You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

598 lines
19KB

  1. /*
  2. * Copyright (c) 2010-2011 Maxim Poliakovski
  3. * Copyright (c) 2010-2011 Elvis Presley
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
  24. */
  25. //#define DEBUG
  26. #define LONG_BITSTREAM_READER
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "internal.h"
  30. #include "simple_idct.h"
  31. #include "proresdec.h"
  32. static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
  33. {
  34. int i;
  35. for (i = 0; i < 64; i++)
  36. dst[i] = permutation[src[i]];
  37. }
  38. static const uint8_t progressive_scan[64] = {
  39. 0, 1, 8, 9, 2, 3, 10, 11,
  40. 16, 17, 24, 25, 18, 19, 26, 27,
  41. 4, 5, 12, 20, 13, 6, 7, 14,
  42. 21, 28, 29, 22, 15, 23, 30, 31,
  43. 32, 33, 40, 48, 41, 34, 35, 42,
  44. 49, 56, 57, 50, 43, 36, 37, 44,
  45. 51, 58, 59, 52, 45, 38, 39, 46,
  46. 53, 60, 61, 54, 47, 55, 62, 63
  47. };
  48. static const uint8_t interlaced_scan[64] = {
  49. 0, 8, 1, 9, 16, 24, 17, 25,
  50. 2, 10, 3, 11, 18, 26, 19, 27,
  51. 32, 40, 33, 34, 41, 48, 56, 49,
  52. 42, 35, 43, 50, 57, 58, 51, 59,
  53. 4, 12, 5, 6, 13, 20, 28, 21,
  54. 14, 7, 15, 22, 29, 36, 44, 37,
  55. 30, 23, 31, 38, 45, 52, 60, 53,
  56. 46, 39, 47, 54, 61, 62, 55, 63,
  57. };
  58. static av_cold int decode_init(AVCodecContext *avctx)
  59. {
  60. ProresContext *ctx = avctx->priv_data;
  61. uint8_t idct_permutation[64];
  62. avctx->bits_per_raw_sample = 10;
  63. ff_dsputil_init(&ctx->dsp, avctx);
  64. ff_proresdsp_init(&ctx->prodsp, avctx);
  65. ff_init_scantable_permutation(idct_permutation,
  66. ctx->prodsp.idct_permutation_type);
  67. permute(ctx->progressive_scan, progressive_scan, idct_permutation);
  68. permute(ctx->interlaced_scan, interlaced_scan, idct_permutation);
  69. return 0;
  70. }
  71. static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
  72. const int data_size, AVCodecContext *avctx)
  73. {
  74. int hdr_size, width, height, flags;
  75. int version;
  76. const uint8_t *ptr;
  77. hdr_size = AV_RB16(buf);
  78. av_dlog(avctx, "header size %d\n", hdr_size);
  79. if (hdr_size > data_size) {
  80. av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
  81. return -1;
  82. }
  83. version = AV_RB16(buf + 2);
  84. av_dlog(avctx, "%.4s version %d\n", buf+4, version);
  85. if (version > 1) {
  86. av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
  87. return -1;
  88. }
  89. width = AV_RB16(buf + 8);
  90. height = AV_RB16(buf + 10);
  91. if (width != avctx->width || height != avctx->height) {
  92. av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
  93. avctx->width, avctx->height, width, height);
  94. return -1;
  95. }
  96. ctx->frame_type = (buf[12] >> 2) & 3;
  97. av_dlog(avctx, "frame type %d\n", ctx->frame_type);
  98. if (ctx->frame_type == 0) {
  99. ctx->scan = ctx->progressive_scan; // permuted
  100. } else {
  101. ctx->scan = ctx->interlaced_scan; // permuted
  102. ctx->frame->interlaced_frame = 1;
  103. ctx->frame->top_field_first = ctx->frame_type == 1;
  104. }
  105. avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
  106. ptr = buf + 20;
  107. flags = buf[19];
  108. av_dlog(avctx, "flags %x\n", flags);
  109. if (flags & 2) {
  110. if(buf + data_size - ptr < 64) {
  111. av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
  112. return -1;
  113. }
  114. permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
  115. ptr += 64;
  116. } else {
  117. memset(ctx->qmat_luma, 4, 64);
  118. }
  119. if (flags & 1) {
  120. if(buf + data_size - ptr < 64) {
  121. av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
  122. return -1;
  123. }
  124. permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
  125. } else {
  126. memset(ctx->qmat_chroma, 4, 64);
  127. }
  128. return hdr_size;
  129. }
  130. static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
  131. {
  132. ProresContext *ctx = avctx->priv_data;
  133. int i, hdr_size, slice_count;
  134. unsigned pic_data_size;
  135. int log2_slice_mb_width, log2_slice_mb_height;
  136. int slice_mb_count, mb_x, mb_y;
  137. const uint8_t *data_ptr, *index_ptr;
  138. hdr_size = buf[0] >> 3;
  139. if (hdr_size < 8 || hdr_size > buf_size) {
  140. av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
  141. return -1;
  142. }
  143. pic_data_size = AV_RB32(buf + 1);
  144. if (pic_data_size > buf_size) {
  145. av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
  146. return -1;
  147. }
  148. log2_slice_mb_width = buf[7] >> 4;
  149. log2_slice_mb_height = buf[7] & 0xF;
  150. if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
  151. av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
  152. 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
  153. return -1;
  154. }
  155. ctx->mb_width = (avctx->width + 15) >> 4;
  156. if (ctx->frame_type)
  157. ctx->mb_height = (avctx->height + 31) >> 5;
  158. else
  159. ctx->mb_height = (avctx->height + 15) >> 4;
  160. slice_count = AV_RB16(buf + 5);
  161. if (ctx->slice_count != slice_count || !ctx->slices) {
  162. av_freep(&ctx->slices);
  163. ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices));
  164. if (!ctx->slices)
  165. return AVERROR(ENOMEM);
  166. ctx->slice_count = slice_count;
  167. }
  168. if (!slice_count)
  169. return AVERROR(EINVAL);
  170. if (hdr_size + slice_count*2 > buf_size) {
  171. av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
  172. return -1;
  173. }
  174. // parse slice information
  175. index_ptr = buf + hdr_size;
  176. data_ptr = index_ptr + slice_count*2;
  177. slice_mb_count = 1 << log2_slice_mb_width;
  178. mb_x = 0;
  179. mb_y = 0;
  180. for (i = 0; i < slice_count; i++) {
  181. SliceContext *slice = &ctx->slices[i];
  182. slice->data = data_ptr;
  183. data_ptr += AV_RB16(index_ptr + i*2);
  184. while (ctx->mb_width - mb_x < slice_mb_count)
  185. slice_mb_count >>= 1;
  186. slice->mb_x = mb_x;
  187. slice->mb_y = mb_y;
  188. slice->mb_count = slice_mb_count;
  189. slice->data_size = data_ptr - slice->data;
  190. if (slice->data_size < 6) {
  191. av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
  192. return -1;
  193. }
  194. mb_x += slice_mb_count;
  195. if (mb_x == ctx->mb_width) {
  196. slice_mb_count = 1 << log2_slice_mb_width;
  197. mb_x = 0;
  198. mb_y++;
  199. }
  200. if (data_ptr > buf + buf_size) {
  201. av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
  202. return -1;
  203. }
  204. }
  205. if (mb_x || mb_y != ctx->mb_height) {
  206. av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
  207. mb_y, ctx->mb_height);
  208. return -1;
  209. }
  210. return pic_data_size;
  211. }
  212. #define DECODE_CODEWORD(val, codebook) \
  213. do { \
  214. unsigned int rice_order, exp_order, switch_bits; \
  215. unsigned int q, buf, bits; \
  216. \
  217. UPDATE_CACHE(re, gb); \
  218. buf = GET_CACHE(re, gb); \
  219. \
  220. /* number of bits to switch between rice and exp golomb */ \
  221. switch_bits = codebook & 3; \
  222. rice_order = codebook >> 5; \
  223. exp_order = (codebook >> 2) & 7; \
  224. \
  225. q = 31 - av_log2(buf); \
  226. \
  227. if (q > switch_bits) { /* exp golomb */ \
  228. bits = exp_order - switch_bits + (q<<1); \
  229. val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
  230. ((switch_bits + 1) << rice_order); \
  231. SKIP_BITS(re, gb, bits); \
  232. } else if (rice_order) { \
  233. SKIP_BITS(re, gb, q+1); \
  234. val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
  235. SKIP_BITS(re, gb, rice_order); \
  236. } else { \
  237. val = q; \
  238. SKIP_BITS(re, gb, q+1); \
  239. } \
  240. } while (0)
  241. #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
  242. #define FIRST_DC_CB 0xB8
  243. static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
  244. static av_always_inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
  245. int blocks_per_slice)
  246. {
  247. int16_t prev_dc;
  248. int code, i, sign;
  249. OPEN_READER(re, gb);
  250. DECODE_CODEWORD(code, FIRST_DC_CB);
  251. prev_dc = TOSIGNED(code);
  252. out[0] = prev_dc;
  253. out += 64; // dc coeff for the next block
  254. code = 5;
  255. sign = 0;
  256. for (i = 1; i < blocks_per_slice; i++, out += 64) {
  257. DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
  258. if(code) sign ^= -(code & 1);
  259. else sign = 0;
  260. prev_dc += (((code + 1) >> 1) ^ sign) - sign;
  261. out[0] = prev_dc;
  262. }
  263. CLOSE_READER(re, gb);
  264. }
  265. // adaptive codebook switching lut according to previous run/level values
  266. static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
  267. static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
  268. static av_always_inline void decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb,
  269. int16_t *out, int blocks_per_slice)
  270. {
  271. ProresContext *ctx = avctx->priv_data;
  272. int block_mask, sign;
  273. unsigned pos, run, level;
  274. int max_coeffs, i, bits_left;
  275. int log2_block_count = av_log2(blocks_per_slice);
  276. OPEN_READER(re, gb);
  277. UPDATE_CACHE(re, gb); \
  278. run = 4;
  279. level = 2;
  280. max_coeffs = 64 << log2_block_count;
  281. block_mask = blocks_per_slice - 1;
  282. for (pos = block_mask;;) {
  283. bits_left = gb->size_in_bits - re_index;
  284. if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
  285. break;
  286. DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)]);
  287. pos += run + 1;
  288. if (pos >= max_coeffs) {
  289. av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
  290. return;
  291. }
  292. DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
  293. level += 1;
  294. i = pos >> log2_block_count;
  295. sign = SHOW_SBITS(re, gb, 1);
  296. SKIP_BITS(re, gb, 1);
  297. out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
  298. }
  299. CLOSE_READER(re, gb);
  300. }
  301. static void decode_slice_luma(AVCodecContext *avctx, SliceContext *slice,
  302. uint16_t *dst, int dst_stride,
  303. const uint8_t *buf, unsigned buf_size,
  304. const int16_t *qmat)
  305. {
  306. ProresContext *ctx = avctx->priv_data;
  307. LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
  308. int16_t *block;
  309. GetBitContext gb;
  310. int i, blocks_per_slice = slice->mb_count<<2;
  311. for (i = 0; i < blocks_per_slice; i++)
  312. ctx->dsp.clear_block(blocks+(i<<6));
  313. init_get_bits(&gb, buf, buf_size << 3);
  314. decode_dc_coeffs(&gb, blocks, blocks_per_slice);
  315. decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice);
  316. block = blocks;
  317. for (i = 0; i < slice->mb_count; i++) {
  318. ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
  319. ctx->prodsp.idct_put(dst +8, dst_stride, block+(1<<6), qmat);
  320. ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat);
  321. ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
  322. block += 4*64;
  323. dst += 16;
  324. }
  325. }
  326. static void decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice,
  327. uint16_t *dst, int dst_stride,
  328. const uint8_t *buf, unsigned buf_size,
  329. const int16_t *qmat, int log2_blocks_per_mb)
  330. {
  331. ProresContext *ctx = avctx->priv_data;
  332. LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
  333. int16_t *block;
  334. GetBitContext gb;
  335. int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
  336. for (i = 0; i < blocks_per_slice; i++)
  337. ctx->dsp.clear_block(blocks+(i<<6));
  338. init_get_bits(&gb, buf, buf_size << 3);
  339. decode_dc_coeffs(&gb, blocks, blocks_per_slice);
  340. decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice);
  341. block = blocks;
  342. for (i = 0; i < slice->mb_count; i++) {
  343. for (j = 0; j < log2_blocks_per_mb; j++) {
  344. ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
  345. ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
  346. block += 2*64;
  347. dst += 8;
  348. }
  349. }
  350. }
  351. static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  352. {
  353. ProresContext *ctx = avctx->priv_data;
  354. SliceContext *slice = &ctx->slices[jobnr];
  355. const uint8_t *buf = slice->data;
  356. AVFrame *pic = ctx->frame;
  357. int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
  358. int luma_stride, chroma_stride;
  359. int y_data_size, u_data_size, v_data_size;
  360. uint8_t *dest_y, *dest_u, *dest_v;
  361. int16_t qmat_luma_scaled[64];
  362. int16_t qmat_chroma_scaled[64];
  363. int mb_x_shift;
  364. slice->ret = -1;
  365. //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
  366. // jobnr, slice->mb_count, slice->mb_x, slice->mb_y);
  367. // slice header
  368. hdr_size = buf[0] >> 3;
  369. qscale = av_clip(buf[1], 1, 224);
  370. qscale = qscale > 128 ? qscale - 96 << 2: qscale;
  371. y_data_size = AV_RB16(buf + 2);
  372. u_data_size = AV_RB16(buf + 4);
  373. v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
  374. if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
  375. if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
  376. || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
  377. av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
  378. return -1;
  379. }
  380. buf += hdr_size;
  381. for (i = 0; i < 64; i++) {
  382. qmat_luma_scaled [i] = ctx->qmat_luma [i] * qscale;
  383. qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
  384. }
  385. if (ctx->frame_type == 0) {
  386. luma_stride = pic->linesize[0];
  387. chroma_stride = pic->linesize[1];
  388. } else {
  389. luma_stride = pic->linesize[0] << 1;
  390. chroma_stride = pic->linesize[1] << 1;
  391. }
  392. if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
  393. mb_x_shift = 5;
  394. log2_chroma_blocks_per_mb = 2;
  395. } else {
  396. mb_x_shift = 4;
  397. log2_chroma_blocks_per_mb = 1;
  398. }
  399. dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
  400. dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
  401. dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
  402. if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) {
  403. dest_y += pic->linesize[0];
  404. dest_u += pic->linesize[1];
  405. dest_v += pic->linesize[2];
  406. }
  407. decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
  408. buf, y_data_size, qmat_luma_scaled);
  409. if (!(avctx->flags & CODEC_FLAG_GRAY)) {
  410. decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
  411. buf + y_data_size, u_data_size,
  412. qmat_chroma_scaled, log2_chroma_blocks_per_mb);
  413. decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
  414. buf + y_data_size + u_data_size, v_data_size,
  415. qmat_chroma_scaled, log2_chroma_blocks_per_mb);
  416. }
  417. slice->ret = 0;
  418. return 0;
  419. }
  420. static int decode_picture(AVCodecContext *avctx)
  421. {
  422. ProresContext *ctx = avctx->priv_data;
  423. int i;
  424. avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
  425. for (i = 0; i < ctx->slice_count; i++)
  426. if (ctx->slices[i].ret < 0)
  427. return ctx->slices[i].ret;
  428. return 0;
  429. }
  430. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  431. AVPacket *avpkt)
  432. {
  433. ProresContext *ctx = avctx->priv_data;
  434. AVFrame *frame = data;
  435. const uint8_t *buf = avpkt->data;
  436. int buf_size = avpkt->size;
  437. int frame_hdr_size, pic_size;
  438. if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
  439. av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
  440. return -1;
  441. }
  442. ctx->frame = frame;
  443. ctx->frame->pict_type = AV_PICTURE_TYPE_I;
  444. ctx->frame->key_frame = 1;
  445. ctx->first_field = 1;
  446. buf += 8;
  447. buf_size -= 8;
  448. frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
  449. if (frame_hdr_size < 0)
  450. return -1;
  451. buf += frame_hdr_size;
  452. buf_size -= frame_hdr_size;
  453. if (ff_get_buffer(avctx, frame, 0) < 0)
  454. return -1;
  455. decode_picture:
  456. pic_size = decode_picture_header(avctx, buf, buf_size);
  457. if (pic_size < 0) {
  458. av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
  459. return -1;
  460. }
  461. if (decode_picture(avctx)) {
  462. av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
  463. return -1;
  464. }
  465. buf += pic_size;
  466. buf_size -= pic_size;
  467. if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
  468. ctx->first_field = 0;
  469. goto decode_picture;
  470. }
  471. *got_frame = 1;
  472. return avpkt->size;
  473. }
  474. static av_cold int decode_close(AVCodecContext *avctx)
  475. {
  476. ProresContext *ctx = avctx->priv_data;
  477. av_freep(&ctx->slices);
  478. return 0;
  479. }
  480. AVCodec ff_prores_decoder = {
  481. .name = "prores",
  482. .type = AVMEDIA_TYPE_VIDEO,
  483. .id = AV_CODEC_ID_PRORES,
  484. .priv_data_size = sizeof(ProresContext),
  485. .init = decode_init,
  486. .close = decode_close,
  487. .decode = decode_frame,
  488. .long_name = NULL_IF_CONFIG_SMALL("ProRes"),
  489. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
  490. };