size_factor; ///< size factor used when initing the filters
  295. } ScaleAlgorithm;
  296. static const ScaleAlgorithm scale_algorithms[] = {
  297. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  298. { SWS_BICUBIC, "bicubic", 4 },
  299. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  300. { SWS_BILINEAR, "bilinear", 2 },
  301. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  302. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  303. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  304. { SWS_POINT, "nearest neighbor / point", -1 },
  305. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  306. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  307. { SWS_X, "experimental", 8 },
  308. };
  309. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  310. int *outFilterSize, int xInc, int srcW,
  311. int dstW, int filterAlign, int one,
  312. int flags, int cpu_flags,
  313. SwsVector *srcFilter, SwsVector *dstFilter,
  314. double param[2], int srcPos, int dstPos)
  315. {
  316. int i;
  317. int filterSize;
  318. int filter2Size;
  319. int minFilterSize;
  320. int64_t *filter = NULL;
  321. int64_t *filter2 = NULL;
  322. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  323. int ret = -1;
  324. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  325. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  326. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  327. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  328. int i;
  329. filterSize = 1;
  330. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  331. dstW, sizeof(*filter) * filterSize, fail);
  332. for (i = 0; i < dstW; i++) {
  333. filter[i * filterSize] = fone;
  334. (*filterPos)[i] = i;
  335. }
  336. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  337. int i;
  338. int64_t xDstInSrc;
  339. filterSize = 1;
  340. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  341. dstW, sizeof(*filter) * filterSize, fail);
  342. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  343. for (i = 0; i < dstW; i++) {
  344. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  345. (*filterPos)[i] = xx;
  346. filter[i] = fone;
  347. xDstInSrc += xInc;
  348. }
  349. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  350. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  351. int i;
  352. int64_t xDstInSrc;
  353. filterSize = 2;
  354. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  355. dstW, sizeof(*filter) * filterSize, fail);
  356. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  357. for (i = 0; i < dstW; i++) {
  358. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  359. int j;
  360. (*filterPos)[i] = xx;
  361. // bilinear upscale / linear interpolate / area averaging
  362. for (j = 0; j < filterSize; j++) {
  363. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  364. if (coeff < 0)
  365. coeff = 0;
  366. filter[i * filterSize + j] = coeff;
  367. xx++;
  368. }
  369. xDstInSrc += xInc;
  370. }
  371. } else {
  372. int64_t xDstInSrc;
  373. int sizeFactor = -1;
  374. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  375. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  376. sizeFactor = scale_algorithms[i].size_factor;
  377. break;
  378. }
  379. }
  380. if (flags & SWS_LANCZOS)
  381. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  382. av_assert0(sizeFactor > 0);
  383. if (xInc <= 1 << 16)
  384. filterSize = 1 + sizeFactor; // upscale
  385. else
  386. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  387. filterSize = FFMIN(filterSize, srcW - 2);
  388. filterSize = FFMAX(filterSize, 1);
  389. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  390. dstW, sizeof(*filter) * filterSize, fail);
  391. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  392. for (i = 0; i < dstW; i++) {
  393. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  394. int j;
  395. (*filterPos)[i] = xx;
  396. for (j = 0; j < filterSize; j++) {
  397. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  398. double floatd;
  399. int64_t coeff;
  400. if (xInc > 1 << 16)
  401. d = d * dstW / srcW;
  402. floatd = d * (1.0 / (1 << 30));
  403. if (flags & SWS_BICUBIC) {
  404. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  405. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  406. if (d >= 1LL << 31) {
  407. coeff = 0.0;
  408. } else {
  409. int64_t dd = (d * d) >> 30;
  410. int64_t ddd = (dd * d) >> 30;
  411. if (d < 1LL << 30)
  412. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  413. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  414. (6 * (1 << 24) - 2 * B) * (1 << 30);
  415. else
  416. coeff = (-B - 6 * C) * ddd +
  417. (6 * B + 30 * C) * dd +
  418. (-12 * B - 48 * C) * d +
  419. (8 * B + 24 * C) * (1 << 30);
  420. }
  421. coeff /= (1LL<<54)/fone;
  422. } else if (flags & SWS_X) {
  423. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  424. double c;
  425. if (floatd < 1.0)
  426. c = cos(floatd * M_PI);
  427. else
  428. c = -1.0;
  429. if (c < 0.0)
  430. c = -pow(-c, A);
  431. else
  432. c = pow(c, A);
  433. coeff = (c * 0.5 + 0.5) * fone;
  434. } else if (flags & SWS_AREA) {
  435. int64_t d2 = d - (1 << 29);
  436. if (d2 * xInc < -(1LL << (29 + 16)))
  437. coeff = 1.0 * (1LL << (30 + 16));
  438. else if (d2 * xInc < (1LL << (29 + 16)))
  439. coeff = -d2 * xInc + (1LL << (29 + 16));
  440. else
  441. coeff = 0.0;
  442. coeff *= fone >> (30 + 16);
  443. } else if (flags & SWS_GAUSS) {
  444. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  445. coeff = exp2(-p * floatd * floatd) * fone;
  446. } else if (flags & SWS_SINC) {
  447. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  448. } else if (flags & SWS_LANCZOS) {
  449. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  450. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  451. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  452. if (floatd > p)
  453. coeff = 0;
  454. } else if (flags & SWS_BILINEAR) {
  455. coeff = (1 << 30) - d;
  456. if (coeff < 0)
  457. coeff = 0;
  458. coeff *= fone >> 30;
  459. } else if (flags & SWS_SPLINE) {
  460. double p = -2.196152422706632;
  461. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  462. } else {
  463. av_assert0(0);
  464. }
  465. filter[i * filterSize + j] = coeff;
  466. xx++;
  467. }
  468. xDstInSrc += 2 * xInc;
  469. }
  470. }
  471. /* apply src & dst Filter to filter -> filter2
  472. * av_free(filter);
  473. */
  474. av_assert0(filterSize > 0);
  475. filter2Size = filterSize;
  476. if (srcFilter)
  477. filter2Size += srcFilter->length - 1;
  478. if (dstFilter)
  479. filter2Size += dstFilter->length - 1;
  480. av_assert0(filter2Size > 0);
  481. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  482. for (i = 0; i < dstW; i++) {
  483. int j, k;
  484. if (srcFilter) {
  485. for (k = 0; k < srcFilter->length; k++) {
  486. for (j = 0; j < filterSize; j++)
  487. filter2[i * filter2Size + k + j] +=
  488. srcFilter->coeff[k] * filter[i * filterSize + j];
  489. }
  490. } else {
  491. for (j = 0; j < filterSize; j++)
  492. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  493. }
  494. // FIXME dstFilter
  495. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  496. }
  497. av_freep(&filter);
  498. /* try to reduce the filter-size (step1 find size and shift left) */
  499. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  500. minFilterSize = 0;
  501. for (i = dstW - 1; i >= 0; i--) {
  502. int min = filter2Size;
  503. int j;
  504. int64_t cutOff = 0.0;
  505. /* get rid of near zero elements on the left by shifting left */
  506. for (j = 0; j < filter2Size; j++) {
  507. int k;
  508. cutOff += FFABS(filter2[i * filter2Size]);
  509. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  510. break;
  511. /* preserve monotonicity because the core can't handle the
  512. * filter otherwise */
  513. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  514. break;
  515. // move filter coefficients left
  516. for (k = 1; k < filter2Size; k++)
  517. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  518. filter2[i * filter2Size + k - 1] = 0;
  519. (*filterPos)[i]++;
  520. }
  521. cutOff = 0;
  522. /* count near zeros on the right */
  523. for (j = filter2Size - 1; j > 0; j--) {
  524. cutOff += FFABS(filter2[i * filter2Size + j]);
  525. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  526. break;
  527. min--;
  528. }
  529. if (min > minFilterSize)
  530. minFilterSize = min;
  531. }
  532. if (PPC_ALTIVEC(cpu_flags)) {
  533. // we can handle the special case 4, so we don't want to go the full 8
  534. if (minFilterSize < 5)
  535. filterAlign = 4;
  536. /* We really don't want to waste our time doing useless computation, so
  537. * fall back on the scalar C code for very small filters.
  538. * Vectorizing is worth it only if you have a decent-sized vector. */
  539. if (minFilterSize < 3)
  540. filterAlign = 1;
  541. }
  542. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  543. // special case for unscaled vertical filtering
  544. if (minFilterSize == 1 && filterAlign == 2)
  545. filterAlign = 1;
  546. }
  547. av_assert0(minFilterSize > 0);
  548. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  549. av_assert0(filterSize > 0);
  550. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  551. if (!filter)
  552. goto fail;
  553. if (filterSize >= MAX_FILTER_SIZE * 16 /
  554. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  555. ret = RETCODE_USE_CASCADE;
  556. goto fail;
  557. }
  558. *outFilterSize = filterSize;
  559. if (flags & SWS_PRINT_INFO)
  560. av_log(NULL, AV_LOG_VERBOSE,
  561. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  562. filter2Size, filterSize);
  563. /* try to reduce the filter-size (step2 reduce it) */
  564. for (i = 0; i < dstW; i++) {
  565. int j;
  566. for (j = 0; j < filterSize; j++) {
  567. if (j >= filter2Size)
  568. filter[i * filterSize + j] = 0;
  569. else
  570. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  571. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  572. filter[i * filterSize + j] = 0;
  573. }
  574. }
  575. // FIXME try to align filterPos if possible
  576. // fix borders
  577. for (i = 0; i < dstW; i++) {
  578. int j;
  579. if ((*filterPos)[i] < 0) {
  580. // move filter coefficients left to compensate for filterPos
  581. for (j = 1; j < filterSize; j++) {
  582. int left = FFMAX(j + (*filterPos)[i], 0);
  583. filter[i * filterSize + left] += filter[i * filterSize + j];
  584. filter[i * filterSize + j] = 0;
  585. }
  586. (*filterPos)[i]= 0;
  587. }
  588. if ((*filterPos)[i] + filterSize > srcW) {
  589. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  590. int64_t acc = 0;
  591. for (j = filterSize - 1; j >= 0; j--) {
  592. if ((*filterPos)[i] + j >= srcW) {
  593. acc += filter[i * filterSize + j];
  594. filter[i * filterSize + j] = 0;
  595. }
  596. }
  597. for (j = filterSize - 1; j >= 0; j--) {
  598. if (j < shift) {
  599. filter[i * filterSize + j] = 0;
  600. } else {
  601. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  602. }
  603. }
  604. (*filterPos)[i]-= shift;
  605. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  606. }
  607. av_assert0((*filterPos)[i] >= 0);
  608. av_assert0((*filterPos)[i] < srcW);
  609. if ((*filterPos)[i] + filterSize > srcW) {
  610. for (j = 0; j < filterSize; j++) {
  611. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  612. }
  613. }
  614. }
  615. // Note the +1 is for the MMX scaler which reads over the end
  616. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  617. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  618. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  619. /* normalize & store in outFilter */
  620. for (i = 0; i < dstW; i++) {
  621. int j;
  622. int64_t error = 0;
  623. int64_t sum = 0;
  624. for (j = 0; j < filterSize; j++) {
  625. sum += filter[i * filterSize + j];
  626. }
  627. sum = (sum + one / 2) / one;
  628. if (!sum) {
  629. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  630. sum = 1;
  631. }
  632. for (j = 0; j < *outFilterSize; j++) {
  633. int64_t v = filter[i * filterSize + j] + error;
  634. int intV = ROUNDED_DIV(v, sum);
  635. (*outFilter)[i * (*outFilterSize) + j] = intV;
  636. error = v - intV * sum;
  637. }
  638. }
  639. (*filterPos)[dstW + 0] =
  640. (*filterPos)[dstW + 1] =
  641. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  642. * read over the end */
  643. for (i = 0; i < *outFilterSize; i++) {
  644. int k = (dstW - 1) * (*outFilterSize) + i;
  645. (*outFilter)[k + 1 * (*outFilterSize)] =
  646. (*outFilter)[k + 2 * (*outFilterSize)] =
  647. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  648. }
  649. ret = 0;
  650. fail:
  651. if(ret < 0)
  652. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  653. av_free(filter);
  654. av_free(filter2);
  655. return ret;
  656. }
  657. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  658. {
  659. int64_t W, V, Z, Cy, Cu, Cv;
  660. int64_t vr = table[0];
  661. int64_t ub = table[1];
  662. int64_t ug = -table[2];
  663. int64_t vg = -table[3];
  664. int64_t ONE = 65536;
  665. int64_t cy = ONE;
  666. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  667. int i;
  668. static const int8_t map[] = {
  669. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  670. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  671. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  672. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  673. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  674. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  675. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  676. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  677. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  678. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  679. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  680. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  681. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  682. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  683. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  684. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  685. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  686. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  687. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  688. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  689. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  690. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  691. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  692. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  693. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  694. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  695. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  696. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  697. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  698. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  699. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  700. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  701. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  702. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  703. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  704. };
  705. dstRange = 0; //FIXME range = 1 is handled elsewhere
  706. if (!dstRange) {
  707. cy = cy * 255 / 219;
  708. } else {
  709. vr = vr * 224 / 255;
  710. ub = ub * 224 / 255;
  711. ug = ug * 224 / 255;
  712. vg = vg * 224 / 255;
  713. }
  714. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  715. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  716. Z = ONE*ONE-W-V;
  717. Cy = ROUNDED_DIV(cy*Z, ONE);
  718. Cu = ROUNDED_DIV(ub*Z, ONE);
  719. Cv = ROUNDED_DIV(vr*Z, ONE);
  720. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  721. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  722. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  723. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  724. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  725. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  726. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  727. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  728. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  729. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  730. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  731. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  732. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  733. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  734. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  735. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  736. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  737. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  738. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  739. }
  740. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  741. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  742. }
  743. static void fill_xyztables(struct SwsContext *c)
  744. {
  745. int i;
  746. double xyzgamma = XYZ_GAMMA;
  747. double rgbgamma = 1.0 / RGB_GAMMA;
  748. double xyzgammainv = 1.0 / XYZ_GAMMA;
  749. double rgbgammainv = RGB_GAMMA;
  750. static const int16_t xyz2rgb_matrix[3][4] = {
  751. {13270, -6295, -2041},
  752. {-3969, 7682, 170},
  753. { 228, -835, 4329} };
  754. static const int16_t rgb2xyz_matrix[3][4] = {
  755. {1689, 1464, 739},
  756. { 871, 2929, 296},
  757. { 79, 488, 3891} };
  758. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  759. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  760. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  761. c->xyzgamma = xyzgamma_tab;
  762. c->rgbgamma = rgbgamma_tab;
  763. c->xyzgammainv = xyzgammainv_tab;
  764. c->rgbgammainv = rgbgammainv_tab;
  765. if (rgbgamma_tab[4095])
  766. return;
  767. /* set gamma vectors */
  768. for (i = 0; i < 4096; i++) {
  769. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  770. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  771. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  772. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  773. }
  774. }
  775. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  776. int srcRange, const int table[4], int dstRange,
  777. int brightness, int contrast, int saturation)
  778. {
  779. const AVPixFmtDescriptor *desc_dst;
  780. const AVPixFmtDescriptor *desc_src;
  781. int need_reinit = 0;
  782. handle_formats(c);
  783. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  784. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  785. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  786. dstRange = 0;
  787. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  788. srcRange = 0;
  789. if (c->srcRange != srcRange ||
  790. c->dstRange != dstRange ||
  791. c->brightness != brightness ||
  792. c->contrast != contrast ||
  793. c->saturation != saturation ||
  794. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  795. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  796. )
  797. need_reinit = 1;
  798. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  799. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  800. c->brightness = brightness;
  801. c->contrast = contrast;
  802. c->saturation = saturation;
  803. c->srcRange = srcRange;
  804. c->dstRange = dstRange;
  805. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  806. //and what we have in ticket 2939 looks better with this check
  807. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  808. ff_sws_init_range_convert(c);
  809. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  810. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  811. if (c->cascaded_context[c->cascaded_mainindex])
  812. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  813. if (!need_reinit)
  814. return 0;
  815. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  816. if (!c->cascaded_context[0] &&
  817. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  818. c->srcW && c->srcH && c->dstW && c->dstH) {
  819. enum AVPixelFormat tmp_format;
  820. int tmp_width, tmp_height;
  821. int srcW = c->srcW;
  822. int srcH = c->srcH;
  823. int dstW = c->dstW;
  824. int dstH = c->dstH;
  825. int ret;
  826. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  827. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  828. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  829. tmp_format = AV_PIX_FMT_BGRA64;
  830. } else {
  831. tmp_format = AV_PIX_FMT_BGR48;
  832. }
  833. } else {
  834. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  835. tmp_format = AV_PIX_FMT_BGRA;
  836. } else {
  837. tmp_format = AV_PIX_FMT_BGR24;
  838. }
  839. }
  840. if (srcW*srcH > dstW*dstH) {
  841. tmp_width = dstW;
  842. tmp_height = dstH;
  843. } else {
  844. tmp_width = srcW;
  845. tmp_height = srcH;
  846. }
  847. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  848. tmp_width, tmp_height, tmp_format, 64);
  849. if (ret < 0)
  850. return ret;
  851. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  852. tmp_width, tmp_height, tmp_format,
  853. c->flags, c->param);
  854. if (!c->cascaded_context[0])
  855. return -1;
  856. c->cascaded_context[0]->alphablend = c->alphablend;
  857. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  858. if (ret < 0)
  859. return ret;
  860. //we set both src and dst depending on that the RGB side will be ignored
  861. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  862. srcRange, table, dstRange,
  863. brightness, contrast, saturation);
  864. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  865. dstW, dstH, c->dstFormat,
  866. c->flags, NULL, NULL, c->param);
  867. if (!c->cascaded_context[1])
  868. return -1;
  869. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  870. srcRange, table, dstRange,
  871. 0, 1 << 16, 1 << 16);
  872. return 0;
  873. }
  874. return -1;
  875. }
  876. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  877. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  878. contrast, saturation);
  879. // FIXME factorize
  880. if (ARCH_PPC)
  881. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  882. contrast, saturation);
  883. }
  884. fill_rgb2yuv_table(c, table, dstRange);
  885. return 0;
  886. }
  887. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  888. int *srcRange, int **table, int *dstRange,
  889. int *brightness, int *contrast, int *saturation)
  890. {
  891. if (!c )
  892. return -1;
  893. *inv_table = c->srcColorspaceTable;
  894. *table = c->dstColorspaceTable;
  895. *srcRange = c->srcRange;
  896. *dstRange = c->dstRange;
  897. *brightness = c->brightness;
  898. *contrast = c->contrast;
  899. *saturation = c->saturation;
  900. return 0;
  901. }
  902. static int handle_jpeg(enum AVPixelFormat *format)
  903. {
  904. switch (*format) {
  905. case AV_PIX_FMT_YUVJ420P:
  906. *format = AV_PIX_FMT_YUV420P;
  907. return 1;
  908. case AV_PIX_FMT_YUVJ411P:
  909. *format = AV_PIX_FMT_YUV411P;
  910. return 1;
  911. case AV_PIX_FMT_YUVJ422P:
  912. *format = AV_PIX_FMT_YUV422P;
  913. return 1;
  914. case AV_PIX_FMT_YUVJ444P:
  915. *format = AV_PIX_FMT_YUV444P;
  916. return 1;
  917. case AV_PIX_FMT_YUVJ440P:
  918. *format = AV_PIX_FMT_YUV440P;
  919. return 1;
  920. case AV_PIX_FMT_GRAY8:
  921. case AV_PIX_FMT_YA8:
  922. case AV_PIX_FMT_GRAY9LE:
  923. case AV_PIX_FMT_GRAY9BE:
  924. case AV_PIX_FMT_GRAY10LE:
  925. case AV_PIX_FMT_GRAY10BE:
  926. case AV_PIX_FMT_GRAY12LE:
  927. case AV_PIX_FMT_GRAY12BE:
  928. case AV_PIX_FMT_GRAY14LE:
  929. case AV_PIX_FMT_GRAY14BE:
  930. case AV_PIX_FMT_GRAY16LE:
  931. case AV_PIX_FMT_GRAY16BE:
  932. case AV_PIX_FMT_YA16BE:
  933. case AV_PIX_FMT_YA16LE:
  934. return 1;
  935. default:
  936. return 0;
  937. }
  938. }
  939. static int handle_0alpha(enum AVPixelFormat *format)
  940. {
  941. switch (*format) {
  942. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  943. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  944. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  945. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  946. default: return 0;
  947. }
  948. }
  949. static int handle_xyz(enum AVPixelFormat *format)
  950. {
  951. switch (*format) {
  952. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  953. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  954. default: return 0;
  955. }
  956. }
  957. static void handle_formats(SwsContext *c)
  958. {
  959. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  960. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  961. c->srcXYZ |= handle_xyz(&c->srcFormat);
  962. c->dstXYZ |= handle_xyz(&c->dstFormat);
  963. if (c->srcXYZ || c->dstXYZ)
  964. fill_xyztables(c);
  965. }
  966. SwsContext *sws_alloc_context(void)
  967. {
  968. SwsContext *c = av_mallocz(sizeof(SwsContext));
  969. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  970. if (c) {
  971. c->av_class = &ff_sws_context_class;
  972. av_opt_set_defaults(c);
  973. }
  974. return c;
  975. }
  976. static uint16_t * alloc_gamma_tbl(double e)
  977. {
  978. int i = 0;
  979. uint16_t * tbl;
  980. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  981. if (!tbl)
  982. return NULL;
  983. for (i = 0; i < 65536; ++i) {
  984. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  985. }
  986. return tbl;
  987. }
  988. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  989. {
  990. switch(fmt) {
  991. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  992. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  993. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  994. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  995. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  996. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  997. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  998. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  999. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  1000. case AV_PIX_FMT_GBRAP10LE: return AV_PIX_FMT_GBRP10;
  1001. case AV_PIX_FMT_GBRAP10BE: return AV_PIX_FMT_GBRP10;
  1002. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  1003. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  1004. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  1005. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  1006. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  1007. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  1008. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  1009. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  1010. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  1011. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  1012. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  1013. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  1014. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  1015. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  1016. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  1017. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  1018. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  1019. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1020. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1021. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1022. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1023. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1024. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1025. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1026. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1027. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1028. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1029. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1030. // case AV_PIX_FMT_AYUV64LE:
  1031. // case AV_PIX_FMT_AYUV64BE:
  1032. // case AV_PIX_FMT_PAL8:
  1033. default: return AV_PIX_FMT_NONE;
  1034. }
  1035. }
  1036. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1037. SwsFilter *dstFilter)
  1038. {
  1039. int i;
  1040. int usesVFilter, usesHFilter;
  1041. int unscaled;
  1042. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1043. int srcW = c->srcW;
  1044. int srcH = c->srcH;
  1045. int dstW = c->dstW;
  1046. int dstH = c->dstH;
  1047. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1048. int flags, cpu_flags;
  1049. enum AVPixelFormat srcFormat = c->srcFormat;
  1050. enum AVPixelFormat dstFormat = c->dstFormat;
  1051. const AVPixFmtDescriptor *desc_src;
  1052. const AVPixFmtDescriptor *desc_dst;
  1053. int ret = 0;
  1054. enum AVPixelFormat tmpFmt;
  1055. static const float float_mult = 1.0f / 255.0f;
  1056. cpu_flags = av_get_cpu_flags();
  1057. flags = c->flags;
  1058. emms_c();
  1059. if (!rgb15to16)
  1060. ff_sws_rgb2rgb_init();
  1061. unscaled = (srcW == dstW && srcH == dstH);
  1062. c->srcRange |= handle_jpeg(&c->srcFormat);
  1063. c->dstRange |= handle_jpeg(&c->dstFormat);
  1064. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1065. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1066. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1067. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1068. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1069. c->dstRange, 0, 1 << 16, 1 << 16);
  1070. handle_formats(c);
  1071. srcFormat = c->srcFormat;
  1072. dstFormat = c->dstFormat;
  1073. desc_src = av_pix_fmt_desc_get(srcFormat);
  1074. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1075. // If the source has no alpha then disable alpha blendaway
  1076. if (c->src0Alpha)
  1077. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1078. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1079. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1080. if (!sws_isSupportedInput(srcFormat)) {
  1081. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1082. av_get_pix_fmt_name(srcFormat));
  1083. return AVERROR(EINVAL);
  1084. }
  1085. if (!sws_isSupportedOutput(dstFormat)) {
  1086. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1087. av_get_pix_fmt_name(dstFormat));
  1088. return AVERROR(EINVAL);
  1089. }
  1090. }
  1091. av_assert2(desc_src && desc_dst);
  1092. i = flags & (SWS_POINT |
  1093. SWS_AREA |
  1094. SWS_BILINEAR |
  1095. SWS_FAST_BILINEAR |
  1096. SWS_BICUBIC |
  1097. SWS_X |
  1098. SWS_GAUSS |
  1099. SWS_LANCZOS |
  1100. SWS_SINC |
  1101. SWS_SPLINE |
  1102. SWS_BICUBLIN);
  1103. /* provide a default scaler if not set by caller */
  1104. if (!i) {
  1105. if (dstW < srcW && dstH < srcH)
  1106. flags |= SWS_BICUBIC;
  1107. else if (dstW > srcW && dstH > srcH)
  1108. flags |= SWS_BICUBIC;
  1109. else
  1110. flags |= SWS_BICUBIC;
  1111. c->flags = flags;
  1112. } else if (i & (i - 1)) {
  1113. av_log(c, AV_LOG_ERROR,
  1114. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1115. return AVERROR(EINVAL);
  1116. }
  1117. /* sanity check */
  1118. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1119. /* FIXME check if these are enough and try to lower them after
  1120. * fixing the relevant parts of the code */
  1121. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1122. srcW, srcH, dstW, dstH);
  1123. return AVERROR(EINVAL);
  1124. }
  1125. if (flags & SWS_FAST_BILINEAR) {
  1126. if (srcW < 8 || dstW < 8) {
  1127. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1128. c->flags = flags;
  1129. }
  1130. }
  1131. if (!dstFilter)
  1132. dstFilter = &dummyFilter;
  1133. if (!srcFilter)
  1134. srcFilter = &dummyFilter;
  1135. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1136. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1137. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1138. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1139. c->vRounder = 4 * 0x0001000100010001ULL;
  1140. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1141. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1142. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1143. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1144. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1145. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1146. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1147. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1148. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1149. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1150. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1151. if (dstW&1) {
  1152. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1153. flags |= SWS_FULL_CHR_H_INT;
  1154. c->flags = flags;
  1155. }
  1156. if ( c->chrSrcHSubSample == 0
  1157. && c->chrSrcVSubSample == 0
  1158. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1159. && !(c->flags & SWS_FAST_BILINEAR)
  1160. ) {
  1161. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1162. flags |= SWS_FULL_CHR_H_INT;
  1163. c->flags = flags;
  1164. }
  1165. }
  1166. if (c->dither == SWS_DITHER_AUTO) {
  1167. if (flags & SWS_ERROR_DIFFUSION)
  1168. c->dither = SWS_DITHER_ED;
  1169. }
  1170. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1171. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1172. dstFormat == AV_PIX_FMT_BGR8 ||
  1173. dstFormat == AV_PIX_FMT_RGB8) {
  1174. if (c->dither == SWS_DITHER_AUTO)
  1175. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1176. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1177. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1178. av_log(c, AV_LOG_DEBUG,
  1179. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1180. av_get_pix_fmt_name(dstFormat));
  1181. flags |= SWS_FULL_CHR_H_INT;
  1182. c->flags = flags;
  1183. }
  1184. }
  1185. if (flags & SWS_FULL_CHR_H_INT) {
  1186. if (c->dither == SWS_DITHER_BAYER) {
  1187. av_log(c, AV_LOG_DEBUG,
  1188. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1189. av_get_pix_fmt_name(dstFormat));
  1190. c->dither = SWS_DITHER_ED;
  1191. }
  1192. }
  1193. }
  1194. if (isPlanarRGB(dstFormat)) {
  1195. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1196. av_log(c, AV_LOG_DEBUG,
  1197. "%s output is not supported with half chroma resolution, switching to full\n",
  1198. av_get_pix_fmt_name(dstFormat));
  1199. flags |= SWS_FULL_CHR_H_INT;
  1200. c->flags = flags;
  1201. }
  1202. }
  1203. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1204. * chroma interpolation */
  1205. if (flags & SWS_FULL_CHR_H_INT &&
  1206. isAnyRGB(dstFormat) &&
  1207. !isPlanarRGB(dstFormat) &&
  1208. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1209. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1210. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1211. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1212. dstFormat != AV_PIX_FMT_RGB48LE &&
  1213. dstFormat != AV_PIX_FMT_RGB48BE &&
  1214. dstFormat != AV_PIX_FMT_BGR48LE &&
  1215. dstFormat != AV_PIX_FMT_BGR48BE &&
  1216. dstFormat != AV_PIX_FMT_RGBA &&
  1217. dstFormat != AV_PIX_FMT_ARGB &&
  1218. dstFormat != AV_PIX_FMT_BGRA &&
  1219. dstFormat != AV_PIX_FMT_ABGR &&
  1220. dstFormat != AV_PIX_FMT_RGB24 &&
  1221. dstFormat != AV_PIX_FMT_BGR24 &&
  1222. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1223. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1224. dstFormat != AV_PIX_FMT_BGR8 &&
  1225. dstFormat != AV_PIX_FMT_RGB8
  1226. ) {
  1227. av_log(c, AV_LOG_WARNING,
  1228. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1229. av_get_pix_fmt_name(dstFormat));
  1230. flags &= ~SWS_FULL_CHR_H_INT;
  1231. c->flags = flags;
  1232. }
  1233. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1234. c->chrDstHSubSample = 1;
  1235. // drop some chroma lines if the user wants it
  1236. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1237. SWS_SRC_V_CHR_DROP_SHIFT;
  1238. c->chrSrcVSubSample += c->vChrDrop;
  1239. /* drop every other pixel for chroma calculation unless user
  1240. * wants full chroma */
  1241. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1242. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1243. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1244. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1245. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1246. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1247. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  1248. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1249. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1250. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1251. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1252. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1253. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1254. (flags & SWS_FAST_BILINEAR)))
  1255. c->chrSrcHSubSample = 1;
  1256. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1257. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1258. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1259. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1260. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1261. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1262. c->srcBpc = desc_src->comp[0].depth;
  1263. if (c->srcBpc < 8)
  1264. c->srcBpc = 8;
  1265. c->dstBpc = desc_dst->comp[0].depth;
  1266. if (c->dstBpc < 8)
  1267. c->dstBpc = 8;
  1268. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1269. c->srcBpc = 16;
  1270. if (c->dstBpc == 16)
  1271. dst_stride <<= 1;
  1272. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1273. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1274. c->chrDstW >= c->chrSrcW &&
  1275. (srcW & 15) == 0;
  1276. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1277. && (flags & SWS_FAST_BILINEAR)) {
  1278. if (flags & SWS_PRINT_INFO)
  1279. av_log(c, AV_LOG_INFO,
  1280. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1281. }
  1282. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1283. c->canMMXEXTBeUsed = 0;
  1284. } else
  1285. c->canMMXEXTBeUsed = 0;
  1286. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1287. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1288. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1289. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1290. * correct scaling.
  1291. * n-2 is the last chrominance sample available.
  1292. * This is not perfect, but no one should notice the difference, the more
  1293. * correct variant would be like the vertical one, but that would require
  1294. * some special code for the first and last pixel */
  1295. if (flags & SWS_FAST_BILINEAR) {
  1296. if (c->canMMXEXTBeUsed) {
  1297. c->lumXInc += 20;
  1298. c->chrXInc += 20;
  1299. }
  1300. // we don't use the x86 asm scaler if MMX is available
  1301. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1302. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1303. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1304. }
  1305. }
  1306. // hardcoded for now
  1307. c->gamma_value = 2.2;
  1308. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1309. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1310. SwsContext *c2;
  1311. c->cascaded_context[0] = NULL;
  1312. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1313. srcW, srcH, tmpFmt, 64);
  1314. if (ret < 0)
  1315. return ret;
  1316. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1317. srcW, srcH, tmpFmt,
  1318. flags, NULL, NULL, c->param);
  1319. if (!c->cascaded_context[0]) {
  1320. return -1;
  1321. }
  1322. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1323. dstW, dstH, tmpFmt,
  1324. flags, srcFilter, dstFilter, c->param);
  1325. if (!c->cascaded_context[1])
  1326. return -1;
  1327. c2 = c->cascaded_context[1];
  1328. c2->is_internal_gamma = 1;
  1329. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1330. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1331. if (!c2->gamma || !c2->inv_gamma)
  1332. return AVERROR(ENOMEM);
  1333. // is_internal_flag is set after creating the context
  1334. // to properly create the gamma convert FilterDescriptor
  1335. // we have to re-initialize it
  1336. ff_free_filters(c2);
  1337. if (ff_init_filters(c2) < 0) {
  1338. sws_freeContext(c2);
  1339. return -1;
  1340. }
  1341. c->cascaded_context[2] = NULL;
  1342. if (dstFormat != tmpFmt) {
  1343. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1344. dstW, dstH, tmpFmt, 64);
  1345. if (ret < 0)
  1346. return ret;
  1347. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1348. dstW, dstH, dstFormat,
  1349. flags, NULL, NULL, c->param);
  1350. if (!c->cascaded_context[2])
  1351. return -1;
  1352. }
  1353. return 0;
  1354. }
  1355. if (isBayer(srcFormat)) {
  1356. if (!unscaled ||
  1357. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1358. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1359. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1360. srcW, srcH, tmpFormat, 64);
  1361. if (ret < 0)
  1362. return ret;
  1363. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1364. srcW, srcH, tmpFormat,
  1365. flags, srcFilter, NULL, c->param);
  1366. if (!c->cascaded_context[0])
  1367. return -1;
  1368. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1369. dstW, dstH, dstFormat,
  1370. flags, NULL, dstFilter, c->param);
  1371. if (!c->cascaded_context[1])
  1372. return -1;
  1373. return 0;
  1374. }
  1375. }
  1376. if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
  1377. for (i = 0; i < 256; ++i){
  1378. c->uint2float_lut[i] = (float)i * float_mult;
  1379. }
  1380. }
  1381. // float will be converted to uint16_t
  1382. if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
  1383. (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
  1384. dstFormat != AV_PIX_FMT_GRAY8))){
  1385. c->srcBpc = 16;
  1386. }
  1387. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1388. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1389. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1390. if (!unscaled ||
  1391. dstFormat != tmpFormat ||
  1392. usesHFilter || usesVFilter ||
  1393. c->srcRange != c->dstRange
  1394. ) {
  1395. c->cascaded_mainindex = 1;
  1396. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1397. srcW, srcH, tmpFormat, 64);
  1398. if (ret < 0)
  1399. return ret;
  1400. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1401. srcW, srcH, tmpFormat,
  1402. flags, c->param);
  1403. if (!c->cascaded_context[0])
  1404. return -1;
  1405. c->cascaded_context[0]->alphablend = c->alphablend;
  1406. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1407. if (ret < 0)
  1408. return ret;
  1409. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1410. dstW, dstH, dstFormat,
  1411. flags, c->param);
  1412. if (!c->cascaded_context[1])
  1413. return -1;
  1414. c->cascaded_context[1]->srcRange = c->srcRange;
  1415. c->cascaded_context[1]->dstRange = c->dstRange;
  1416. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1417. if (ret < 0)
  1418. return ret;
  1419. return 0;
  1420. }
  1421. }
  1422. #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
  1423. #define USE_MMAP 1
  1424. #else
  1425. #define USE_MMAP 0
  1426. #endif
  1427. /* precalculate horizontal scaler filter coefficients */
  1428. {
  1429. #if HAVE_MMXEXT_INLINE
  1430. // can't downscale !!!
  1431. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1432. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1433. NULL, NULL, 8);
  1434. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1435. NULL, NULL, NULL, 4);
  1436. #if USE_MMAP
  1437. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1438. PROT_READ | PROT_WRITE,
  1439. MAP_PRIVATE | MAP_ANONYMOUS,
  1440. -1, 0);
  1441. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1442. PROT_READ | PROT_WRITE,
  1443. MAP_PRIVATE | MAP_ANONYMOUS,
  1444. -1, 0);
  1445. #elif HAVE_VIRTUALALLOC
  1446. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1447. c->lumMmxextFilterCodeSize,
  1448. MEM_COMMIT,
  1449. PAGE_EXECUTE_READWRITE);
  1450. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1451. c->chrMmxextFilterCodeSize,
  1452. MEM_COMMIT,
  1453. PAGE_EXECUTE_READWRITE);
  1454. #else
  1455. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1456. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1457. #endif
  1458. #ifdef MAP_ANONYMOUS
  1459. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1460. #else
  1461. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1462. #endif
  1463. {
  1464. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1465. return AVERROR(ENOMEM);
  1466. }
  1467. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1468. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1469. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1470. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1471. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1472. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1473. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1474. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1475. #if USE_MMAP
  1476. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1477. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1478. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1479. goto fail;
  1480. }
  1481. #endif
  1482. } else
  1483. #endif /* HAVE_MMXEXT_INLINE */
  1484. {
  1485. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1486. PPC_ALTIVEC(cpu_flags) ? 8 :
  1487. have_neon(cpu_flags) ? 8 : 1;
  1488. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1489. &c->hLumFilterSize, c->lumXInc,
  1490. srcW, dstW, filterAlign, 1 << 14,
  1491. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1492. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1493. c->param,
  1494. get_local_pos(c, 0, 0, 0),
  1495. get_local_pos(c, 0, 0, 0))) < 0)
  1496. goto fail;
  1497. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1498. &c->hChrFilterSize, c->chrXInc,
  1499. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1500. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1501. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1502. c->param,
  1503. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1504. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1505. goto fail;
  1506. }
  1507. } // initialize horizontal stuff
  1508. /* precalculate vertical scaler filter coefficients */
  1509. {
  1510. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1511. PPC_ALTIVEC(cpu_flags) ? 8 :
  1512. have_neon(cpu_flags) ? 2 : 1;
  1513. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1514. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1515. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1516. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1517. c->param,
  1518. get_local_pos(c, 0, 0, 1),
  1519. get_local_pos(c, 0, 0, 1))) < 0)
  1520. goto fail;
  1521. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1522. c->chrYInc, c->chrSrcH, c->chrDstH,
  1523. filterAlign, (1 << 12),
  1524. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1525. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1526. c->param,
  1527. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1528. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1529. goto fail;
  1530. #if HAVE_ALTIVEC
  1531. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1532. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1533. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1534. int j;
  1535. short *p = (short *)&c->vYCoeffsBank[i];
  1536. for (j = 0; j < 8; j++)
  1537. p[j] = c->vLumFilter[i];
  1538. }
  1539. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1540. int j;
  1541. short *p = (short *)&c->vCCoeffsBank[i];
  1542. for (j = 0; j < 8; j++)
  1543. p[j] = c->vChrFilter[i];
  1544. }
  1545. #endif
  1546. }
  1547. for (i = 0; i < 4; i++)
  1548. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1549. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1550. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1551. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1552. c->uv_offx2 = dst_stride + 16;
  1553. av_assert0(c->chrDstH <= dstH);
  1554. if (flags & SWS_PRINT_INFO) {
  1555. const char *scaler = NULL, *cpucaps;
  1556. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1557. if (flags & scale_algorithms[i].flag) {
  1558. scaler = scale_algorithms[i].description;
  1559. break;
  1560. }
  1561. }
  1562. if (!scaler)
  1563. scaler = "ehh flags invalid?!";
  1564. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1565. scaler,
  1566. av_get_pix_fmt_name(srcFormat),
  1567. #ifdef DITHER1XBPP
  1568. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1569. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1570. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1571. "dithered " : "",
  1572. #else
  1573. "",
  1574. #endif
  1575. av_get_pix_fmt_name(dstFormat));
  1576. if (INLINE_MMXEXT(cpu_flags))
  1577. cpucaps = "MMXEXT";
  1578. else if (INLINE_AMD3DNOW(cpu_flags))
  1579. cpucaps = "3DNOW";
  1580. else if (INLINE_MMX(cpu_flags))
  1581. cpucaps = "MMX";
  1582. else if (PPC_ALTIVEC(cpu_flags))
  1583. cpucaps = "AltiVec";
  1584. else
  1585. cpucaps = "C";
  1586. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1587. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1588. av_log(c, AV_LOG_DEBUG,
  1589. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1590. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1591. av_log(c, AV_LOG_DEBUG,
  1592. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1593. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1594. c->chrXInc, c->chrYInc);
  1595. }
  1596. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1597. if (unscaled && !usesHFilter && !usesVFilter &&
  1598. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1599. isALPHA(srcFormat) &&
  1600. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1601. alphaless_fmt(srcFormat) == dstFormat
  1602. ) {
  1603. c->swscale = ff_sws_alphablendaway;
  1604. if (flags & SWS_PRINT_INFO)
  1605. av_log(c, AV_LOG_INFO,
  1606. "using alpha blendaway %s -> %s special converter\n",
  1607. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1608. return 0;
  1609. }
  1610. /* unscaled special cases */
  1611. if (unscaled && !usesHFilter && !usesVFilter &&
  1612. (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
  1613. isFloat(srcFormat) || isFloat(dstFormat))){
  1614. ff_get_unscaled_swscale(c);
  1615. if (c->swscale) {
  1616. if (flags & SWS_PRINT_INFO)
  1617. av_log(c, AV_LOG_INFO,
  1618. "using unscaled %s -> %s special converter\n",
  1619. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1620. return 0;
  1621. }
  1622. }
  1623. c->swscale = ff_getSwsFunc(c);
  1624. return ff_init_filters(c);
  1625. fail: // FIXME replace things by appropriate error codes
  1626. if (ret == RETCODE_USE_CASCADE) {
  1627. int tmpW = sqrt(srcW * (int64_t)dstW);
  1628. int tmpH = sqrt(srcH * (int64_t)dstH);
  1629. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1630. if (isALPHA(srcFormat))
  1631. tmpFormat = AV_PIX_FMT_YUVA420P;
  1632. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1633. return AVERROR(EINVAL);
  1634. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1635. tmpW, tmpH, tmpFormat, 64);
  1636. if (ret < 0)
  1637. return ret;
  1638. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1639. tmpW, tmpH, tmpFormat,
  1640. flags, srcFilter, NULL, c->param);
  1641. if (!c->cascaded_context[0])
  1642. return -1;
  1643. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1644. dstW, dstH, dstFormat,
  1645. flags, NULL, dstFilter, c->param);
  1646. if (!c->cascaded_context[1])
  1647. return -1;
  1648. return 0;
  1649. }
  1650. return -1;
  1651. }
  1652. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1653. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1654. int flags, const double *param)
  1655. {
  1656. SwsContext *c;
  1657. if (!(c = sws_alloc_context()))
  1658. return NULL;
  1659. c->flags = flags;
  1660. c->srcW = srcW;
  1661. c->srcH = srcH;
  1662. c->dstW = dstW;
  1663. c->dstH = dstH;
  1664. c->srcFormat = srcFormat;
  1665. c->dstFormat = dstFormat;
  1666. if (param) {
  1667. c->param[0] = param[0];
  1668. c->param[1] = param[1];
  1669. }
  1670. return c;
  1671. }
  1672. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1673. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1674. int flags, SwsFilter *srcFilter,
  1675. SwsFilter *dstFilter, const double *param)
  1676. {
  1677. SwsContext *c;
  1678. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1679. dstW, dstH, dstFormat,
  1680. flags, param);
  1681. if (!c)
  1682. return NULL;
  1683. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1684. sws_freeContext(c);
  1685. return NULL;
  1686. }
  1687. return c;
  1688. }
  1689. static int isnan_vec(SwsVector *a)
  1690. {
  1691. int i;
  1692. for (i=0; i<a->length; i++)
  1693. if (isnan(a->coeff[i]))
  1694. return 1;
  1695. return 0;
  1696. }
  1697. static void makenan_vec(SwsVector *a)
  1698. {
  1699. int i;
  1700. for (i=0; i<a->length; i++)
  1701. a->coeff[i] = NAN;
  1702. }
  1703. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1704. float lumaSharpen, float chromaSharpen,
  1705. float chromaHShift, float chromaVShift,
  1706. int verbose)
  1707. {
  1708. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1709. if (!filter)
  1710. return NULL;
  1711. if (lumaGBlur != 0.0) {
  1712. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1713. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1714. } else {
  1715. filter->lumH = sws_getIdentityVec();
  1716. filter->lumV = sws_getIdentityVec();
  1717. }
  1718. if (chromaGBlur != 0.0) {
  1719. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1720. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1721. } else {
  1722. filter->chrH = sws_getIdentityVec();
  1723. filter->chrV = sws_getIdentityVec();
  1724. }
  1725. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1726. goto fail;
  1727. if (chromaSharpen != 0.0) {
  1728. SwsVector *id = sws_getIdentityVec();
  1729. if (!id)
  1730. goto fail;
  1731. sws_scaleVec(filter->chrH, -chromaSharpen);
  1732. sws_scaleVec(filter->chrV, -chromaSharpen);
  1733. sws_addVec(filter->chrH, id);
  1734. sws_addVec(filter->chrV, id);
  1735. sws_freeVec(id);
  1736. }
  1737. if (lumaSharpen != 0.0) {
  1738. SwsVector *id = sws_getIdentityVec();
  1739. if (!id)
  1740. goto fail;
  1741. sws_scaleVec(filter->lumH, -lumaSharpen);
  1742. sws_scaleVec(filter->lumV, -lumaSharpen);
  1743. sws_addVec(filter->lumH, id);
  1744. sws_addVec(filter->lumV, id);
  1745. sws_freeVec(id);
  1746. }
  1747. if (chromaHShift != 0.0)
  1748. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1749. if (chromaVShift != 0.0)
  1750. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1751. sws_normalizeVec(filter->chrH, 1.0);
  1752. sws_normalizeVec(filter->chrV, 1.0);
  1753. sws_normalizeVec(filter->lumH, 1.0);
  1754. sws_normalizeVec(filter->lumV, 1.0);
  1755. if (isnan_vec(filter->chrH) ||
  1756. isnan_vec(filter->chrV) ||
  1757. isnan_vec(filter->lumH) ||
  1758. isnan_vec(filter->lumV))
  1759. goto fail;
  1760. if (verbose)
  1761. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1762. if (verbose)
  1763. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1764. return filter;
  1765. fail:
  1766. sws_freeVec(filter->lumH);
  1767. sws_freeVec(filter->lumV);
  1768. sws_freeVec(filter->chrH);
  1769. sws_freeVec(filter->chrV);
  1770. av_freep(&filter);
  1771. return NULL;
  1772. }
  1773. SwsVector *sws_allocVec(int length)
  1774. {
  1775. SwsVector *vec;
  1776. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1777. return NULL;
  1778. vec = av_malloc(sizeof(SwsVector));
  1779. if (!vec)
  1780. return NULL;
  1781. vec->length = length;
  1782. vec->coeff = av_malloc(sizeof(double) * length);
  1783. if (!vec->coeff)
  1784. av_freep(&vec);
  1785. return vec;
  1786. }
  1787. SwsVector *sws_getGaussianVec(double variance, double quality)
  1788. {
  1789. const int length = (int)(variance * quality + 0.5) | 1;
  1790. int i;
  1791. double middle = (length - 1) * 0.5;
  1792. SwsVector *vec;
  1793. if(variance < 0 || quality < 0)
  1794. return NULL;
  1795. vec = sws_allocVec(length);
  1796. if (!vec)
  1797. return NULL;
  1798. for (i = 0; i < length; i++) {
  1799. double dist = i - middle;
  1800. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1801. sqrt(2 * variance * M_PI);
  1802. }
  1803. sws_normalizeVec(vec, 1.0);
  1804. return vec;
  1805. }
  1806. /**
  1807. * Allocate and return a vector with length coefficients, all
  1808. * with the same value c.
  1809. */
  1810. #if !FF_API_SWS_VECTOR
  1811. static
  1812. #endif
  1813. SwsVector *sws_getConstVec(double c, int length)
  1814. {
  1815. int i;
  1816. SwsVector *vec = sws_allocVec(length);
  1817. if (!vec)
  1818. return NULL;
  1819. for (i = 0; i < length; i++)
  1820. vec->coeff[i] = c;
  1821. return vec;
  1822. }
  1823. /**
  1824. * Allocate and return a vector with just one coefficient, with
  1825. * value 1.0.
  1826. */
  1827. #if !FF_API_SWS_VECTOR
  1828. static
  1829. #endif
  1830. SwsVector *sws_getIdentityVec(void)
  1831. {
  1832. return sws_getConstVec(1.0, 1);
  1833. }
  1834. static double sws_dcVec(SwsVector *a)
  1835. {
  1836. int i;
  1837. double sum = 0;
  1838. for (i = 0; i < a->length; i++)
  1839. sum += a->coeff[i];
  1840. return sum;
  1841. }
  1842. void sws_scaleVec(SwsVector *a, double scalar)
  1843. {
  1844. int i;
  1845. for (i = 0; i < a->length; i++)
  1846. a->coeff[i] *= scalar;
  1847. }
  1848. void sws_normalizeVec(SwsVector *a, double height)
  1849. {
  1850. sws_scaleVec(a, height / sws_dcVec(a));
  1851. }
  1852. #if FF_API_SWS_VECTOR
  1853. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1854. {
  1855. int length = a->length + b->length - 1;
  1856. int i, j;
  1857. SwsVector *vec = sws_getConstVec(0.0, length);
  1858. if (!vec)
  1859. return NULL;
  1860. for (i = 0; i < a->length; i++) {
  1861. for (j = 0; j < b->length; j++) {
  1862. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1863. }
  1864. }
  1865. return vec;
  1866. }
  1867. #endif
  1868. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1869. {
  1870. int length = FFMAX(a->length, b->length);
  1871. int i;
  1872. SwsVector *vec = sws_getConstVec(0.0, length);
  1873. if (!vec)
  1874. return NULL;
  1875. for (i = 0; i < a->length; i++)
  1876. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1877. for (i = 0; i < b->length; i++)
  1878. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1879. return vec;
  1880. }
  1881. #if FF_API_SWS_VECTOR
  1882. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1883. {
  1884. int length = FFMAX(a->length, b->length);
  1885. int i;
  1886. SwsVector *vec = sws_getConstVec(0.0, length);
  1887. if (!vec)
  1888. return NULL;
  1889. for (i = 0; i < a->length; i++)
  1890. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1891. for (i = 0; i < b->length; i++)
  1892. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1893. return vec;
  1894. }
  1895. #endif
  1896. /* shift left / or right if "shift" is negative */
  1897. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1898. {
  1899. int length = a->length + FFABS(shift) * 2;
  1900. int i;
  1901. SwsVector *vec = sws_getConstVec(0.0, length);
  1902. if (!vec)
  1903. return NULL;
  1904. for (i = 0; i < a->length; i++) {
  1905. vec->coeff[i + (length - 1) / 2 -
  1906. (a->length - 1) / 2 - shift] = a->coeff[i];
  1907. }
  1908. return vec;
  1909. }
  1910. #if !FF_API_SWS_VECTOR
  1911. static
  1912. #endif
  1913. void sws_shiftVec(SwsVector *a, int shift)
  1914. {
  1915. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1916. if (!shifted) {
  1917. makenan_vec(a);
  1918. return;
  1919. }
  1920. av_free(a->coeff);
  1921. a->coeff = shifted->coeff;
  1922. a->length = shifted->length;
  1923. av_free(shifted);
  1924. }
  1925. #if !FF_API_SWS_VECTOR
  1926. static
  1927. #endif
  1928. void sws_addVec(SwsVector *a, SwsVector *b)
  1929. {
  1930. SwsVector *sum = sws_sumVec(a, b);
  1931. if (!sum) {
  1932. makenan_vec(a);
  1933. return;
  1934. }
  1935. av_free(a->coeff);
  1936. a->coeff = sum->coeff;
  1937. a->length = sum->length;
  1938. av_free(sum);
  1939. }
  1940. #if FF_API_SWS_VECTOR
  1941. void sws_subVec(SwsVector *a, SwsVector *b)
  1942. {
  1943. SwsVector *diff = sws_diffVec(a, b);
  1944. if (!diff) {
  1945. makenan_vec(a);
  1946. return;
  1947. }
  1948. av_free(a->coeff);
  1949. a->coeff = diff->coeff;
  1950. a->length = diff->length;
  1951. av_free(diff);
  1952. }
  1953. void sws_convVec(SwsVector *a, SwsVector *b)
  1954. {
  1955. SwsVector *conv = sws_getConvVec(a, b);
  1956. if (!conv) {
  1957. makenan_vec(a);
  1958. return;
  1959. }
  1960. av_free(a->coeff);
  1961. a->coeff = conv->coeff;
  1962. a->length = conv->length;
  1963. av_free(conv);
  1964. }
  1965. SwsVector *sws_cloneVec(SwsVector *a)
  1966. {
  1967. SwsVector *vec = sws_allocVec(a->length);
  1968. if (!vec)
  1969. return NULL;
  1970. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1971. return vec;
  1972. }
  1973. #endif
  1974. /**
  1975. * Print with av_log() a textual representation of the vector a
  1976. * if log_level <= av_log_level.
  1977. */
  1978. #if !FF_API_SWS_VECTOR
  1979. static
  1980. #endif
  1981. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1982. {
  1983. int i;
  1984. double max = 0;
  1985. double min = 0;
  1986. double range;
  1987. for (i = 0; i < a->length; i++)
  1988. if (a->coeff[i] > max)
  1989. max = a->coeff[i];
  1990. for (i = 0; i < a->length; i++)
  1991. if (a->coeff[i] < min)
  1992. min = a->coeff[i];
  1993. range = max - min;
  1994. for (i = 0; i < a->length; i++) {
  1995. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1996. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1997. for (; x > 0; x--)
  1998. av_log(log_ctx, log_level, " ");
  1999. av_log(log_ctx, log_level, "|\n");
  2000. }
  2001. }
  2002. void sws_freeVec(SwsVector *a)
  2003. {
  2004. if (!a)
  2005. return;
  2006. av_freep(&a->coeff);
  2007. a->length = 0;
  2008. av_free(a);
  2009. }
  2010. void sws_freeFilter(SwsFilter *filter)
  2011. {
  2012. if (!filter)
  2013. return;
  2014. sws_freeVec(filter->lumH);
  2015. sws_freeVec(filter->lumV);
  2016. sws_freeVec(filter->chrH);
  2017. sws_freeVec(filter->chrV);
  2018. av_free(filter);
  2019. }
  2020. void sws_freeContext(SwsContext *c)
  2021. {
  2022. int i;
  2023. if (!c)
  2024. return;
  2025. for (i = 0; i < 4; i++)
  2026. av_freep(&c->dither_error[i]);
  2027. av_freep(&c->vLumFilter);
  2028. av_freep(&c->vChrFilter);
  2029. av_freep(&c->hLumFilter);
  2030. av_freep(&c->hChrFilter);
  2031. #if HAVE_ALTIVEC
  2032. av_freep(&c->vYCoeffsBank);
  2033. av_freep(&c->vCCoeffsBank);
  2034. #endif
  2035. av_freep(&c->vLumFilterPos);
  2036. av_freep(&c->vChrFilterPos);
  2037. av_freep(&c->hLumFilterPos);
  2038. av_freep(&c->hChrFilterPos);
  2039. #if HAVE_MMX_INLINE
  2040. #if USE_MMAP
  2041. if (c->lumMmxextFilterCode)
  2042. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2043. if (c->chrMmxextFilterCode)
  2044. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2045. #elif HAVE_VIRTUALALLOC
  2046. if (c->lumMmxextFilterCode)
  2047. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2048. if (c->chrMmxextFilterCode)
  2049. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2050. #else
  2051. av_free(c->lumMmxextFilterCode);
  2052. av_free(c->chrMmxextFilterCode);
  2053. #endif
  2054. c->lumMmxextFilterCode = NULL;
  2055. c->chrMmxextFilterCode = NULL;
  2056. #endif /* HAVE_MMX_INLINE */
  2057. av_freep(&c->yuvTable);
  2058. av_freep(&c->formatConvBuffer);
  2059. sws_freeContext(c->cascaded_context[0]);
  2060. sws_freeContext(c->cascaded_context[1]);
  2061. sws_freeContext(c->cascaded_context[2]);
  2062. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2063. av_freep(&c->cascaded_tmp[0]);
  2064. av_freep(&c->cascaded1_tmp[0]);
  2065. av_freep(&c->gamma);
  2066. av_freep(&c->inv_gamma);
  2067. ff_free_filters(c);
  2068. av_free(c);
  2069. }
  2070. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2071. int srcH, enum AVPixelFormat srcFormat,
  2072. int dstW, int dstH,
  2073. enum AVPixelFormat dstFormat, int flags,
  2074. SwsFilter *srcFilter,
  2075. SwsFilter *dstFilter,
  2076. const double *param)
  2077. {
  2078. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2079. SWS_PARAM_DEFAULT };
  2080. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2081. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2082. if (!param)
  2083. param = default_param;
  2084. if (context &&
  2085. (context->srcW != srcW ||
  2086. context->srcH != srcH ||
  2087. context->srcFormat != srcFormat ||
  2088. context->dstW != dstW ||
  2089. context->dstH != dstH ||
  2090. context->dstFormat != dstFormat ||
  2091. context->flags != flags ||
  2092. context->param[0] != param[0] ||
  2093. context->param[1] != param[1])) {
  2094. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2095. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2096. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2097. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2098. sws_freeContext(context);
  2099. context = NULL;
  2100. }
  2101. if (!context) {
  2102. if (!(context = sws_alloc_context()))
  2103. return NULL;
  2104. context->srcW = srcW;
  2105. context->srcH = srcH;
  2106. context->srcFormat = srcFormat;
  2107. context->dstW = dstW;
  2108. context->dstH = dstH;
  2109. context->dstFormat = dstFormat;
  2110. context->flags = flags;
  2111. context->param[0] = param[0];
  2112. context->param[1] = param[1];
  2113. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2114. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2115. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2116. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2117. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2118. sws_freeContext(context);
  2119. return NULL;
  2120. }
  2121. }
  2122. return context;
  2123. }