You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1402 lines
40KB

  1. /*
  2. * This file is part of Libav.
  3. *
  4. * Libav is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2.1 of the License, or (at your option) any later version.
  8. *
  9. * Libav is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with Libav; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "libavutil/attributes.h"
  19. #include "libavutil/avassert.h"
  20. #include "bytestream.h"
  21. #include "cbs.h"
  22. #include "cbs_internal.h"
  23. #include "cbs_h264.h"
  24. #include "cbs_h265.h"
  25. #include "golomb.h"
  26. #include "h264.h"
  27. #include "h264_sei.h"
  28. #include "h2645_parse.h"
  29. #include "hevc.h"
  30. static int cbs_read_ue_golomb(CodedBitstreamContext *ctx, BitstreamContext *bc,
  31. const char *name, uint32_t *write_to,
  32. uint32_t range_min, uint32_t range_max)
  33. {
  34. uint32_t value;
  35. int position;
  36. if (ctx->trace_enable) {
  37. char bits[65];
  38. unsigned int k;
  39. int i, j;
  40. position = bitstream_tell(bc);
  41. for (i = 0; i < 32; i++) {
  42. k = bitstream_read_bit(bc);
  43. bits[i] = k ? '1' : '0';
  44. if (k)
  45. break;
  46. }
  47. if (i >= 32) {
  48. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb "
  49. "code found while reading %s: "
  50. "more than 31 zeroes.\n", name);
  51. return AVERROR_INVALIDDATA;
  52. }
  53. value = 1;
  54. for (j = 0; j < i; j++) {
  55. k = bitstream_read_bit(bc);
  56. bits[i + j + 1] = k ? '1' : '0';
  57. value = value << 1 | k;
  58. }
  59. bits[i + j + 1] = 0;
  60. --value;
  61. ff_cbs_trace_syntax_element(ctx, position, name, bits, value);
  62. } else {
  63. value = get_ue_golomb_long(bc);
  64. }
  65. if (value < range_min || value > range_max) {
  66. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  67. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  68. name, value, range_min, range_max);
  69. return AVERROR_INVALIDDATA;
  70. }
  71. *write_to = value;
  72. return 0;
  73. }
  74. static int cbs_read_se_golomb(CodedBitstreamContext *ctx, BitstreamContext *bc,
  75. const char *name, int32_t *write_to,
  76. int32_t range_min, int32_t range_max)
  77. {
  78. int32_t value;
  79. int position;
  80. if (ctx->trace_enable) {
  81. char bits[65];
  82. uint32_t v;
  83. unsigned int k;
  84. int i, j;
  85. position = bitstream_tell(bc);
  86. for (i = 0; i < 32; i++) {
  87. k = bitstream_read_bit(bc);
  88. bits[i] = k ? '1' : '0';
  89. if (k)
  90. break;
  91. }
  92. if (i >= 32) {
  93. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb "
  94. "code found while reading %s: "
  95. "more than 31 zeroes.\n", name);
  96. return AVERROR_INVALIDDATA;
  97. }
  98. v = 1;
  99. for (j = 0; j < i; j++) {
  100. k = bitstream_read_bit(bc);
  101. bits[i + j + 1] = k ? '1' : '0';
  102. v = v << 1 | k;
  103. }
  104. bits[i + j + 1] = 0;
  105. if (v & 1)
  106. value = -(int32_t)(v / 2);
  107. else
  108. value = v / 2;
  109. ff_cbs_trace_syntax_element(ctx, position, name, bits, value);
  110. } else {
  111. value = get_se_golomb_long(bc);
  112. }
  113. if (value < range_min || value > range_max) {
  114. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  115. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  116. name, value, range_min, range_max);
  117. return AVERROR_INVALIDDATA;
  118. }
  119. *write_to = value;
  120. return 0;
  121. }
  122. static int cbs_write_ue_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  123. const char *name, uint32_t value,
  124. uint32_t range_min, uint32_t range_max)
  125. {
  126. int len;
  127. if (value < range_min || value > range_max) {
  128. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  129. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  130. name, value, range_min, range_max);
  131. return AVERROR_INVALIDDATA;
  132. }
  133. av_assert0(value != UINT32_MAX);
  134. len = av_log2(value + 1);
  135. if (put_bits_left(pbc) < 2 * len + 1)
  136. return AVERROR(ENOSPC);
  137. if (ctx->trace_enable) {
  138. char bits[65];
  139. int i;
  140. for (i = 0; i < len; i++)
  141. bits[i] = '0';
  142. bits[len] = '1';
  143. for (i = 0; i < len; i++)
  144. bits[len + i + 1] = (value + 1) >> (len - i - 1) & 1 ? '1' : '0';
  145. bits[len + len + 1] = 0;
  146. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc), name, bits, value);
  147. }
  148. put_bits(pbc, len, 0);
  149. if (len + 1 < 32)
  150. put_bits(pbc, len + 1, value + 1);
  151. else
  152. put_bits32(pbc, value + 1);
  153. return 0;
  154. }
  155. static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  156. const char *name, int32_t value,
  157. int32_t range_min, int32_t range_max)
  158. {
  159. int len;
  160. uint32_t uvalue;
  161. if (value < range_min || value > range_max) {
  162. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  163. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  164. name, value, range_min, range_max);
  165. return AVERROR_INVALIDDATA;
  166. }
  167. av_assert0(value != INT32_MIN);
  168. if (value == 0)
  169. uvalue = 0;
  170. else if (value > 0)
  171. uvalue = 2 * (uint32_t)value - 1;
  172. else
  173. uvalue = 2 * (uint32_t)-value;
  174. len = av_log2(uvalue + 1);
  175. if (put_bits_left(pbc) < 2 * len + 1)
  176. return AVERROR(ENOSPC);
  177. if (ctx->trace_enable) {
  178. char bits[65];
  179. int i;
  180. for (i = 0; i < len; i++)
  181. bits[i] = '0';
  182. bits[len] = '1';
  183. for (i = 0; i < len; i++)
  184. bits[len + i + 1] = (uvalue + 1) >> (len - i - 1) & 1 ? '1' : '0';
  185. bits[len + len + 1] = 0;
  186. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc), name, bits, value);
  187. }
  188. put_bits(pbc, len, 0);
  189. if (len + 1 < 32)
  190. put_bits(pbc, len + 1, uvalue + 1);
  191. else
  192. put_bits32(pbc, uvalue + 1);
  193. return 0;
  194. }
  195. #define HEADER(name) do { \
  196. ff_cbs_trace_header(ctx, name); \
  197. } while (0)
  198. #define CHECK(call) do { \
  199. err = (call); \
  200. if (err < 0) \
  201. return err; \
  202. } while (0)
  203. #define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
  204. #define FUNC_H264(rw, name) FUNC_NAME(rw, h264, name)
  205. #define FUNC_H265(rw, name) FUNC_NAME(rw, h265, name)
  206. #define READ
  207. #define READWRITE read
  208. #define RWContext BitstreamContext
  209. #define xu(width, name, var, range_min, range_max) do { \
  210. uint32_t value = range_min; \
  211. CHECK(ff_cbs_read_unsigned(ctx, rw, width, #name, \
  212. &value, range_min, range_max)); \
  213. var = value; \
  214. } while (0)
  215. #define xue(name, var, range_min, range_max) do { \
  216. uint32_t value = range_min; \
  217. CHECK(cbs_read_ue_golomb(ctx, rw, #name, \
  218. &value, range_min, range_max)); \
  219. var = value; \
  220. } while (0)
  221. #define xse(name, var, range_min, range_max) do { \
  222. int32_t value = range_min; \
  223. CHECK(cbs_read_se_golomb(ctx, rw, #name, \
  224. &value, range_min, range_max)); \
  225. var = value; \
  226. } while (0)
  227. #define u(width, name, range_min, range_max) \
  228. xu(width, name, current->name, range_min, range_max)
  229. #define flag(name) u(1, name, 0, 1)
  230. #define ue(name, range_min, range_max) \
  231. xue(name, current->name, range_min, range_max)
  232. #define se(name, range_min, range_max) \
  233. xse(name, current->name, range_min, range_max)
  234. #define infer(name, value) do { \
  235. current->name = value; \
  236. } while (0)
  237. static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
  238. {
  239. int bits_left = bitstream_bits_left(bc);
  240. if (bits_left > 8)
  241. return 1;
  242. if (bitstream_peek(bc, bits_left) == 1 << (bits_left - 1))
  243. return 0;
  244. return 1;
  245. }
  246. #define more_rbsp_data(var) ((var) = cbs_h2645_read_more_rbsp_data(rw))
  247. #define byte_alignment(rw) (bitstream_tell(rw) % 8)
  248. #define allocate(name, size) do { \
  249. name = av_mallocz(size); \
  250. if (!name) \
  251. return AVERROR(ENOMEM); \
  252. } while (0)
  253. #define FUNC(name) FUNC_H264(READWRITE, name)
  254. #include "cbs_h264_syntax_template.c"
  255. #undef FUNC
  256. #define FUNC(name) FUNC_H265(READWRITE, name)
  257. #include "cbs_h265_syntax_template.c"
  258. #undef FUNC
  259. #undef READ
  260. #undef READWRITE
  261. #undef RWContext
  262. #undef xu
  263. #undef xue
  264. #undef xse
  265. #undef u
  266. #undef flag
  267. #undef ue
  268. #undef se
  269. #undef infer
  270. #undef more_rbsp_data
  271. #undef byte_alignment
  272. #undef allocate
  273. #define WRITE
  274. #define READWRITE write
  275. #define RWContext PutBitContext
  276. #define xu(width, name, var, range_min, range_max) do { \
  277. uint32_t value = var; \
  278. CHECK(ff_cbs_write_unsigned(ctx, rw, width, #name, \
  279. value, range_min, range_max)); \
  280. } while (0)
  281. #define xue(name, var, range_min, range_max) do { \
  282. uint32_t value = var; \
  283. CHECK(cbs_write_ue_golomb(ctx, rw, #name, \
  284. value, range_min, range_max)); \
  285. } while (0)
  286. #define xse(name, var, range_min, range_max) do { \
  287. int32_t value = var; \
  288. CHECK(cbs_write_se_golomb(ctx, rw, #name, \
  289. value, range_min, range_max)); \
  290. } while (0)
  291. #define u(width, name, range_min, range_max) \
  292. xu(width, name, current->name, range_min, range_max)
  293. #define flag(name) u(1, name, 0, 1)
  294. #define ue(name, range_min, range_max) \
  295. xue(name, current->name, range_min, range_max)
  296. #define se(name, range_min, range_max) \
  297. xse(name, current->name, range_min, range_max)
  298. #define infer(name, value) do { \
  299. if (current->name != (value)) { \
  300. av_log(ctx->log_ctx, AV_LOG_WARNING, "Warning: " \
  301. "%s does not match inferred value: " \
  302. "%"PRId64", but should be %"PRId64".\n", \
  303. #name, (int64_t)current->name, (int64_t)(value)); \
  304. } \
  305. } while (0)
  306. #define more_rbsp_data(var) (var)
  307. #define byte_alignment(rw) (put_bits_count(rw) % 8)
  308. #define allocate(name, size) do { \
  309. if (!name) { \
  310. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s must be set " \
  311. "for writing.\n", #name); \
  312. return AVERROR_INVALIDDATA; \
  313. } \
  314. } while (0)
  315. #define FUNC(name) FUNC_H264(READWRITE, name)
  316. #include "cbs_h264_syntax_template.c"
  317. #undef FUNC
  318. #define FUNC(name) FUNC_H265(READWRITE, name)
  319. #include "cbs_h265_syntax_template.c"
  320. #undef FUNC
  321. #undef WRITE
  322. #undef READWRITE
  323. #undef RWContext
  324. #undef xu
  325. #undef xue
  326. #undef xse
  327. #undef u
  328. #undef flag
  329. #undef ue
  330. #undef se
  331. #undef infer
  332. #undef more_rbsp_data
  333. #undef byte_alignment
  334. #undef allocate
  335. static void cbs_h264_free_sei(H264RawSEI *sei)
  336. {
  337. int i;
  338. for (i = 0; i < sei->payload_count; i++) {
  339. H264RawSEIPayload *payload = &sei->payload[i];
  340. switch (payload->payload_type) {
  341. case H264_SEI_TYPE_BUFFERING_PERIOD:
  342. case H264_SEI_TYPE_PIC_TIMING:
  343. case H264_SEI_TYPE_RECOVERY_POINT:
  344. case H264_SEI_TYPE_DISPLAY_ORIENTATION:
  345. break;
  346. case H264_SEI_TYPE_USER_DATA_REGISTERED:
  347. av_freep(&payload->payload.user_data_registered.data);
  348. break;
  349. case H264_SEI_TYPE_USER_DATA_UNREGISTERED:
  350. av_freep(&payload->payload.user_data_unregistered.data);
  351. break;
  352. default:
  353. av_freep(&payload->payload.other.data);
  354. break;
  355. }
  356. }
  357. }
  358. static void cbs_h264_free_slice(H264RawSlice *slice)
  359. {
  360. av_freep(&slice->data);
  361. }
  362. static void cbs_h264_free_nal_unit(CodedBitstreamUnit *unit)
  363. {
  364. switch (unit->type) {
  365. case H264_NAL_SEI:
  366. cbs_h264_free_sei(unit->content);
  367. break;
  368. case H264_NAL_IDR_SLICE:
  369. case H264_NAL_SLICE:
  370. cbs_h264_free_slice(unit->content);
  371. break;
  372. }
  373. av_freep(&unit->content);
  374. }
  375. static void cbs_h265_free_nal_unit(CodedBitstreamUnit *unit)
  376. {
  377. switch (unit->type) {
  378. case HEVC_NAL_VPS:
  379. av_freep(&((H265RawVPS*)unit->content)->extension_data.data);
  380. break;
  381. case HEVC_NAL_SPS:
  382. av_freep(&((H265RawSPS*)unit->content)->extension_data.data);
  383. break;
  384. case HEVC_NAL_PPS:
  385. av_freep(&((H265RawPPS*)unit->content)->extension_data.data);
  386. break;
  387. case HEVC_NAL_TRAIL_N:
  388. case HEVC_NAL_TRAIL_R:
  389. case HEVC_NAL_TSA_N:
  390. case HEVC_NAL_TSA_R:
  391. case HEVC_NAL_STSA_N:
  392. case HEVC_NAL_STSA_R:
  393. case HEVC_NAL_RADL_N:
  394. case HEVC_NAL_RADL_R:
  395. case HEVC_NAL_RASL_N:
  396. case HEVC_NAL_RASL_R:
  397. case HEVC_NAL_BLA_W_LP:
  398. case HEVC_NAL_BLA_W_RADL:
  399. case HEVC_NAL_BLA_N_LP:
  400. case HEVC_NAL_IDR_W_RADL:
  401. case HEVC_NAL_IDR_N_LP:
  402. case HEVC_NAL_CRA_NUT:
  403. av_freep(&((H265RawSlice*)unit->content)->data);
  404. break;
  405. }
  406. av_freep(&unit->content);
  407. }
  408. static int cbs_h2645_fragment_add_nals(CodedBitstreamContext *ctx,
  409. CodedBitstreamFragment *frag,
  410. const H2645Packet *packet)
  411. {
  412. int err, i;
  413. for (i = 0; i < packet->nb_nals; i++) {
  414. const H2645NAL *nal = &packet->nals[i];
  415. uint8_t *data;
  416. data = av_malloc(nal->size);
  417. if (!data)
  418. return AVERROR(ENOMEM);
  419. memcpy(data, nal->data, nal->size);
  420. err = ff_cbs_insert_unit_data(ctx, frag, -1, nal->type,
  421. data, nal->size);
  422. if (err < 0) {
  423. av_freep(&data);
  424. return err;
  425. }
  426. }
  427. return 0;
  428. }
  429. static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
  430. CodedBitstreamFragment *frag,
  431. int header)
  432. {
  433. enum AVCodecID codec_id = ctx->codec->codec_id;
  434. CodedBitstreamH2645Context *priv = ctx->priv_data;
  435. GetByteContext gbc;
  436. int err;
  437. av_assert0(frag->data && frag->nb_units == 0);
  438. if (frag->data_size == 0)
  439. return 0;
  440. if (header && frag->data[0] && codec_id == AV_CODEC_ID_H264) {
  441. // AVCC header.
  442. size_t size, start, end;
  443. int i, count, version;
  444. priv->mp4 = 1;
  445. bytestream2_init(&gbc, frag->data, frag->data_size);
  446. if (bytestream2_get_bytes_left(&gbc) < 6)
  447. return AVERROR_INVALIDDATA;
  448. version = bytestream2_get_byte(&gbc);
  449. if (version != 1) {
  450. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid AVCC header: "
  451. "first byte %u.", version);
  452. return AVERROR_INVALIDDATA;
  453. }
  454. bytestream2_skip(&gbc, 3);
  455. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  456. // SPS array.
  457. count = bytestream2_get_byte(&gbc) & 0x1f;
  458. start = bytestream2_tell(&gbc);
  459. for (i = 0; i < count; i++) {
  460. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  461. return AVERROR_INVALIDDATA;
  462. size = bytestream2_get_be16(&gbc);
  463. if (bytestream2_get_bytes_left(&gbc) < size)
  464. return AVERROR_INVALIDDATA;
  465. bytestream2_skip(&gbc, size);
  466. }
  467. end = bytestream2_tell(&gbc);
  468. err = ff_h2645_packet_split(&priv->read_packet,
  469. frag->data + start, end - start,
  470. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264);
  471. if (err < 0) {
  472. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC SPS array.\n");
  473. return err;
  474. }
  475. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  476. if (err < 0)
  477. return err;
  478. // PPS array.
  479. count = bytestream2_get_byte(&gbc);
  480. start = bytestream2_tell(&gbc);
  481. for (i = 0; i < count; i++) {
  482. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  483. return AVERROR_INVALIDDATA;
  484. size = bytestream2_get_be16(&gbc);
  485. if (bytestream2_get_bytes_left(&gbc) < size)
  486. return AVERROR_INVALIDDATA;
  487. bytestream2_skip(&gbc, size);
  488. }
  489. end = bytestream2_tell(&gbc);
  490. err = ff_h2645_packet_split(&priv->read_packet,
  491. frag->data + start, end - start,
  492. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264);
  493. if (err < 0) {
  494. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC PPS array.\n");
  495. return err;
  496. }
  497. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  498. if (err < 0)
  499. return err;
  500. if (bytestream2_get_bytes_left(&gbc) > 0) {
  501. av_log(ctx->log_ctx, AV_LOG_WARNING, "%u bytes left at end of AVCC "
  502. "header.\n", bytestream2_get_bytes_left(&gbc));
  503. }
  504. } else if (header && frag->data[0] && codec_id == AV_CODEC_ID_HEVC) {
  505. // HVCC header.
  506. size_t size, start, end;
  507. int i, j, nb_arrays, nal_unit_type, nb_nals, version;
  508. priv->mp4 = 1;
  509. bytestream2_init(&gbc, frag->data, frag->data_size);
  510. if (bytestream2_get_bytes_left(&gbc) < 23)
  511. return AVERROR_INVALIDDATA;
  512. version = bytestream2_get_byte(&gbc);
  513. if (version != 1) {
  514. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid HVCC header: "
  515. "first byte %u.", version);
  516. return AVERROR_INVALIDDATA;
  517. }
  518. bytestream2_skip(&gbc, 20);
  519. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  520. nb_arrays = bytestream2_get_byte(&gbc);
  521. for (i = 0; i < nb_arrays; i++) {
  522. nal_unit_type = bytestream2_get_byte(&gbc) & 0x3f;
  523. nb_nals = bytestream2_get_be16(&gbc);
  524. start = bytestream2_tell(&gbc);
  525. for (j = 0; j < nb_nals; j++) {
  526. if (bytestream2_get_bytes_left(&gbc) < 2)
  527. return AVERROR_INVALIDDATA;
  528. size = bytestream2_get_be16(&gbc);
  529. if (bytestream2_get_bytes_left(&gbc) < size)
  530. return AVERROR_INVALIDDATA;
  531. bytestream2_skip(&gbc, size);
  532. }
  533. end = bytestream2_tell(&gbc);
  534. err = ff_h2645_packet_split(&priv->read_packet,
  535. frag->data + start, end - start,
  536. ctx->log_ctx, 1, 2, AV_CODEC_ID_HEVC);
  537. if (err < 0) {
  538. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
  539. "HVCC array %d (%d NAL units of type %d).\n",
  540. i, nb_nals, nal_unit_type);
  541. return err;
  542. }
  543. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  544. if (err < 0)
  545. return err;
  546. }
  547. } else {
  548. // Annex B, or later MP4 with already-known parameters.
  549. err = ff_h2645_packet_split(&priv->read_packet,
  550. frag->data, frag->data_size,
  551. ctx->log_ctx,
  552. priv->mp4, priv->nal_length_size,
  553. codec_id);
  554. if (err < 0)
  555. return err;
  556. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  557. if (err < 0)
  558. return err;
  559. }
  560. return 0;
  561. }
  562. #define cbs_h2645_replace_ps(h26n, ps_name, ps_var, id_element) \
  563. static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
  564. const H26 ## h26n ## Raw ## ps_name *ps_var) \
  565. { \
  566. CodedBitstreamH26 ## h26n ## Context *priv = ctx->priv_data; \
  567. unsigned int id = ps_var->id_element; \
  568. if (id > FF_ARRAY_ELEMS(priv->ps_var)) { \
  569. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid " #ps_name \
  570. " id : %d.\n", id); \
  571. return AVERROR_INVALIDDATA; \
  572. } \
  573. av_freep(&priv->ps_var[id]); \
  574. priv->ps_var[id] = av_malloc(sizeof(*ps_var)); \
  575. if (!priv->ps_var[id]) \
  576. return AVERROR(ENOMEM); \
  577. memcpy(priv->ps_var[id], ps_var, sizeof(*ps_var)); \
  578. return 0; \
  579. }
  580. cbs_h2645_replace_ps(4, SPS, sps, seq_parameter_set_id)
  581. cbs_h2645_replace_ps(4, PPS, pps, pic_parameter_set_id)
  582. cbs_h2645_replace_ps(5, VPS, vps, vps_video_parameter_set_id)
  583. cbs_h2645_replace_ps(5, SPS, sps, sps_seq_parameter_set_id)
  584. cbs_h2645_replace_ps(5, PPS, pps, pps_pic_parameter_set_id)
  585. static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
  586. CodedBitstreamUnit *unit)
  587. {
  588. BitstreamContext bc;
  589. int err;
  590. err = bitstream_init(&bc, unit->data, 8 * unit->data_size);
  591. if (err < 0)
  592. return err;
  593. switch (unit->type) {
  594. case H264_NAL_SPS:
  595. {
  596. H264RawSPS *sps;
  597. sps = av_mallocz(sizeof(*sps));
  598. if (!sps)
  599. return AVERROR(ENOMEM);
  600. err = cbs_h264_read_sps(ctx, &bc, sps);
  601. if (err >= 0)
  602. err = cbs_h264_replace_sps(ctx, sps);
  603. if (err < 0) {
  604. av_free(sps);
  605. return err;
  606. }
  607. unit->content = sps;
  608. }
  609. break;
  610. case H264_NAL_SPS_EXT:
  611. {
  612. H264RawSPSExtension *sps_ext;
  613. sps_ext = av_mallocz(sizeof(*sps_ext));
  614. if (!sps_ext)
  615. return AVERROR(ENOMEM);
  616. err = cbs_h264_read_sps_extension(ctx, &bc, sps_ext);
  617. if (err < 0) {
  618. av_free(sps_ext);
  619. return err;
  620. }
  621. unit->content = sps_ext;
  622. }
  623. break;
  624. case H264_NAL_PPS:
  625. {
  626. H264RawPPS *pps;
  627. pps = av_mallocz(sizeof(*pps));
  628. if (!pps)
  629. return AVERROR(ENOMEM);
  630. err = cbs_h264_read_pps(ctx, &bc, pps);
  631. if (err >= 0)
  632. err = cbs_h264_replace_pps(ctx, pps);
  633. if (err < 0) {
  634. av_free(pps);
  635. return err;
  636. }
  637. unit->content = pps;
  638. }
  639. break;
  640. case H264_NAL_SLICE:
  641. case H264_NAL_IDR_SLICE:
  642. case H264_NAL_AUXILIARY_SLICE:
  643. {
  644. H264RawSlice *slice;
  645. int pos, len;
  646. slice = av_mallocz(sizeof(*slice));
  647. if (!slice)
  648. return AVERROR(ENOMEM);
  649. err = cbs_h264_read_slice_header(ctx, &bc, &slice->header);
  650. if (err < 0) {
  651. av_free(slice);
  652. return err;
  653. }
  654. pos = bitstream_tell(&bc);
  655. len = unit->data_size;
  656. if (!unit->data[len - 1]) {
  657. int z;
  658. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  659. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  660. "from slice data.\n", z);
  661. len -= z;
  662. }
  663. slice->data_size = len - pos / 8;
  664. slice->data = av_malloc(slice->data_size);
  665. if (!slice->data) {
  666. av_free(slice);
  667. return AVERROR(ENOMEM);
  668. }
  669. memcpy(slice->data,
  670. unit->data + pos / 8, slice->data_size);
  671. slice->data_bit_start = pos % 8;
  672. unit->content = slice;
  673. }
  674. break;
  675. case H264_NAL_AUD:
  676. {
  677. H264RawAUD *aud;
  678. aud = av_mallocz(sizeof(*aud));
  679. if (!aud)
  680. return AVERROR(ENOMEM);
  681. err = cbs_h264_read_aud(ctx, &bc, aud);
  682. if (err < 0) {
  683. av_free(aud);
  684. return err;
  685. }
  686. unit->content = aud;
  687. }
  688. break;
  689. case H264_NAL_SEI:
  690. {
  691. H264RawSEI *sei;
  692. sei = av_mallocz(sizeof(*sei));
  693. if (!sei)
  694. return AVERROR(ENOMEM);
  695. err = cbs_h264_read_sei(ctx, &bc, sei);
  696. if (err < 0) {
  697. cbs_h264_free_sei(sei);
  698. return err;
  699. }
  700. unit->content = sei;
  701. }
  702. break;
  703. default:
  704. return AVERROR(ENOSYS);
  705. }
  706. return 0;
  707. }
  708. static int cbs_h265_read_nal_unit(CodedBitstreamContext *ctx,
  709. CodedBitstreamUnit *unit)
  710. {
  711. BitstreamContext bc;
  712. int err;
  713. err = bitstream_init(&bc, unit->data, 8 * unit->data_size);
  714. if (err < 0)
  715. return err;
  716. switch (unit->type) {
  717. case HEVC_NAL_VPS:
  718. {
  719. H265RawVPS *vps;
  720. vps = av_mallocz(sizeof(*vps));
  721. if (!vps)
  722. return AVERROR(ENOMEM);
  723. err = cbs_h265_read_vps(ctx, &bc, vps);
  724. if (err >= 0)
  725. err = cbs_h265_replace_vps(ctx, vps);
  726. if (err < 0) {
  727. av_free(vps);
  728. return err;
  729. }
  730. unit->content = vps;
  731. }
  732. break;
  733. case HEVC_NAL_SPS:
  734. {
  735. H265RawSPS *sps;
  736. sps = av_mallocz(sizeof(*sps));
  737. if (!sps)
  738. return AVERROR(ENOMEM);
  739. err = cbs_h265_read_sps(ctx, &bc, sps);
  740. if (err >= 0)
  741. err = cbs_h265_replace_sps(ctx, sps);
  742. if (err < 0) {
  743. av_free(sps);
  744. return err;
  745. }
  746. unit->content = sps;
  747. }
  748. break;
  749. case HEVC_NAL_PPS:
  750. {
  751. H265RawPPS *pps;
  752. pps = av_mallocz(sizeof(*pps));
  753. if (!pps)
  754. return AVERROR(ENOMEM);
  755. err = cbs_h265_read_pps(ctx, &bc, pps);
  756. if (err >= 0)
  757. err = cbs_h265_replace_pps(ctx, pps);
  758. if (err < 0) {
  759. av_free(pps);
  760. return err;
  761. }
  762. unit->content = pps;
  763. }
  764. break;
  765. case HEVC_NAL_TRAIL_N:
  766. case HEVC_NAL_TRAIL_R:
  767. case HEVC_NAL_TSA_N:
  768. case HEVC_NAL_TSA_R:
  769. case HEVC_NAL_STSA_N:
  770. case HEVC_NAL_STSA_R:
  771. case HEVC_NAL_RADL_N:
  772. case HEVC_NAL_RADL_R:
  773. case HEVC_NAL_RASL_N:
  774. case HEVC_NAL_RASL_R:
  775. case HEVC_NAL_BLA_W_LP:
  776. case HEVC_NAL_BLA_W_RADL:
  777. case HEVC_NAL_BLA_N_LP:
  778. case HEVC_NAL_IDR_W_RADL:
  779. case HEVC_NAL_IDR_N_LP:
  780. case HEVC_NAL_CRA_NUT:
  781. {
  782. H265RawSlice *slice;
  783. int pos, len;
  784. slice = av_mallocz(sizeof(*slice));
  785. if (!slice)
  786. return AVERROR(ENOMEM);
  787. err = cbs_h265_read_slice_segment_header(ctx, &bc, &slice->header);
  788. if (err < 0) {
  789. av_free(slice);
  790. return err;
  791. }
  792. pos = bitstream_tell(&bc);
  793. len = unit->data_size;
  794. if (!unit->data[len - 1]) {
  795. int z;
  796. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  797. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  798. "from slice data.\n", z);
  799. len -= z;
  800. }
  801. slice->data_size = len - pos / 8;
  802. slice->data = av_malloc(slice->data_size);
  803. if (!slice->data) {
  804. av_free(slice);
  805. return AVERROR(ENOMEM);
  806. }
  807. memcpy(slice->data,
  808. unit->data + pos / 8, slice->data_size);
  809. slice->data_bit_start = pos % 8;
  810. unit->content = slice;
  811. }
  812. break;
  813. case HEVC_NAL_AUD:
  814. {
  815. H265RawAUD *aud;
  816. aud = av_mallocz(sizeof(*aud));
  817. if (!aud)
  818. return AVERROR(ENOMEM);
  819. err = cbs_h265_read_aud(ctx, &bc, aud);
  820. if (err < 0) {
  821. av_free(aud);
  822. return err;
  823. }
  824. unit->content = aud;
  825. }
  826. break;
  827. default:
  828. return AVERROR(ENOSYS);
  829. }
  830. return 0;
  831. }
  832. static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
  833. CodedBitstreamUnit *unit,
  834. PutBitContext *pbc)
  835. {
  836. int err;
  837. switch (unit->type) {
  838. case H264_NAL_SPS:
  839. {
  840. H264RawSPS *sps = unit->content;
  841. err = cbs_h264_write_sps(ctx, pbc, sps);
  842. if (err < 0)
  843. return err;
  844. err = cbs_h264_replace_sps(ctx, sps);
  845. if (err < 0)
  846. return err;
  847. }
  848. break;
  849. case H264_NAL_SPS_EXT:
  850. {
  851. H264RawSPSExtension *sps_ext;
  852. err = cbs_h264_write_sps_extension(ctx, pbc, sps_ext);
  853. if (err < 0)
  854. return err;
  855. }
  856. break;
  857. case H264_NAL_PPS:
  858. {
  859. H264RawPPS *pps = unit->content;
  860. err = cbs_h264_write_pps(ctx, pbc, pps);
  861. if (err < 0)
  862. return err;
  863. err = cbs_h264_replace_pps(ctx, pps);
  864. if (err < 0)
  865. return err;
  866. }
  867. break;
  868. case H264_NAL_SLICE:
  869. case H264_NAL_IDR_SLICE:
  870. {
  871. H264RawSlice *slice = unit->content;
  872. BitstreamContext bc;
  873. int bits_left, end, zeroes;
  874. err = cbs_h264_write_slice_header(ctx, pbc, &slice->header);
  875. if (err < 0)
  876. return err;
  877. if (slice->data) {
  878. if (slice->data_size * 8 + 8 > put_bits_left(pbc))
  879. return AVERROR(ENOSPC);
  880. bitstream_init(&bc, slice->data, slice->data_size * 8);
  881. bitstream_skip(&bc, slice->data_bit_start);
  882. // Copy in two-byte blocks, but stop before copying the
  883. // rbsp_stop_one_bit in the final byte.
  884. while (bitstream_bits_left(&bc) > 23)
  885. put_bits(pbc, 16, bitstream_read(&bc, 16));
  886. bits_left = bitstream_bits_left(&bc);
  887. end = bitstream_read(&bc, bits_left);
  888. // rbsp_stop_one_bit must be present here.
  889. av_assert0(end);
  890. zeroes = ff_ctz(end);
  891. if (bits_left > zeroes + 1)
  892. put_bits(pbc, bits_left - zeroes - 1,
  893. end >> (zeroes + 1));
  894. put_bits(pbc, 1, 1);
  895. while (put_bits_count(pbc) % 8 != 0)
  896. put_bits(pbc, 1, 0);
  897. } else {
  898. // No slice data - that was just the header.
  899. // (Bitstream may be unaligned!)
  900. }
  901. }
  902. break;
  903. case H264_NAL_AUD:
  904. {
  905. err = cbs_h264_write_aud(ctx, pbc, unit->content);
  906. if (err < 0)
  907. return err;
  908. }
  909. break;
  910. case H264_NAL_SEI:
  911. {
  912. err = cbs_h264_write_sei(ctx, pbc, unit->content);
  913. if (err < 0)
  914. return err;
  915. }
  916. break;
  917. default:
  918. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  919. "NAL unit type %"PRIu32".\n", unit->type);
  920. return AVERROR_PATCHWELCOME;
  921. }
  922. return 0;
  923. }
  924. static int cbs_h265_write_nal_unit(CodedBitstreamContext *ctx,
  925. CodedBitstreamUnit *unit,
  926. PutBitContext *pbc)
  927. {
  928. int err;
  929. switch (unit->type) {
  930. case HEVC_NAL_VPS:
  931. {
  932. H265RawVPS *vps = unit->content;
  933. err = cbs_h265_write_vps(ctx, pbc, vps);
  934. if (err < 0)
  935. return err;
  936. err = cbs_h265_replace_vps(ctx, vps);
  937. if (err < 0)
  938. return err;
  939. }
  940. break;
  941. case HEVC_NAL_SPS:
  942. {
  943. H265RawSPS *sps = unit->content;
  944. err = cbs_h265_write_sps(ctx, pbc, sps);
  945. if (err < 0)
  946. return err;
  947. err = cbs_h265_replace_sps(ctx, sps);
  948. if (err < 0)
  949. return err;
  950. }
  951. break;
  952. case HEVC_NAL_PPS:
  953. {
  954. H265RawPPS *pps = unit->content;
  955. err = cbs_h265_write_pps(ctx, pbc, pps);
  956. if (err < 0)
  957. return err;
  958. err = cbs_h265_replace_pps(ctx, pps);
  959. if (err < 0)
  960. return err;
  961. }
  962. break;
  963. case HEVC_NAL_TRAIL_N:
  964. case HEVC_NAL_TRAIL_R:
  965. case HEVC_NAL_TSA_N:
  966. case HEVC_NAL_TSA_R:
  967. case HEVC_NAL_STSA_N:
  968. case HEVC_NAL_STSA_R:
  969. case HEVC_NAL_RADL_N:
  970. case HEVC_NAL_RADL_R:
  971. case HEVC_NAL_RASL_N:
  972. case HEVC_NAL_RASL_R:
  973. case HEVC_NAL_BLA_W_LP:
  974. case HEVC_NAL_BLA_W_RADL:
  975. case HEVC_NAL_BLA_N_LP:
  976. case HEVC_NAL_IDR_W_RADL:
  977. case HEVC_NAL_IDR_N_LP:
  978. case HEVC_NAL_CRA_NUT:
  979. {
  980. H265RawSlice *slice = unit->content;
  981. BitstreamContext bc;
  982. int bits_left, end, zeroes;
  983. err = cbs_h265_write_slice_segment_header(ctx, pbc, &slice->header);
  984. if (err < 0)
  985. return err;
  986. if (slice->data) {
  987. if (slice->data_size * 8 + 8 > put_bits_left(pbc))
  988. return AVERROR(ENOSPC);
  989. bitstream_init(&bc, slice->data, slice->data_size * 8);
  990. bitstream_skip(&bc, slice->data_bit_start);
  991. // Copy in two-byte blocks, but stop before copying the
  992. // rbsp_stop_one_bit in the final byte.
  993. while (bitstream_bits_left(&bc) > 23)
  994. put_bits(pbc, 16, bitstream_read(&bc, 16));
  995. bits_left = bitstream_bits_left(&bc);
  996. end = bitstream_read(&bc, bits_left);
  997. // rbsp_stop_one_bit must be present here.
  998. av_assert0(end);
  999. zeroes = ff_ctz(end);
  1000. if (bits_left > zeroes + 1)
  1001. put_bits(pbc, bits_left - zeroes - 1,
  1002. end >> (zeroes + 1));
  1003. put_bits(pbc, 1, 1);
  1004. while (put_bits_count(pbc) % 8 != 0)
  1005. put_bits(pbc, 1, 0);
  1006. } else {
  1007. // No slice data - that was just the header.
  1008. }
  1009. }
  1010. break;
  1011. case HEVC_NAL_AUD:
  1012. {
  1013. err = cbs_h265_write_aud(ctx, pbc, unit->content);
  1014. if (err < 0)
  1015. return err;
  1016. }
  1017. break;
  1018. default:
  1019. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  1020. "NAL unit type %d.\n", unit->type);
  1021. return AVERROR_PATCHWELCOME;
  1022. }
  1023. return 0;
  1024. }
  1025. static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
  1026. CodedBitstreamUnit *unit)
  1027. {
  1028. CodedBitstreamH2645Context *priv = ctx->priv_data;
  1029. enum AVCodecID codec_id = ctx->codec->codec_id;
  1030. PutBitContext pbc;
  1031. int err;
  1032. if (!priv->write_buffer) {
  1033. // Initial write buffer size is 1MB.
  1034. priv->write_buffer_size = 1024 * 1024;
  1035. reallocate_and_try_again:
  1036. err = av_reallocp(&priv->write_buffer, priv->write_buffer_size);
  1037. if (err < 0) {
  1038. av_log(ctx->log_ctx, AV_LOG_ERROR, "Unable to allocate a "
  1039. "sufficiently large write buffer (last attempt "
  1040. "%zu bytes).\n", priv->write_buffer_size);
  1041. return err;
  1042. }
  1043. }
  1044. init_put_bits(&pbc, priv->write_buffer, priv->write_buffer_size);
  1045. if (codec_id == AV_CODEC_ID_H264)
  1046. err = cbs_h264_write_nal_unit(ctx, unit, &pbc);
  1047. else
  1048. err = cbs_h265_write_nal_unit(ctx, unit, &pbc);
  1049. if (err == AVERROR(ENOSPC)) {
  1050. // Overflow.
  1051. priv->write_buffer_size *= 2;
  1052. goto reallocate_and_try_again;
  1053. }
  1054. // Overflow but we didn't notice.
  1055. av_assert0(put_bits_count(&pbc) <= 8 * priv->write_buffer_size);
  1056. if (put_bits_count(&pbc) % 8)
  1057. unit->data_bit_padding = 8 - put_bits_count(&pbc) % 8;
  1058. else
  1059. unit->data_bit_padding = 0;
  1060. unit->data_size = (put_bits_count(&pbc) + 7) / 8;
  1061. flush_put_bits(&pbc);
  1062. err = av_reallocp(&unit->data, unit->data_size);
  1063. if (err < 0)
  1064. return err;
  1065. memcpy(unit->data, priv->write_buffer, unit->data_size);
  1066. return 0;
  1067. }
  1068. static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
  1069. CodedBitstreamFragment *frag)
  1070. {
  1071. uint8_t *data;
  1072. size_t max_size, dp, sp;
  1073. int err, i, zero_run;
  1074. for (i = 0; i < frag->nb_units; i++) {
  1075. // Data should already all have been written when we get here.
  1076. av_assert0(frag->units[i].data);
  1077. }
  1078. max_size = 0;
  1079. for (i = 0; i < frag->nb_units; i++) {
  1080. // Start code + content with worst-case emulation prevention.
  1081. max_size += 3 + frag->units[i].data_size * 3 / 2;
  1082. }
  1083. data = av_malloc(max_size);
  1084. if (!data)
  1085. return AVERROR(ENOMEM);
  1086. dp = 0;
  1087. for (i = 0; i < frag->nb_units; i++) {
  1088. CodedBitstreamUnit *unit = &frag->units[i];
  1089. if (unit->data_bit_padding > 0) {
  1090. if (i < frag->nb_units - 1)
  1091. av_log(ctx->log_ctx, AV_LOG_WARNING, "Probably invalid "
  1092. "unaligned padding on non-final NAL unit.\n");
  1093. else
  1094. frag->data_bit_padding = unit->data_bit_padding;
  1095. }
  1096. if ((ctx->codec->codec_id == AV_CODEC_ID_H264 &&
  1097. (unit->type == H264_NAL_SPS ||
  1098. unit->type == H264_NAL_PPS)) ||
  1099. (ctx->codec->codec_id == AV_CODEC_ID_HEVC &&
  1100. (unit->type == HEVC_NAL_VPS ||
  1101. unit->type == HEVC_NAL_SPS ||
  1102. unit->type == HEVC_NAL_PPS)) ||
  1103. i == 0 /* (Assume this is the start of an access unit.) */) {
  1104. // zero_byte
  1105. data[dp++] = 0;
  1106. }
  1107. // start_code_prefix_one_3bytes
  1108. data[dp++] = 0;
  1109. data[dp++] = 0;
  1110. data[dp++] = 1;
  1111. zero_run = 0;
  1112. for (sp = 0; sp < unit->data_size; sp++) {
  1113. if (zero_run < 2) {
  1114. if (unit->data[sp] == 0)
  1115. ++zero_run;
  1116. else
  1117. zero_run = 0;
  1118. } else {
  1119. if ((unit->data[sp] & ~3) == 0) {
  1120. // emulation_prevention_three_byte
  1121. data[dp++] = 3;
  1122. }
  1123. zero_run = unit->data[sp] == 0;
  1124. }
  1125. data[dp++] = unit->data[sp];
  1126. }
  1127. }
  1128. av_assert0(dp <= max_size);
  1129. err = av_reallocp(&data, dp);
  1130. if (err)
  1131. return err;
  1132. frag->data = data;
  1133. frag->data_size = dp;
  1134. return 0;
  1135. }
  1136. static void cbs_h264_close(CodedBitstreamContext *ctx)
  1137. {
  1138. CodedBitstreamH264Context *h264 = ctx->priv_data;
  1139. int i;
  1140. ff_h2645_packet_uninit(&h264->common.read_packet);
  1141. av_freep(&h264->common.write_buffer);
  1142. for (i = 0; i < FF_ARRAY_ELEMS(h264->sps); i++)
  1143. av_freep(&h264->sps[i]);
  1144. for (i = 0; i < FF_ARRAY_ELEMS(h264->pps); i++)
  1145. av_freep(&h264->pps[i]);
  1146. }
  1147. static void cbs_h265_close(CodedBitstreamContext *ctx)
  1148. {
  1149. CodedBitstreamH265Context *h265 = ctx->priv_data;
  1150. int i;
  1151. ff_h2645_packet_uninit(&h265->common.read_packet);
  1152. av_freep(&h265->common.write_buffer);
  1153. for (i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
  1154. av_freep(&h265->vps[i]);
  1155. for (i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
  1156. av_freep(&h265->sps[i]);
  1157. for (i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
  1158. av_freep(&h265->pps[i]);
  1159. }
  1160. const CodedBitstreamType ff_cbs_type_h264 = {
  1161. .codec_id = AV_CODEC_ID_H264,
  1162. .priv_data_size = sizeof(CodedBitstreamH264Context),
  1163. .split_fragment = &cbs_h2645_split_fragment,
  1164. .read_unit = &cbs_h264_read_nal_unit,
  1165. .write_unit = &cbs_h2645_write_nal_unit,
  1166. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1167. .free_unit = &cbs_h264_free_nal_unit,
  1168. .close = &cbs_h264_close,
  1169. };
  1170. const CodedBitstreamType ff_cbs_type_h265 = {
  1171. .codec_id = AV_CODEC_ID_HEVC,
  1172. .priv_data_size = sizeof(CodedBitstreamH265Context),
  1173. .split_fragment = &cbs_h2645_split_fragment,
  1174. .read_unit = &cbs_h265_read_nal_unit,
  1175. .write_unit = &cbs_h2645_write_nal_unit,
  1176. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1177. .free_unit = &cbs_h265_free_nal_unit,
  1178. .close = &cbs_h265_close,
  1179. };