You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1813 lines
64KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #include <assert.h>
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/ppc/cpu.h"
  47. #include "libavutil/x86/asm.h"
  48. #include "libavutil/x86/cpu.h"
  49. #include "rgb2rgb.h"
  50. #include "swscale.h"
  51. #include "swscale_internal.h"
  52. unsigned swscale_version(void)
  53. {
  54. return LIBSWSCALE_VERSION_INT;
  55. }
  56. const char *swscale_configuration(void)
  57. {
  58. return LIBAV_CONFIGURATION;
  59. }
  60. const char *swscale_license(void)
  61. {
  62. #define LICENSE_PREFIX "libswscale license: "
  63. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  64. }
  65. #define RET 0xC3 // near return opcode for x86
  66. typedef struct FormatEntry {
  67. uint8_t is_supported_in :1;
  68. uint8_t is_supported_out :1;
  69. uint8_t is_supported_endianness :1;
  70. } FormatEntry;
  71. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  72. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  73. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  74. [AV_PIX_FMT_RGB24] = { 1, 1 },
  75. [AV_PIX_FMT_BGR24] = { 1, 1 },
  76. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  80. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  81. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  82. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  83. [AV_PIX_FMT_PAL8] = { 1, 0 },
  84. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  86. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  87. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  88. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  89. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  90. [AV_PIX_FMT_BGR8] = { 1, 1 },
  91. [AV_PIX_FMT_BGR4] = { 0, 1 },
  92. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_RGB8] = { 1, 1 },
  94. [AV_PIX_FMT_RGB4] = { 0, 1 },
  95. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_NV12] = { 1, 1 },
  97. [AV_PIX_FMT_NV21] = { 1, 1 },
  98. [AV_PIX_FMT_ARGB] = { 1, 1 },
  99. [AV_PIX_FMT_RGBA] = { 1, 1 },
  100. [AV_PIX_FMT_ABGR] = { 1, 1 },
  101. [AV_PIX_FMT_BGRA] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  103. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  104. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  105. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  106. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  129. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  130. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  131. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  132. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  133. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  136. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  138. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  139. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  148. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  151. [AV_PIX_FMT_YA8] = { 1, 0 },
  152. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  153. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  154. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  155. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  156. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  157. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  158. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  176. [AV_PIX_FMT_GBRP] = { 1, 1 },
  177. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  178. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  179. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  180. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  181. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  182. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  184. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  185. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  186. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  191. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  192. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  193. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  194. [AV_PIX_FMT_P010LE] = { 1, 0 },
  195. [AV_PIX_FMT_P010BE] = { 1, 0 },
  196. };
  197. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  198. {
  199. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  200. format_entries[pix_fmt].is_supported_in : 0;
  201. }
  202. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  203. {
  204. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  205. format_entries[pix_fmt].is_supported_out : 0;
  206. }
  207. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  208. {
  209. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  210. format_entries[pix_fmt].is_supported_endianness : 0;
  211. }
  212. const char *sws_format_name(enum AVPixelFormat format)
  213. {
  214. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  215. if (desc)
  216. return desc->name;
  217. else
  218. return "Unknown format";
  219. }
  220. static double getSplineCoeff(double a, double b, double c, double d,
  221. double dist)
  222. {
  223. if (dist <= 1.0)
  224. return ((d * dist + c) * dist + b) * dist + a;
  225. else
  226. return getSplineCoeff(0.0,
  227. b + 2.0 * c + 3.0 * d,
  228. c + 3.0 * d,
  229. -b - 3.0 * c - 6.0 * d,
  230. dist - 1.0);
  231. }
  232. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  233. int *outFilterSize, int xInc, int srcW,
  234. int dstW, int filterAlign, int one,
  235. int flags, int cpu_flags,
  236. SwsVector *srcFilter, SwsVector *dstFilter,
  237. double param[2], int is_horizontal)
  238. {
  239. int i;
  240. int filterSize;
  241. int filter2Size;
  242. int minFilterSize;
  243. int64_t *filter = NULL;
  244. int64_t *filter2 = NULL;
  245. const int64_t fone = 1LL << 54;
  246. int ret = -1;
  247. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  248. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  249. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  250. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  251. int i;
  252. filterSize = 1;
  253. FF_ALLOCZ_OR_GOTO(NULL, filter,
  254. dstW * sizeof(*filter) * filterSize, fail);
  255. for (i = 0; i < dstW; i++) {
  256. filter[i * filterSize] = fone;
  257. (*filterPos)[i] = i;
  258. }
  259. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  260. int i;
  261. int xDstInSrc;
  262. filterSize = 1;
  263. FF_ALLOC_OR_GOTO(NULL, filter,
  264. dstW * sizeof(*filter) * filterSize, fail);
  265. xDstInSrc = xInc / 2 - 0x8000;
  266. for (i = 0; i < dstW; i++) {
  267. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  268. (*filterPos)[i] = xx;
  269. filter[i] = fone;
  270. xDstInSrc += xInc;
  271. }
  272. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  273. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  274. int i;
  275. int xDstInSrc;
  276. filterSize = 2;
  277. FF_ALLOC_OR_GOTO(NULL, filter,
  278. dstW * sizeof(*filter) * filterSize, fail);
  279. xDstInSrc = xInc / 2 - 0x8000;
  280. for (i = 0; i < dstW; i++) {
  281. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  282. int j;
  283. (*filterPos)[i] = xx;
  284. // bilinear upscale / linear interpolate / area averaging
  285. for (j = 0; j < filterSize; j++) {
  286. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  287. (fone >> 16);
  288. if (coeff < 0)
  289. coeff = 0;
  290. filter[i * filterSize + j] = coeff;
  291. xx++;
  292. }
  293. xDstInSrc += xInc;
  294. }
  295. } else {
  296. int64_t xDstInSrc;
  297. int sizeFactor;
  298. if (flags & SWS_BICUBIC)
  299. sizeFactor = 4;
  300. else if (flags & SWS_X)
  301. sizeFactor = 8;
  302. else if (flags & SWS_AREA)
  303. sizeFactor = 1; // downscale only, for upscale it is bilinear
  304. else if (flags & SWS_GAUSS)
  305. sizeFactor = 8; // infinite ;)
  306. else if (flags & SWS_LANCZOS)
  307. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  308. else if (flags & SWS_SINC)
  309. sizeFactor = 20; // infinite ;)
  310. else if (flags & SWS_SPLINE)
  311. sizeFactor = 20; // infinite ;)
  312. else if (flags & SWS_BILINEAR)
  313. sizeFactor = 2;
  314. else {
  315. sizeFactor = 0; // GCC warning killer
  316. assert(0);
  317. }
  318. if (xInc <= 1 << 16)
  319. filterSize = 1 + sizeFactor; // upscale
  320. else
  321. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  322. filterSize = FFMIN(filterSize, srcW - 2);
  323. filterSize = FFMAX(filterSize, 1);
  324. FF_ALLOC_OR_GOTO(NULL, filter,
  325. dstW * sizeof(*filter) * filterSize, fail);
  326. xDstInSrc = xInc - 0x10000;
  327. for (i = 0; i < dstW; i++) {
  328. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  329. int j;
  330. (*filterPos)[i] = xx;
  331. for (j = 0; j < filterSize; j++) {
  332. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  333. double floatd;
  334. int64_t coeff;
  335. if (xInc > 1 << 16)
  336. d = d * dstW / srcW;
  337. floatd = d * (1.0 / (1 << 30));
  338. if (flags & SWS_BICUBIC) {
  339. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  340. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  341. if (d >= 1LL << 31) {
  342. coeff = 0.0;
  343. } else {
  344. int64_t dd = (d * d) >> 30;
  345. int64_t ddd = (dd * d) >> 30;
  346. if (d < 1LL << 30)
  347. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  348. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  349. (6 * (1 << 24) - 2 * B) * (1 << 30);
  350. else
  351. coeff = (-B - 6 * C) * ddd +
  352. (6 * B + 30 * C) * dd +
  353. (-12 * B - 48 * C) * d +
  354. (8 * B + 24 * C) * (1 << 30);
  355. }
  356. coeff *= fone >> (30 + 24);
  357. }
  358. else if (flags & SWS_X) {
  359. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  360. double c;
  361. if (floatd < 1.0)
  362. c = cos(floatd * M_PI);
  363. else
  364. c = -1.0;
  365. if (c < 0.0)
  366. c = -pow(-c, A);
  367. else
  368. c = pow(c, A);
  369. coeff = (c * 0.5 + 0.5) * fone;
  370. } else if (flags & SWS_AREA) {
  371. int64_t d2 = d - (1 << 29);
  372. if (d2 * xInc < -(1LL << (29 + 16)))
  373. coeff = 1.0 * (1LL << (30 + 16));
  374. else if (d2 * xInc < (1LL << (29 + 16)))
  375. coeff = -d2 * xInc + (1LL << (29 + 16));
  376. else
  377. coeff = 0.0;
  378. coeff *= fone >> (30 + 16);
  379. } else if (flags & SWS_GAUSS) {
  380. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  381. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  382. } else if (flags & SWS_SINC) {
  383. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  384. } else if (flags & SWS_LANCZOS) {
  385. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  386. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  387. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  388. if (floatd > p)
  389. coeff = 0;
  390. } else if (flags & SWS_BILINEAR) {
  391. coeff = (1 << 30) - d;
  392. if (coeff < 0)
  393. coeff = 0;
  394. coeff *= fone >> 30;
  395. } else if (flags & SWS_SPLINE) {
  396. double p = -2.196152422706632;
  397. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  398. } else {
  399. coeff = 0.0; // GCC warning killer
  400. assert(0);
  401. }
  402. filter[i * filterSize + j] = coeff;
  403. xx++;
  404. }
  405. xDstInSrc += 2 * xInc;
  406. }
  407. }
  408. /* apply src & dst Filter to filter -> filter2
  409. * av_free(filter);
  410. */
  411. assert(filterSize > 0);
  412. filter2Size = filterSize;
  413. if (srcFilter)
  414. filter2Size += srcFilter->length - 1;
  415. if (dstFilter)
  416. filter2Size += dstFilter->length - 1;
  417. assert(filter2Size > 0);
  418. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  419. for (i = 0; i < dstW; i++) {
  420. int j, k;
  421. if (srcFilter) {
  422. for (k = 0; k < srcFilter->length; k++) {
  423. for (j = 0; j < filterSize; j++)
  424. filter2[i * filter2Size + k + j] +=
  425. srcFilter->coeff[k] * filter[i * filterSize + j];
  426. }
  427. } else {
  428. for (j = 0; j < filterSize; j++)
  429. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  430. }
  431. // FIXME dstFilter
  432. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  433. }
  434. av_freep(&filter);
  435. /* try to reduce the filter-size (step1 find size and shift left) */
  436. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  437. minFilterSize = 0;
  438. for (i = dstW - 1; i >= 0; i--) {
  439. int min = filter2Size;
  440. int j;
  441. int64_t cutOff = 0.0;
  442. /* get rid of near zero elements on the left by shifting left */
  443. for (j = 0; j < filter2Size; j++) {
  444. int k;
  445. cutOff += FFABS(filter2[i * filter2Size]);
  446. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  447. break;
  448. /* preserve monotonicity because the core can't handle the
  449. * filter otherwise */
  450. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  451. break;
  452. // move filter coefficients left
  453. for (k = 1; k < filter2Size; k++)
  454. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  455. filter2[i * filter2Size + k - 1] = 0;
  456. (*filterPos)[i]++;
  457. }
  458. cutOff = 0;
  459. /* count near zeros on the right */
  460. for (j = filter2Size - 1; j > 0; j--) {
  461. cutOff += FFABS(filter2[i * filter2Size + j]);
  462. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  463. break;
  464. min--;
  465. }
  466. if (min > minFilterSize)
  467. minFilterSize = min;
  468. }
  469. if (PPC_ALTIVEC(cpu_flags)) {
  470. // we can handle the special case 4, so we don't want to go the full 8
  471. if (minFilterSize < 5)
  472. filterAlign = 4;
  473. /* We really don't want to waste our time doing useless computation, so
  474. * fall back on the scalar C code for very small filters.
  475. * Vectorizing is worth it only if you have a decent-sized vector. */
  476. if (minFilterSize < 3)
  477. filterAlign = 1;
  478. }
  479. if (INLINE_MMX(cpu_flags)) {
  480. // special case for unscaled vertical filtering
  481. if (minFilterSize == 1 && filterAlign == 2)
  482. filterAlign = 1;
  483. }
  484. assert(minFilterSize > 0);
  485. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  486. assert(filterSize > 0);
  487. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  488. if (filterSize >= MAX_FILTER_SIZE * 16 /
  489. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  490. goto fail;
  491. *outFilterSize = filterSize;
  492. if (flags & SWS_PRINT_INFO)
  493. av_log(NULL, AV_LOG_VERBOSE,
  494. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  495. filter2Size, filterSize);
  496. /* try to reduce the filter-size (step2 reduce it) */
  497. for (i = 0; i < dstW; i++) {
  498. int j;
  499. for (j = 0; j < filterSize; j++) {
  500. if (j >= filter2Size)
  501. filter[i * filterSize + j] = 0;
  502. else
  503. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  504. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  505. filter[i * filterSize + j] = 0;
  506. }
  507. }
  508. // FIXME try to align filterPos if possible
  509. // fix borders
  510. if (is_horizontal) {
  511. for (i = 0; i < dstW; i++) {
  512. int j;
  513. if ((*filterPos)[i] < 0) {
  514. // move filter coefficients left to compensate for filterPos
  515. for (j = 1; j < filterSize; j++) {
  516. int left = FFMAX(j + (*filterPos)[i], 0);
  517. filter[i * filterSize + left] += filter[i * filterSize + j];
  518. filter[i * filterSize + j] = 0;
  519. }
  520. (*filterPos)[i] = 0;
  521. }
  522. if ((*filterPos)[i] + filterSize > srcW) {
  523. int shift = (*filterPos)[i] + filterSize - srcW;
  524. // move filter coefficients right to compensate for filterPos
  525. for (j = filterSize - 2; j >= 0; j--) {
  526. int right = FFMIN(j + shift, filterSize - 1);
  527. filter[i * filterSize + right] += filter[i * filterSize + j];
  528. filter[i * filterSize + j] = 0;
  529. }
  530. (*filterPos)[i] = srcW - filterSize;
  531. }
  532. }
  533. }
  534. // Note the +1 is for the MMX scaler which reads over the end
  535. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  536. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  537. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  538. /* normalize & store in outFilter */
  539. for (i = 0; i < dstW; i++) {
  540. int j;
  541. int64_t error = 0;
  542. int64_t sum = 0;
  543. for (j = 0; j < filterSize; j++) {
  544. sum += filter[i * filterSize + j];
  545. }
  546. sum = (sum + one / 2) / one;
  547. for (j = 0; j < *outFilterSize; j++) {
  548. int64_t v = filter[i * filterSize + j] + error;
  549. int intV = ROUNDED_DIV(v, sum);
  550. (*outFilter)[i * (*outFilterSize) + j] = intV;
  551. error = v - intV * sum;
  552. }
  553. }
  554. (*filterPos)[dstW + 0] =
  555. (*filterPos)[dstW + 1] =
  556. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  557. * read over the end */
  558. for (i = 0; i < *outFilterSize; i++) {
  559. int k = (dstW - 1) * (*outFilterSize) + i;
  560. (*outFilter)[k + 1 * (*outFilterSize)] =
  561. (*outFilter)[k + 2 * (*outFilterSize)] =
  562. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  563. }
  564. ret = 0;
  565. fail:
  566. av_free(filter);
  567. av_free(filter2);
  568. return ret;
  569. }
  570. #if HAVE_MMXEXT_INLINE
  571. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  572. int16_t *filter, int32_t *filterPos,
  573. int numSplits)
  574. {
  575. uint8_t *fragmentA;
  576. x86_reg imm8OfPShufW1A;
  577. x86_reg imm8OfPShufW2A;
  578. x86_reg fragmentLengthA;
  579. uint8_t *fragmentB;
  580. x86_reg imm8OfPShufW1B;
  581. x86_reg imm8OfPShufW2B;
  582. x86_reg fragmentLengthB;
  583. int fragmentPos;
  584. int xpos, i;
  585. // create an optimized horizontal scaling routine
  586. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  587. * pshufw instructions. For every four output pixels, if four input pixels
  588. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  589. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  590. */
  591. // code fragment
  592. __asm__ volatile (
  593. "jmp 9f \n\t"
  594. // Begin
  595. "0: \n\t"
  596. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  597. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  598. "movd 1(%%"FF_REG_c", %%"FF_REG_S"), %%mm1 \n\t"
  599. "punpcklbw %%mm7, %%mm1 \n\t"
  600. "punpcklbw %%mm7, %%mm0 \n\t"
  601. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  602. "1: \n\t"
  603. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  604. "2: \n\t"
  605. "psubw %%mm1, %%mm0 \n\t"
  606. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  607. "pmullw %%mm3, %%mm0 \n\t"
  608. "psllw $7, %%mm1 \n\t"
  609. "paddw %%mm1, %%mm0 \n\t"
  610. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  611. "add $8, %%"FF_REG_a" \n\t"
  612. // End
  613. "9: \n\t"
  614. // "int $3 \n\t"
  615. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  616. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  617. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  618. "dec %1 \n\t"
  619. "dec %2 \n\t"
  620. "sub %0, %1 \n\t"
  621. "sub %0, %2 \n\t"
  622. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  623. "sub %0, %3 \n\t"
  624. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  625. "=r" (fragmentLengthA)
  626. );
  627. __asm__ volatile (
  628. "jmp 9f \n\t"
  629. // Begin
  630. "0: \n\t"
  631. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  632. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  633. "punpcklbw %%mm7, %%mm0 \n\t"
  634. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  635. "1: \n\t"
  636. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  637. "2: \n\t"
  638. "psubw %%mm1, %%mm0 \n\t"
  639. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  640. "pmullw %%mm3, %%mm0 \n\t"
  641. "psllw $7, %%mm1 \n\t"
  642. "paddw %%mm1, %%mm0 \n\t"
  643. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  644. "add $8, %%"FF_REG_a" \n\t"
  645. // End
  646. "9: \n\t"
  647. // "int $3 \n\t"
  648. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  649. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  650. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  651. "dec %1 \n\t"
  652. "dec %2 \n\t"
  653. "sub %0, %1 \n\t"
  654. "sub %0, %2 \n\t"
  655. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  656. "sub %0, %3 \n\t"
  657. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  658. "=r" (fragmentLengthB)
  659. );
  660. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  661. fragmentPos = 0;
  662. for (i = 0; i < dstW / numSplits; i++) {
  663. int xx = xpos >> 16;
  664. if ((i & 3) == 0) {
  665. int a = 0;
  666. int b = ((xpos + xInc) >> 16) - xx;
  667. int c = ((xpos + xInc * 2) >> 16) - xx;
  668. int d = ((xpos + xInc * 3) >> 16) - xx;
  669. int inc = (d + 1 < 4);
  670. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  671. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  672. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  673. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  674. int maxShift = 3 - (d + inc);
  675. int shift = 0;
  676. if (filterCode) {
  677. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  678. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  679. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  680. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  681. filterPos[i / 2] = xx;
  682. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  683. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  684. ((b + inc) << 2) |
  685. ((c + inc) << 4) |
  686. ((d + inc) << 6);
  687. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  688. (c << 4) |
  689. (d << 6);
  690. if (i + 4 - inc >= dstW)
  691. shift = maxShift; // avoid overread
  692. else if ((filterPos[i / 2] & 3) <= maxShift)
  693. shift = filterPos[i / 2] & 3; // align
  694. if (shift && i >= shift) {
  695. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  696. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  697. filterPos[i / 2] -= shift;
  698. }
  699. }
  700. fragmentPos += fragmentLength;
  701. if (filterCode)
  702. filterCode[fragmentPos] = RET;
  703. }
  704. xpos += xInc;
  705. }
  706. if (filterCode)
  707. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  708. return fragmentPos + 1;
  709. }
  710. #endif /* HAVE_MMXEXT_INLINE */
  711. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  712. {
  713. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  714. *h = desc->log2_chroma_w;
  715. *v = desc->log2_chroma_h;
  716. }
  717. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  718. int srcRange, const int table[4], int dstRange,
  719. int brightness, int contrast, int saturation)
  720. {
  721. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  722. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  723. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  724. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  725. c->brightness = brightness;
  726. c->contrast = contrast;
  727. c->saturation = saturation;
  728. c->srcRange = srcRange;
  729. c->dstRange = dstRange;
  730. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  731. return -1;
  732. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  733. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  734. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  735. contrast, saturation);
  736. // FIXME factorize
  737. if (ARCH_PPC)
  738. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  739. contrast, saturation);
  740. return 0;
  741. }
  742. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  743. int *srcRange, int **table, int *dstRange,
  744. int *brightness, int *contrast, int *saturation)
  745. {
  746. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  747. return -1;
  748. *inv_table = c->srcColorspaceTable;
  749. *table = c->dstColorspaceTable;
  750. *srcRange = c->srcRange;
  751. *dstRange = c->dstRange;
  752. *brightness = c->brightness;
  753. *contrast = c->contrast;
  754. *saturation = c->saturation;
  755. return 0;
  756. }
  757. static int handle_jpeg(enum AVPixelFormat *format)
  758. {
  759. switch (*format) {
  760. case AV_PIX_FMT_YUVJ420P:
  761. *format = AV_PIX_FMT_YUV420P;
  762. return 1;
  763. case AV_PIX_FMT_YUVJ422P:
  764. *format = AV_PIX_FMT_YUV422P;
  765. return 1;
  766. case AV_PIX_FMT_YUVJ444P:
  767. *format = AV_PIX_FMT_YUV444P;
  768. return 1;
  769. case AV_PIX_FMT_YUVJ440P:
  770. *format = AV_PIX_FMT_YUV440P;
  771. return 1;
  772. default:
  773. return 0;
  774. }
  775. }
  776. SwsContext *sws_alloc_context(void)
  777. {
  778. SwsContext *c = av_mallocz(sizeof(SwsContext));
  779. if (c) {
  780. c->av_class = &ff_sws_context_class;
  781. av_opt_set_defaults(c);
  782. }
  783. return c;
  784. }
  785. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  786. SwsFilter *dstFilter)
  787. {
  788. int i;
  789. int usesVFilter, usesHFilter;
  790. int unscaled;
  791. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  792. int srcW = c->srcW;
  793. int srcH = c->srcH;
  794. int dstW = c->dstW;
  795. int dstH = c->dstH;
  796. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  797. int dst_stride_px = dst_stride >> 1;
  798. int flags, cpu_flags;
  799. enum AVPixelFormat srcFormat = c->srcFormat;
  800. enum AVPixelFormat dstFormat = c->dstFormat;
  801. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  802. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  803. cpu_flags = av_get_cpu_flags();
  804. flags = c->flags;
  805. emms_c();
  806. if (!rgb15to16)
  807. ff_rgb2rgb_init();
  808. unscaled = (srcW == dstW && srcH == dstH);
  809. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  810. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  811. if (!sws_isSupportedInput(srcFormat)) {
  812. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  813. sws_format_name(srcFormat));
  814. return AVERROR(EINVAL);
  815. }
  816. if (!sws_isSupportedOutput(dstFormat)) {
  817. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  818. sws_format_name(dstFormat));
  819. return AVERROR(EINVAL);
  820. }
  821. }
  822. i = flags & (SWS_POINT |
  823. SWS_AREA |
  824. SWS_BILINEAR |
  825. SWS_FAST_BILINEAR |
  826. SWS_BICUBIC |
  827. SWS_X |
  828. SWS_GAUSS |
  829. SWS_LANCZOS |
  830. SWS_SINC |
  831. SWS_SPLINE |
  832. SWS_BICUBLIN);
  833. /* provide a default scaler if not set by caller */
  834. if (!i) {
  835. if (dstW < srcW && dstH < srcH)
  836. flags |= SWS_GAUSS;
  837. else if (dstW > srcW && dstH > srcH)
  838. flags |= SWS_SINC;
  839. else
  840. flags |= SWS_LANCZOS;
  841. c->flags = flags;
  842. } else if (i & (i - 1)) {
  843. av_log(c, AV_LOG_ERROR,
  844. "Exactly one scaler algorithm must be chosen\n");
  845. return AVERROR(EINVAL);
  846. }
  847. /* sanity check */
  848. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  849. /* FIXME check if these are enough and try to lower them after
  850. * fixing the relevant parts of the code */
  851. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  852. srcW, srcH, dstW, dstH);
  853. return AVERROR(EINVAL);
  854. }
  855. if (!dstFilter)
  856. dstFilter = &dummyFilter;
  857. if (!srcFilter)
  858. srcFilter = &dummyFilter;
  859. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  860. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  861. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  862. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  863. c->vRounder = 4 * 0x0001000100010001ULL;
  864. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  865. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  866. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  867. (dstFilter->chrV && dstFilter->chrV->length > 1);
  868. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  869. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  870. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  871. (dstFilter->chrH && dstFilter->chrH->length > 1);
  872. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  873. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  874. if (isPlanarRGB(dstFormat)) {
  875. if (!(flags & SWS_FULL_CHR_H_INT)) {
  876. av_log(c, AV_LOG_DEBUG,
  877. "%s output is not supported with half chroma resolution, switching to full\n",
  878. av_get_pix_fmt_name(dstFormat));
  879. flags |= SWS_FULL_CHR_H_INT;
  880. c->flags = flags;
  881. }
  882. }
  883. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  884. * chroma interpolation */
  885. if (flags & SWS_FULL_CHR_H_INT &&
  886. isAnyRGB(dstFormat) &&
  887. !isPlanarRGB(dstFormat) &&
  888. dstFormat != AV_PIX_FMT_RGBA &&
  889. dstFormat != AV_PIX_FMT_ARGB &&
  890. dstFormat != AV_PIX_FMT_BGRA &&
  891. dstFormat != AV_PIX_FMT_ABGR &&
  892. dstFormat != AV_PIX_FMT_RGB24 &&
  893. dstFormat != AV_PIX_FMT_BGR24) {
  894. av_log(c, AV_LOG_ERROR,
  895. "full chroma interpolation for destination format '%s' not yet implemented\n",
  896. sws_format_name(dstFormat));
  897. flags &= ~SWS_FULL_CHR_H_INT;
  898. c->flags = flags;
  899. }
  900. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  901. c->chrDstHSubSample = 1;
  902. // drop some chroma lines if the user wants it
  903. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  904. SWS_SRC_V_CHR_DROP_SHIFT;
  905. c->chrSrcVSubSample += c->vChrDrop;
  906. /* drop every other pixel for chroma calculation unless user
  907. * wants full chroma */
  908. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  909. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  910. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  911. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  912. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  913. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  914. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  915. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  916. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  917. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  918. (flags & SWS_FAST_BILINEAR)))
  919. c->chrSrcHSubSample = 1;
  920. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  921. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  922. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  923. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  924. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  925. /* unscaled special cases */
  926. if (unscaled && !usesHFilter && !usesVFilter &&
  927. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  928. ff_get_unscaled_swscale(c);
  929. if (c->swscale) {
  930. if (flags & SWS_PRINT_INFO)
  931. av_log(c, AV_LOG_INFO,
  932. "using unscaled %s -> %s special converter\n",
  933. sws_format_name(srcFormat), sws_format_name(dstFormat));
  934. return 0;
  935. }
  936. }
  937. c->srcBpc = desc_src->comp[0].depth;
  938. if (c->srcBpc < 8)
  939. c->srcBpc = 8;
  940. c->dstBpc = desc_dst->comp[0].depth;
  941. if (c->dstBpc < 8)
  942. c->dstBpc = 8;
  943. if (c->dstBpc == 16)
  944. dst_stride <<= 1;
  945. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  946. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  947. fail);
  948. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 12) {
  949. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  950. (srcW & 15) == 0) ? 1 : 0;
  951. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  952. && (flags & SWS_FAST_BILINEAR)) {
  953. if (flags & SWS_PRINT_INFO)
  954. av_log(c, AV_LOG_INFO,
  955. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  956. }
  957. if (usesHFilter)
  958. c->canMMXEXTBeUsed = 0;
  959. } else
  960. c->canMMXEXTBeUsed = 0;
  961. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  962. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  963. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  964. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  965. * correct scaling.
  966. * n-2 is the last chrominance sample available.
  967. * This is not perfect, but no one should notice the difference, the more
  968. * correct variant would be like the vertical one, but that would require
  969. * some special code for the first and last pixel */
  970. if (flags & SWS_FAST_BILINEAR) {
  971. if (c->canMMXEXTBeUsed) {
  972. c->lumXInc += 20;
  973. c->chrXInc += 20;
  974. }
  975. // we don't use the x86 asm scaler if MMX is available
  976. else if (INLINE_MMX(cpu_flags)) {
  977. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  978. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  979. }
  980. }
  981. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  982. /* precalculate horizontal scaler filter coefficients */
  983. {
  984. #if HAVE_MMXEXT_INLINE
  985. // can't downscale !!!
  986. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  987. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  988. NULL, NULL, 8);
  989. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  990. NULL, NULL, NULL, 4);
  991. #if USE_MMAP
  992. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  993. PROT_READ | PROT_WRITE,
  994. MAP_PRIVATE | MAP_ANONYMOUS,
  995. -1, 0);
  996. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  997. PROT_READ | PROT_WRITE,
  998. MAP_PRIVATE | MAP_ANONYMOUS,
  999. -1, 0);
  1000. #elif HAVE_VIRTUALALLOC
  1001. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1002. c->lumMmxextFilterCodeSize,
  1003. MEM_COMMIT,
  1004. PAGE_EXECUTE_READWRITE);
  1005. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1006. c->chrMmxextFilterCodeSize,
  1007. MEM_COMMIT,
  1008. PAGE_EXECUTE_READWRITE);
  1009. #else
  1010. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1011. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1012. #endif
  1013. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1014. return AVERROR(ENOMEM);
  1015. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1016. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1017. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1018. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1019. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1020. c->hLumFilter, c->hLumFilterPos, 8);
  1021. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1022. c->hChrFilter, c->hChrFilterPos, 4);
  1023. #if USE_MMAP
  1024. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1025. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1026. #endif
  1027. } else
  1028. #endif /* HAVE_MMXEXT_INLINE */
  1029. {
  1030. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1031. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1032. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1033. &c->hLumFilterSize, c->lumXInc,
  1034. srcW, dstW, filterAlign, 1 << 14,
  1035. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1036. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1037. c->param, 1) < 0)
  1038. goto fail;
  1039. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1040. &c->hChrFilterSize, c->chrXInc,
  1041. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1042. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1043. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1044. c->param, 1) < 0)
  1045. goto fail;
  1046. }
  1047. } // initialize horizontal stuff
  1048. /* precalculate vertical scaler filter coefficients */
  1049. {
  1050. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1051. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1052. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1053. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1054. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1055. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1056. c->param, 0) < 0)
  1057. goto fail;
  1058. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1059. c->chrYInc, c->chrSrcH, c->chrDstH,
  1060. filterAlign, (1 << 12),
  1061. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1062. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1063. c->param, 0) < 0)
  1064. goto fail;
  1065. #if HAVE_ALTIVEC
  1066. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1067. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1068. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1069. int j;
  1070. short *p = (short *)&c->vYCoeffsBank[i];
  1071. for (j = 0; j < 8; j++)
  1072. p[j] = c->vLumFilter[i];
  1073. }
  1074. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1075. int j;
  1076. short *p = (short *)&c->vCCoeffsBank[i];
  1077. for (j = 0; j < 8; j++)
  1078. p[j] = c->vChrFilter[i];
  1079. }
  1080. #endif
  1081. }
  1082. // calculate buffer sizes so that they won't run out while handling these damn slices
  1083. c->vLumBufSize = c->vLumFilterSize;
  1084. c->vChrBufSize = c->vChrFilterSize;
  1085. for (i = 0; i < dstH; i++) {
  1086. int chrI = (int64_t)i * c->chrDstH / dstH;
  1087. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1088. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1089. << c->chrSrcVSubSample));
  1090. nextSlice >>= c->chrSrcVSubSample;
  1091. nextSlice <<= c->chrSrcVSubSample;
  1092. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1093. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1094. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1095. (nextSlice >> c->chrSrcVSubSample))
  1096. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1097. c->vChrFilterPos[chrI];
  1098. }
  1099. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1100. * need to allocate several megabytes to handle all possible cases) */
  1101. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1102. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1103. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1104. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1105. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1106. /* Note we need at least one pixel more at the end because of the MMX code
  1107. * (just in case someone wants to replace the 4000/8000). */
  1108. /* align at 16 bytes for AltiVec */
  1109. for (i = 0; i < c->vLumBufSize; i++) {
  1110. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1111. dst_stride + 16, fail);
  1112. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1113. }
  1114. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1115. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1116. c->uv_off_byte = dst_stride + 16;
  1117. for (i = 0; i < c->vChrBufSize; i++) {
  1118. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1119. dst_stride * 2 + 32, fail);
  1120. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1121. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1122. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1123. }
  1124. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1125. for (i = 0; i < c->vLumBufSize; i++) {
  1126. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1127. dst_stride + 16, fail);
  1128. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1129. }
  1130. // try to avoid drawing green stuff between the right end and the stride end
  1131. for (i = 0; i < c->vChrBufSize; i++)
  1132. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1133. assert(c->chrDstH <= dstH);
  1134. if (flags & SWS_PRINT_INFO) {
  1135. if (flags & SWS_FAST_BILINEAR)
  1136. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1137. else if (flags & SWS_BILINEAR)
  1138. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1139. else if (flags & SWS_BICUBIC)
  1140. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1141. else if (flags & SWS_X)
  1142. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1143. else if (flags & SWS_POINT)
  1144. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1145. else if (flags & SWS_AREA)
  1146. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1147. else if (flags & SWS_BICUBLIN)
  1148. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1149. else if (flags & SWS_GAUSS)
  1150. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1151. else if (flags & SWS_SINC)
  1152. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1153. else if (flags & SWS_LANCZOS)
  1154. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1155. else if (flags & SWS_SPLINE)
  1156. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1157. else
  1158. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1159. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1160. sws_format_name(srcFormat),
  1161. #ifdef DITHER1XBPP
  1162. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1163. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1164. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1165. "dithered " : "",
  1166. #else
  1167. "",
  1168. #endif
  1169. sws_format_name(dstFormat));
  1170. if (INLINE_MMXEXT(cpu_flags))
  1171. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1172. else if (INLINE_AMD3DNOW(cpu_flags))
  1173. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1174. else if (INLINE_MMX(cpu_flags))
  1175. av_log(c, AV_LOG_INFO, "using MMX\n");
  1176. else if (PPC_ALTIVEC(cpu_flags))
  1177. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1178. else
  1179. av_log(c, AV_LOG_INFO, "using C\n");
  1180. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1181. av_log(c, AV_LOG_DEBUG,
  1182. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1183. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1184. av_log(c, AV_LOG_DEBUG,
  1185. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1186. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1187. c->chrXInc, c->chrYInc);
  1188. }
  1189. c->swscale = ff_getSwsFunc(c);
  1190. return 0;
  1191. fail: // FIXME replace things by appropriate error codes
  1192. return -1;
  1193. }
  1194. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1195. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1196. int flags, SwsFilter *srcFilter,
  1197. SwsFilter *dstFilter, const double *param)
  1198. {
  1199. SwsContext *c;
  1200. if (!(c = sws_alloc_context()))
  1201. return NULL;
  1202. c->flags = flags;
  1203. c->srcW = srcW;
  1204. c->srcH = srcH;
  1205. c->dstW = dstW;
  1206. c->dstH = dstH;
  1207. c->srcRange = handle_jpeg(&srcFormat);
  1208. c->dstRange = handle_jpeg(&dstFormat);
  1209. c->srcFormat = srcFormat;
  1210. c->dstFormat = dstFormat;
  1211. if (param) {
  1212. c->param[0] = param[0];
  1213. c->param[1] = param[1];
  1214. }
  1215. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1216. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1217. c->dstRange, 0, 1 << 16, 1 << 16);
  1218. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1219. sws_freeContext(c);
  1220. return NULL;
  1221. }
  1222. return c;
  1223. }
  1224. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1225. float lumaSharpen, float chromaSharpen,
  1226. float chromaHShift, float chromaVShift,
  1227. int verbose)
  1228. {
  1229. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1230. if (!filter)
  1231. return NULL;
  1232. if (lumaGBlur != 0.0) {
  1233. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1234. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1235. } else {
  1236. filter->lumH = sws_getIdentityVec();
  1237. filter->lumV = sws_getIdentityVec();
  1238. }
  1239. if (chromaGBlur != 0.0) {
  1240. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1241. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1242. } else {
  1243. filter->chrH = sws_getIdentityVec();
  1244. filter->chrV = sws_getIdentityVec();
  1245. }
  1246. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1247. goto fail;
  1248. if (chromaSharpen != 0.0) {
  1249. SwsVector *id = sws_getIdentityVec();
  1250. if (!id)
  1251. goto fail;
  1252. sws_scaleVec(filter->chrH, -chromaSharpen);
  1253. sws_scaleVec(filter->chrV, -chromaSharpen);
  1254. sws_addVec(filter->chrH, id);
  1255. sws_addVec(filter->chrV, id);
  1256. sws_freeVec(id);
  1257. }
  1258. if (lumaSharpen != 0.0) {
  1259. SwsVector *id = sws_getIdentityVec();
  1260. if (!id)
  1261. goto fail;
  1262. sws_scaleVec(filter->lumH, -lumaSharpen);
  1263. sws_scaleVec(filter->lumV, -lumaSharpen);
  1264. sws_addVec(filter->lumH, id);
  1265. sws_addVec(filter->lumV, id);
  1266. sws_freeVec(id);
  1267. }
  1268. if (chromaHShift != 0.0)
  1269. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1270. if (chromaVShift != 0.0)
  1271. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1272. sws_normalizeVec(filter->chrH, 1.0);
  1273. sws_normalizeVec(filter->chrV, 1.0);
  1274. sws_normalizeVec(filter->lumH, 1.0);
  1275. sws_normalizeVec(filter->lumV, 1.0);
  1276. if (verbose)
  1277. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1278. if (verbose)
  1279. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1280. return filter;
  1281. fail:
  1282. sws_freeVec(filter->lumH);
  1283. sws_freeVec(filter->lumV);
  1284. sws_freeVec(filter->chrH);
  1285. sws_freeVec(filter->chrV);
  1286. av_freep(&filter);
  1287. return NULL;
  1288. }
  1289. SwsVector *sws_allocVec(int length)
  1290. {
  1291. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1292. if (!vec)
  1293. return NULL;
  1294. vec->length = length;
  1295. vec->coeff = av_malloc(sizeof(double) * length);
  1296. if (!vec->coeff)
  1297. av_freep(&vec);
  1298. return vec;
  1299. }
  1300. SwsVector *sws_getGaussianVec(double variance, double quality)
  1301. {
  1302. const int length = (int)(variance * quality + 0.5) | 1;
  1303. int i;
  1304. double middle = (length - 1) * 0.5;
  1305. SwsVector *vec = sws_allocVec(length);
  1306. if (!vec)
  1307. return NULL;
  1308. for (i = 0; i < length; i++) {
  1309. double dist = i - middle;
  1310. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1311. sqrt(2 * variance * M_PI);
  1312. }
  1313. sws_normalizeVec(vec, 1.0);
  1314. return vec;
  1315. }
  1316. SwsVector *sws_getConstVec(double c, int length)
  1317. {
  1318. int i;
  1319. SwsVector *vec = sws_allocVec(length);
  1320. if (!vec)
  1321. return NULL;
  1322. for (i = 0; i < length; i++)
  1323. vec->coeff[i] = c;
  1324. return vec;
  1325. }
  1326. SwsVector *sws_getIdentityVec(void)
  1327. {
  1328. return sws_getConstVec(1.0, 1);
  1329. }
  1330. static double sws_dcVec(SwsVector *a)
  1331. {
  1332. int i;
  1333. double sum = 0;
  1334. for (i = 0; i < a->length; i++)
  1335. sum += a->coeff[i];
  1336. return sum;
  1337. }
  1338. void sws_scaleVec(SwsVector *a, double scalar)
  1339. {
  1340. int i;
  1341. for (i = 0; i < a->length; i++)
  1342. a->coeff[i] *= scalar;
  1343. }
  1344. void sws_normalizeVec(SwsVector *a, double height)
  1345. {
  1346. sws_scaleVec(a, height / sws_dcVec(a));
  1347. }
  1348. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1349. {
  1350. int length = a->length + b->length - 1;
  1351. int i, j;
  1352. SwsVector *vec = sws_getConstVec(0.0, length);
  1353. if (!vec)
  1354. return NULL;
  1355. for (i = 0; i < a->length; i++) {
  1356. for (j = 0; j < b->length; j++) {
  1357. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1358. }
  1359. }
  1360. return vec;
  1361. }
  1362. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1363. {
  1364. int length = FFMAX(a->length, b->length);
  1365. int i;
  1366. SwsVector *vec = sws_getConstVec(0.0, length);
  1367. if (!vec)
  1368. return NULL;
  1369. for (i = 0; i < a->length; i++)
  1370. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1371. for (i = 0; i < b->length; i++)
  1372. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1373. return vec;
  1374. }
  1375. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1376. {
  1377. int length = FFMAX(a->length, b->length);
  1378. int i;
  1379. SwsVector *vec = sws_getConstVec(0.0, length);
  1380. if (!vec)
  1381. return NULL;
  1382. for (i = 0; i < a->length; i++)
  1383. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1384. for (i = 0; i < b->length; i++)
  1385. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1386. return vec;
  1387. }
  1388. /* shift left / or right if "shift" is negative */
  1389. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1390. {
  1391. int length = a->length + FFABS(shift) * 2;
  1392. int i;
  1393. SwsVector *vec = sws_getConstVec(0.0, length);
  1394. if (!vec)
  1395. return NULL;
  1396. for (i = 0; i < a->length; i++) {
  1397. vec->coeff[i + (length - 1) / 2 -
  1398. (a->length - 1) / 2 - shift] = a->coeff[i];
  1399. }
  1400. return vec;
  1401. }
  1402. void sws_shiftVec(SwsVector *a, int shift)
  1403. {
  1404. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1405. av_free(a->coeff);
  1406. a->coeff = shifted->coeff;
  1407. a->length = shifted->length;
  1408. av_free(shifted);
  1409. }
  1410. void sws_addVec(SwsVector *a, SwsVector *b)
  1411. {
  1412. SwsVector *sum = sws_sumVec(a, b);
  1413. av_free(a->coeff);
  1414. a->coeff = sum->coeff;
  1415. a->length = sum->length;
  1416. av_free(sum);
  1417. }
  1418. void sws_subVec(SwsVector *a, SwsVector *b)
  1419. {
  1420. SwsVector *diff = sws_diffVec(a, b);
  1421. av_free(a->coeff);
  1422. a->coeff = diff->coeff;
  1423. a->length = diff->length;
  1424. av_free(diff);
  1425. }
  1426. void sws_convVec(SwsVector *a, SwsVector *b)
  1427. {
  1428. SwsVector *conv = sws_getConvVec(a, b);
  1429. av_free(a->coeff);
  1430. a->coeff = conv->coeff;
  1431. a->length = conv->length;
  1432. av_free(conv);
  1433. }
  1434. SwsVector *sws_cloneVec(SwsVector *a)
  1435. {
  1436. int i;
  1437. SwsVector *vec = sws_allocVec(a->length);
  1438. if (!vec)
  1439. return NULL;
  1440. for (i = 0; i < a->length; i++)
  1441. vec->coeff[i] = a->coeff[i];
  1442. return vec;
  1443. }
  1444. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1445. {
  1446. int i;
  1447. double max = 0;
  1448. double min = 0;
  1449. double range;
  1450. for (i = 0; i < a->length; i++)
  1451. if (a->coeff[i] > max)
  1452. max = a->coeff[i];
  1453. for (i = 0; i < a->length; i++)
  1454. if (a->coeff[i] < min)
  1455. min = a->coeff[i];
  1456. range = max - min;
  1457. for (i = 0; i < a->length; i++) {
  1458. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1459. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1460. for (; x > 0; x--)
  1461. av_log(log_ctx, log_level, " ");
  1462. av_log(log_ctx, log_level, "|\n");
  1463. }
  1464. }
  1465. void sws_freeVec(SwsVector *a)
  1466. {
  1467. if (!a)
  1468. return;
  1469. av_freep(&a->coeff);
  1470. a->length = 0;
  1471. av_free(a);
  1472. }
  1473. void sws_freeFilter(SwsFilter *filter)
  1474. {
  1475. if (!filter)
  1476. return;
  1477. if (filter->lumH)
  1478. sws_freeVec(filter->lumH);
  1479. if (filter->lumV)
  1480. sws_freeVec(filter->lumV);
  1481. if (filter->chrH)
  1482. sws_freeVec(filter->chrH);
  1483. if (filter->chrV)
  1484. sws_freeVec(filter->chrV);
  1485. av_free(filter);
  1486. }
  1487. void sws_freeContext(SwsContext *c)
  1488. {
  1489. int i;
  1490. if (!c)
  1491. return;
  1492. if (c->lumPixBuf) {
  1493. for (i = 0; i < c->vLumBufSize; i++)
  1494. av_freep(&c->lumPixBuf[i]);
  1495. av_freep(&c->lumPixBuf);
  1496. }
  1497. if (c->chrUPixBuf) {
  1498. for (i = 0; i < c->vChrBufSize; i++)
  1499. av_freep(&c->chrUPixBuf[i]);
  1500. av_freep(&c->chrUPixBuf);
  1501. av_freep(&c->chrVPixBuf);
  1502. }
  1503. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1504. for (i = 0; i < c->vLumBufSize; i++)
  1505. av_freep(&c->alpPixBuf[i]);
  1506. av_freep(&c->alpPixBuf);
  1507. }
  1508. av_freep(&c->vLumFilter);
  1509. av_freep(&c->vChrFilter);
  1510. av_freep(&c->hLumFilter);
  1511. av_freep(&c->hChrFilter);
  1512. #if HAVE_ALTIVEC
  1513. av_freep(&c->vYCoeffsBank);
  1514. av_freep(&c->vCCoeffsBank);
  1515. #endif
  1516. av_freep(&c->vLumFilterPos);
  1517. av_freep(&c->vChrFilterPos);
  1518. av_freep(&c->hLumFilterPos);
  1519. av_freep(&c->hChrFilterPos);
  1520. #if HAVE_MMX_INLINE
  1521. #if USE_MMAP
  1522. if (c->lumMmxextFilterCode)
  1523. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1524. if (c->chrMmxextFilterCode)
  1525. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1526. #elif HAVE_VIRTUALALLOC
  1527. if (c->lumMmxextFilterCode)
  1528. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1529. if (c->chrMmxextFilterCode)
  1530. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1531. #else
  1532. av_free(c->lumMmxextFilterCode);
  1533. av_free(c->chrMmxextFilterCode);
  1534. #endif
  1535. c->lumMmxextFilterCode = NULL;
  1536. c->chrMmxextFilterCode = NULL;
  1537. #endif /* HAVE_MMX_INLINE */
  1538. av_freep(&c->yuvTable);
  1539. av_free(c->formatConvBuffer);
  1540. av_free(c);
  1541. }
  1542. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1543. int srcH, enum AVPixelFormat srcFormat,
  1544. int dstW, int dstH,
  1545. enum AVPixelFormat dstFormat, int flags,
  1546. SwsFilter *srcFilter,
  1547. SwsFilter *dstFilter,
  1548. const double *param)
  1549. {
  1550. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1551. SWS_PARAM_DEFAULT };
  1552. if (!param)
  1553. param = default_param;
  1554. if (context &&
  1555. (context->srcW != srcW ||
  1556. context->srcH != srcH ||
  1557. context->srcFormat != srcFormat ||
  1558. context->dstW != dstW ||
  1559. context->dstH != dstH ||
  1560. context->dstFormat != dstFormat ||
  1561. context->flags != flags ||
  1562. context->param[0] != param[0] ||
  1563. context->param[1] != param[1])) {
  1564. sws_freeContext(context);
  1565. context = NULL;
  1566. }
  1567. if (!context) {
  1568. if (!(context = sws_alloc_context()))
  1569. return NULL;
  1570. context->srcW = srcW;
  1571. context->srcH = srcH;
  1572. context->srcRange = handle_jpeg(&srcFormat);
  1573. context->srcFormat = srcFormat;
  1574. context->dstW = dstW;
  1575. context->dstH = dstH;
  1576. context->dstRange = handle_jpeg(&dstFormat);
  1577. context->dstFormat = dstFormat;
  1578. context->flags = flags;
  1579. context->param[0] = param[0];
  1580. context->param[1] = param[1];
  1581. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1582. context->srcRange,
  1583. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1584. context->dstRange, 0, 1 << 16, 1 << 16);
  1585. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1586. sws_freeContext(context);
  1587. return NULL;
  1588. }
  1589. }
  1590. return context;
  1591. }