You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1166 lines
40KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "crc.h"
  37. #include "dsputil.h"
  38. #include "random.h"
  39. /**
  40. * Table of bin locations for rematrixing bands
  41. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  42. */
  43. static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
  44. /** table for grouping exponents */
  45. static uint8_t exp_ungroup_tab[128][3];
  46. /** tables for ungrouping mantissas */
  47. static int b1_mantissas[32][3];
  48. static int b2_mantissas[128][3];
  49. static int b3_mantissas[8];
  50. static int b4_mantissas[128][2];
  51. static int b5_mantissas[16];
  52. /**
  53. * Quantization table: levels for symmetric. bits for asymmetric.
  54. * reference: Table 7.18 Mapping of bap to Quantizer
  55. */
  56. static const uint8_t quantization_tab[16] = {
  57. 0, 3, 5, 7, 11, 15,
  58. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  59. };
  60. /** dynamic range table. converts codes to scale factors. */
  61. static float dynamic_range_tab[256];
  62. /** Adjustments in dB gain */
  63. #define LEVEL_MINUS_3DB 0.7071067811865476
  64. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  65. #define LEVEL_MINUS_6DB 0.5000000000000000
  66. #define LEVEL_MINUS_9DB 0.3535533905932738
  67. #define LEVEL_ZERO 0.0000000000000000
  68. #define LEVEL_ONE 1.0000000000000000
  69. static const float gain_levels[6] = {
  70. LEVEL_ZERO,
  71. LEVEL_ONE,
  72. LEVEL_MINUS_3DB,
  73. LEVEL_MINUS_4POINT5DB,
  74. LEVEL_MINUS_6DB,
  75. LEVEL_MINUS_9DB
  76. };
  77. /**
  78. * Table for center mix levels
  79. * reference: Section 5.4.2.4 cmixlev
  80. */
  81. static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
  82. /**
  83. * Table for surround mix levels
  84. * reference: Section 5.4.2.5 surmixlev
  85. */
  86. static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
  87. /**
  88. * Table for default stereo downmixing coefficients
  89. * reference: Section 7.8.2 Downmixing Into Two Channels
  90. */
  91. static const uint8_t ac3_default_coeffs[8][5][2] = {
  92. { { 1, 0 }, { 0, 1 }, },
  93. { { 2, 2 }, },
  94. { { 1, 0 }, { 0, 1 }, },
  95. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  96. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  97. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  98. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  99. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  100. };
  101. /* override ac3.h to include coupling channel */
  102. #undef AC3_MAX_CHANNELS
  103. #define AC3_MAX_CHANNELS 7
  104. #define CPL_CH 0
  105. #define AC3_OUTPUT_LFEON 8
  106. typedef struct {
  107. int channel_mode; ///< channel mode (acmod)
  108. int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags
  109. int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags
  110. int dither_all; ///< true if all channels are dithered
  111. int cpl_in_use; ///< coupling in use
  112. int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling
  113. int phase_flags_in_use; ///< phase flags in use
  114. int phase_flags[18]; ///< phase flags
  115. int cpl_band_struct[18]; ///< coupling band structure
  116. int num_rematrixing_bands; ///< number of rematrixing bands
  117. int rematrixing_flags[4]; ///< rematrixing flags
  118. int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
  119. int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
  120. int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
  121. int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode
  122. int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments
  123. uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
  124. uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
  125. uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
  126. int sample_rate; ///< sample frequency, in Hz
  127. int bit_rate; ///< stream bit rate, in bits-per-second
  128. int frame_size; ///< current frame size, in bytes
  129. int channels; ///< number of total channels
  130. int fbw_channels; ///< number of full-bandwidth channels
  131. int lfe_on; ///< lfe channel in use
  132. int lfe_ch; ///< index of LFE channel
  133. int output_mode; ///< output channel configuration
  134. int out_channels; ///< number of output channels
  135. int center_mix_level; ///< Center mix level index
  136. int surround_mix_level; ///< Surround mix level index
  137. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  138. float dynamic_range[2]; ///< dynamic range
  139. int cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
  140. int num_cpl_bands; ///< number of coupling bands
  141. int num_cpl_subbands; ///< number of coupling sub bands
  142. int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin
  143. int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin
  144. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  145. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  146. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  147. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  148. int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  149. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  150. int fixed_coeffs[AC3_MAX_CHANNELS][256]; ///> fixed-point transform coefficients
  151. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
  152. /* For IMDCT. */
  153. MDCTContext imdct_512; ///< for 512 sample IMDCT
  154. MDCTContext imdct_256; ///< for 256 sample IMDCT
  155. DSPContext dsp; ///< for optimization
  156. float add_bias; ///< offset for float_to_int16 conversion
  157. float mul_bias; ///< scaling for float_to_int16 conversion
  158. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
  159. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  160. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
  161. DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
  162. DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
  163. DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
  164. /* Miscellaneous. */
  165. GetBitContext gbc; ///< bitstream reader
  166. AVRandomState dith_state; ///< for dither generation
  167. AVCodecContext *avctx; ///< parent context
  168. } AC3DecodeContext;
  169. /**
  170. * Symmetrical Dequantization
  171. * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  172. * Tables 7.19 to 7.23
  173. */
  174. static inline int
  175. symmetric_dequant(int code, int levels)
  176. {
  177. return ((code - (levels >> 1)) << 24) / levels;
  178. }
  179. /*
  180. * Initialize tables at runtime.
  181. */
  182. static void ac3_tables_init(void)
  183. {
  184. int i;
  185. /* generate grouped mantissa tables
  186. reference: Section 7.3.5 Ungrouping of Mantissas */
  187. for(i=0; i<32; i++) {
  188. /* bap=1 mantissas */
  189. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  190. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  191. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  192. }
  193. for(i=0; i<128; i++) {
  194. /* bap=2 mantissas */
  195. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  196. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  197. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  198. /* bap=4 mantissas */
  199. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  200. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  201. }
  202. /* generate ungrouped mantissa tables
  203. reference: Tables 7.21 and 7.23 */
  204. for(i=0; i<7; i++) {
  205. /* bap=3 mantissas */
  206. b3_mantissas[i] = symmetric_dequant(i, 7);
  207. }
  208. for(i=0; i<15; i++) {
  209. /* bap=5 mantissas */
  210. b5_mantissas[i] = symmetric_dequant(i, 15);
  211. }
  212. /* generate dynamic range table
  213. reference: Section 7.7.1 Dynamic Range Control */
  214. for(i=0; i<256; i++) {
  215. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  216. dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  217. }
  218. /* generate exponent tables
  219. reference: Section 7.1.3 Exponent Decoding */
  220. for(i=0; i<128; i++) {
  221. exp_ungroup_tab[i][0] = i / 25;
  222. exp_ungroup_tab[i][1] = (i % 25) / 5;
  223. exp_ungroup_tab[i][2] = (i % 25) % 5;
  224. }
  225. }
  226. /**
  227. * AVCodec initialization
  228. */
  229. static int ac3_decode_init(AVCodecContext *avctx)
  230. {
  231. AC3DecodeContext *s = avctx->priv_data;
  232. s->avctx = avctx;
  233. ac3_common_init();
  234. ac3_tables_init();
  235. ff_mdct_init(&s->imdct_256, 8, 1);
  236. ff_mdct_init(&s->imdct_512, 9, 1);
  237. ff_kbd_window_init(s->window, 5.0, 256);
  238. dsputil_init(&s->dsp, avctx);
  239. av_init_random(0, &s->dith_state);
  240. /* set bias values for float to int16 conversion */
  241. if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
  242. s->add_bias = 385.0f;
  243. s->mul_bias = 1.0f;
  244. } else {
  245. s->add_bias = 0.0f;
  246. s->mul_bias = 32767.0f;
  247. }
  248. /* allow downmixing to stereo or mono */
  249. if (avctx->channels > 0 && avctx->request_channels > 0 &&
  250. avctx->request_channels < avctx->channels &&
  251. avctx->request_channels <= 2) {
  252. avctx->channels = avctx->request_channels;
  253. }
  254. return 0;
  255. }
  256. /**
  257. * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  258. * GetBitContext within AC3DecodeContext must point to
  259. * start of the synchronized ac3 bitstream.
  260. */
  261. static int ac3_parse_header(AC3DecodeContext *s)
  262. {
  263. AC3HeaderInfo hdr;
  264. GetBitContext *gbc = &s->gbc;
  265. int err, i;
  266. err = ff_ac3_parse_header(gbc->buffer, &hdr);
  267. if(err)
  268. return err;
  269. if(hdr.bitstream_id > 10)
  270. return AC3_PARSE_ERROR_BSID;
  271. /* get decoding parameters from header info */
  272. s->bit_alloc_params.sr_code = hdr.sr_code;
  273. s->channel_mode = hdr.channel_mode;
  274. s->lfe_on = hdr.lfe_on;
  275. s->bit_alloc_params.sr_shift = hdr.sr_shift;
  276. s->sample_rate = hdr.sample_rate;
  277. s->bit_rate = hdr.bit_rate;
  278. s->channels = hdr.channels;
  279. s->fbw_channels = s->channels - s->lfe_on;
  280. s->lfe_ch = s->fbw_channels + 1;
  281. s->frame_size = hdr.frame_size;
  282. /* set default output to all source channels */
  283. s->out_channels = s->channels;
  284. s->output_mode = s->channel_mode;
  285. if(s->lfe_on)
  286. s->output_mode |= AC3_OUTPUT_LFEON;
  287. /* set default mix levels */
  288. s->center_mix_level = 3; // -4.5dB
  289. s->surround_mix_level = 4; // -6.0dB
  290. /* skip over portion of header which has already been read */
  291. skip_bits(gbc, 16); // skip the sync_word
  292. skip_bits(gbc, 16); // skip crc1
  293. skip_bits(gbc, 8); // skip fscod and frmsizecod
  294. skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
  295. if(s->channel_mode == AC3_CHMODE_STEREO) {
  296. skip_bits(gbc, 2); // skip dsurmod
  297. } else {
  298. if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
  299. s->center_mix_level = center_levels[get_bits(gbc, 2)];
  300. if(s->channel_mode & 4)
  301. s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
  302. }
  303. skip_bits1(gbc); // skip lfeon
  304. /* read the rest of the bsi. read twice for dual mono mode. */
  305. i = !(s->channel_mode);
  306. do {
  307. skip_bits(gbc, 5); // skip dialog normalization
  308. if (get_bits1(gbc))
  309. skip_bits(gbc, 8); //skip compression
  310. if (get_bits1(gbc))
  311. skip_bits(gbc, 8); //skip language code
  312. if (get_bits1(gbc))
  313. skip_bits(gbc, 7); //skip audio production information
  314. } while (i--);
  315. skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
  316. /* skip the timecodes (or extra bitstream information for Alternate Syntax)
  317. TODO: read & use the xbsi1 downmix levels */
  318. if (get_bits1(gbc))
  319. skip_bits(gbc, 14); //skip timecode1 / xbsi1
  320. if (get_bits1(gbc))
  321. skip_bits(gbc, 14); //skip timecode2 / xbsi2
  322. /* skip additional bitstream info */
  323. if (get_bits1(gbc)) {
  324. i = get_bits(gbc, 6);
  325. do {
  326. skip_bits(gbc, 8);
  327. } while(i--);
  328. }
  329. return 0;
  330. }
  331. /**
  332. * Set stereo downmixing coefficients based on frame header info.
  333. * reference: Section 7.8.2 Downmixing Into Two Channels
  334. */
  335. static void set_downmix_coeffs(AC3DecodeContext *s)
  336. {
  337. int i;
  338. float cmix = gain_levels[s->center_mix_level];
  339. float smix = gain_levels[s->surround_mix_level];
  340. for(i=0; i<s->fbw_channels; i++) {
  341. s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
  342. s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
  343. }
  344. if(s->channel_mode > 1 && s->channel_mode & 1) {
  345. s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
  346. }
  347. if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
  348. int nf = s->channel_mode - 2;
  349. s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
  350. }
  351. if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
  352. int nf = s->channel_mode - 4;
  353. s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
  354. }
  355. }
  356. /**
  357. * Decode the grouped exponents according to exponent strategy.
  358. * reference: Section 7.1.3 Exponent Decoding
  359. */
  360. static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
  361. uint8_t absexp, int8_t *dexps)
  362. {
  363. int i, j, grp, group_size;
  364. int dexp[256];
  365. int expacc, prevexp;
  366. /* unpack groups */
  367. group_size = exp_strategy + (exp_strategy == EXP_D45);
  368. for(grp=0,i=0; grp<ngrps; grp++) {
  369. expacc = get_bits(gbc, 7);
  370. dexp[i++] = exp_ungroup_tab[expacc][0];
  371. dexp[i++] = exp_ungroup_tab[expacc][1];
  372. dexp[i++] = exp_ungroup_tab[expacc][2];
  373. }
  374. /* convert to absolute exps and expand groups */
  375. prevexp = absexp;
  376. for(i=0; i<ngrps*3; i++) {
  377. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  378. for(j=0; j<group_size; j++) {
  379. dexps[(i*group_size)+j] = prevexp;
  380. }
  381. }
  382. }
  383. /**
  384. * Generate transform coefficients for each coupled channel in the coupling
  385. * range using the coupling coefficients and coupling coordinates.
  386. * reference: Section 7.4.3 Coupling Coordinate Format
  387. */
  388. static void uncouple_channels(AC3DecodeContext *s)
  389. {
  390. int i, j, ch, bnd, subbnd;
  391. subbnd = -1;
  392. i = s->start_freq[CPL_CH];
  393. for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
  394. do {
  395. subbnd++;
  396. for(j=0; j<12; j++) {
  397. for(ch=1; ch<=s->fbw_channels; ch++) {
  398. if(s->channel_in_cpl[ch]) {
  399. s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
  400. if (ch == 2 && s->phase_flags[bnd])
  401. s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
  402. }
  403. }
  404. i++;
  405. }
  406. } while(s->cpl_band_struct[subbnd]);
  407. }
  408. }
  409. /**
  410. * Grouped mantissas for 3-level 5-level and 11-level quantization
  411. */
  412. typedef struct {
  413. int b1_mant[3];
  414. int b2_mant[3];
  415. int b4_mant[2];
  416. int b1ptr;
  417. int b2ptr;
  418. int b4ptr;
  419. } mant_groups;
  420. /**
  421. * Get the transform coefficients for a particular channel
  422. * reference: Section 7.3 Quantization and Decoding of Mantissas
  423. */
  424. static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
  425. {
  426. GetBitContext *gbc = &s->gbc;
  427. int i, gcode, tbap, start, end;
  428. uint8_t *exps;
  429. uint8_t *bap;
  430. int *coeffs;
  431. exps = s->dexps[ch_index];
  432. bap = s->bap[ch_index];
  433. coeffs = s->fixed_coeffs[ch_index];
  434. start = s->start_freq[ch_index];
  435. end = s->end_freq[ch_index];
  436. for (i = start; i < end; i++) {
  437. tbap = bap[i];
  438. switch (tbap) {
  439. case 0:
  440. coeffs[i] = (av_random(&s->dith_state) & 0x7FFFFF) - 4194304;
  441. break;
  442. case 1:
  443. if(m->b1ptr > 2) {
  444. gcode = get_bits(gbc, 5);
  445. m->b1_mant[0] = b1_mantissas[gcode][0];
  446. m->b1_mant[1] = b1_mantissas[gcode][1];
  447. m->b1_mant[2] = b1_mantissas[gcode][2];
  448. m->b1ptr = 0;
  449. }
  450. coeffs[i] = m->b1_mant[m->b1ptr++];
  451. break;
  452. case 2:
  453. if(m->b2ptr > 2) {
  454. gcode = get_bits(gbc, 7);
  455. m->b2_mant[0] = b2_mantissas[gcode][0];
  456. m->b2_mant[1] = b2_mantissas[gcode][1];
  457. m->b2_mant[2] = b2_mantissas[gcode][2];
  458. m->b2ptr = 0;
  459. }
  460. coeffs[i] = m->b2_mant[m->b2ptr++];
  461. break;
  462. case 3:
  463. coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
  464. break;
  465. case 4:
  466. if(m->b4ptr > 1) {
  467. gcode = get_bits(gbc, 7);
  468. m->b4_mant[0] = b4_mantissas[gcode][0];
  469. m->b4_mant[1] = b4_mantissas[gcode][1];
  470. m->b4ptr = 0;
  471. }
  472. coeffs[i] = m->b4_mant[m->b4ptr++];
  473. break;
  474. case 5:
  475. coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
  476. break;
  477. default: {
  478. /* asymmetric dequantization */
  479. int qlevel = quantization_tab[tbap];
  480. coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
  481. break;
  482. }
  483. }
  484. coeffs[i] >>= exps[i];
  485. }
  486. return 0;
  487. }
  488. /**
  489. * Remove random dithering from coefficients with zero-bit mantissas
  490. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  491. */
  492. static void remove_dithering(AC3DecodeContext *s) {
  493. int ch, i;
  494. int end=0;
  495. int *coeffs;
  496. uint8_t *bap;
  497. for(ch=1; ch<=s->fbw_channels; ch++) {
  498. if(!s->dither_flag[ch]) {
  499. coeffs = s->fixed_coeffs[ch];
  500. bap = s->bap[ch];
  501. if(s->channel_in_cpl[ch])
  502. end = s->start_freq[CPL_CH];
  503. else
  504. end = s->end_freq[ch];
  505. for(i=0; i<end; i++) {
  506. if(!bap[i])
  507. coeffs[i] = 0;
  508. }
  509. if(s->channel_in_cpl[ch]) {
  510. bap = s->bap[CPL_CH];
  511. for(; i<s->end_freq[CPL_CH]; i++) {
  512. if(!bap[i])
  513. coeffs[i] = 0;
  514. }
  515. }
  516. }
  517. }
  518. }
  519. /**
  520. * Get the transform coefficients.
  521. */
  522. static int get_transform_coeffs(AC3DecodeContext *s)
  523. {
  524. int ch, end;
  525. int got_cplchan = 0;
  526. mant_groups m;
  527. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  528. for (ch = 1; ch <= s->channels; ch++) {
  529. /* transform coefficients for full-bandwidth channel */
  530. if (get_transform_coeffs_ch(s, ch, &m))
  531. return -1;
  532. /* tranform coefficients for coupling channel come right after the
  533. coefficients for the first coupled channel*/
  534. if (s->channel_in_cpl[ch]) {
  535. if (!got_cplchan) {
  536. if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
  537. av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
  538. return -1;
  539. }
  540. uncouple_channels(s);
  541. got_cplchan = 1;
  542. }
  543. end = s->end_freq[CPL_CH];
  544. } else {
  545. end = s->end_freq[ch];
  546. }
  547. do
  548. s->transform_coeffs[ch][end] = 0;
  549. while(++end < 256);
  550. }
  551. /* if any channel doesn't use dithering, zero appropriate coefficients */
  552. if(!s->dither_all)
  553. remove_dithering(s);
  554. return 0;
  555. }
  556. /**
  557. * Stereo rematrixing.
  558. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  559. */
  560. static void do_rematrixing(AC3DecodeContext *s)
  561. {
  562. int bnd, i;
  563. int end, bndend;
  564. int tmp0, tmp1;
  565. end = FFMIN(s->end_freq[1], s->end_freq[2]);
  566. for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
  567. if(s->rematrixing_flags[bnd]) {
  568. bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
  569. for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
  570. tmp0 = s->fixed_coeffs[1][i];
  571. tmp1 = s->fixed_coeffs[2][i];
  572. s->fixed_coeffs[1][i] = tmp0 + tmp1;
  573. s->fixed_coeffs[2][i] = tmp0 - tmp1;
  574. }
  575. }
  576. }
  577. }
  578. /**
  579. * Perform the 256-point IMDCT
  580. */
  581. static void do_imdct_256(AC3DecodeContext *s, int chindex)
  582. {
  583. int i, k;
  584. DECLARE_ALIGNED_16(float, x[128]);
  585. FFTComplex z[2][64];
  586. float *o_ptr = s->tmp_output;
  587. for(i=0; i<2; i++) {
  588. /* de-interleave coefficients */
  589. for(k=0; k<128; k++) {
  590. x[k] = s->transform_coeffs[chindex][2*k+i];
  591. }
  592. /* run standard IMDCT */
  593. s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
  594. /* reverse the post-rotation & reordering from standard IMDCT */
  595. for(k=0; k<32; k++) {
  596. z[i][32+k].re = -o_ptr[128+2*k];
  597. z[i][32+k].im = -o_ptr[2*k];
  598. z[i][31-k].re = o_ptr[2*k+1];
  599. z[i][31-k].im = o_ptr[128+2*k+1];
  600. }
  601. }
  602. /* apply AC-3 post-rotation & reordering */
  603. for(k=0; k<64; k++) {
  604. o_ptr[ 2*k ] = -z[0][ k].im;
  605. o_ptr[ 2*k+1] = z[0][63-k].re;
  606. o_ptr[128+2*k ] = -z[0][ k].re;
  607. o_ptr[128+2*k+1] = z[0][63-k].im;
  608. o_ptr[256+2*k ] = -z[1][ k].re;
  609. o_ptr[256+2*k+1] = z[1][63-k].im;
  610. o_ptr[384+2*k ] = z[1][ k].im;
  611. o_ptr[384+2*k+1] = -z[1][63-k].re;
  612. }
  613. }
  614. /**
  615. * Inverse MDCT Transform.
  616. * Convert frequency domain coefficients to time-domain audio samples.
  617. * reference: Section 7.9.4 Transformation Equations
  618. */
  619. static inline void do_imdct(AC3DecodeContext *s)
  620. {
  621. int ch;
  622. int channels;
  623. /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
  624. channels = s->fbw_channels;
  625. if(s->output_mode & AC3_OUTPUT_LFEON)
  626. channels++;
  627. for (ch=1; ch<=channels; ch++) {
  628. if (s->block_switch[ch]) {
  629. do_imdct_256(s, ch);
  630. } else {
  631. s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
  632. s->transform_coeffs[ch], s->tmp_imdct);
  633. }
  634. /* For the first half of the block, apply the window, add the delay
  635. from the previous block, and send to output */
  636. s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
  637. s->window, s->delay[ch-1], 0, 256, 1);
  638. /* For the second half of the block, apply the window and store the
  639. samples to delay, to be combined with the next block */
  640. s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
  641. s->window, 256);
  642. }
  643. }
  644. /**
  645. * Downmix the output to mono or stereo.
  646. */
  647. static void ac3_downmix(AC3DecodeContext *s)
  648. {
  649. int i, j;
  650. float v0, v1, s0, s1;
  651. for(i=0; i<256; i++) {
  652. v0 = v1 = s0 = s1 = 0.0f;
  653. for(j=0; j<s->fbw_channels; j++) {
  654. v0 += s->output[j][i] * s->downmix_coeffs[j][0];
  655. v1 += s->output[j][i] * s->downmix_coeffs[j][1];
  656. s0 += s->downmix_coeffs[j][0];
  657. s1 += s->downmix_coeffs[j][1];
  658. }
  659. v0 /= s0;
  660. v1 /= s1;
  661. if(s->output_mode == AC3_CHMODE_MONO) {
  662. s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  663. } else if(s->output_mode == AC3_CHMODE_STEREO) {
  664. s->output[0][i] = v0;
  665. s->output[1][i] = v1;
  666. }
  667. }
  668. }
  669. /**
  670. * Parse an audio block from AC-3 bitstream.
  671. */
  672. static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
  673. {
  674. int fbw_channels = s->fbw_channels;
  675. int channel_mode = s->channel_mode;
  676. int i, bnd, seg, ch;
  677. GetBitContext *gbc = &s->gbc;
  678. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  679. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  680. /* block switch flags */
  681. for (ch = 1; ch <= fbw_channels; ch++)
  682. s->block_switch[ch] = get_bits1(gbc);
  683. /* dithering flags */
  684. s->dither_all = 1;
  685. for (ch = 1; ch <= fbw_channels; ch++) {
  686. s->dither_flag[ch] = get_bits1(gbc);
  687. if(!s->dither_flag[ch])
  688. s->dither_all = 0;
  689. }
  690. /* dynamic range */
  691. i = !(s->channel_mode);
  692. do {
  693. if(get_bits1(gbc)) {
  694. s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
  695. s->avctx->drc_scale)+1.0;
  696. } else if(blk == 0) {
  697. s->dynamic_range[i] = 1.0f;
  698. }
  699. } while(i--);
  700. /* coupling strategy */
  701. if (get_bits1(gbc)) {
  702. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  703. s->cpl_in_use = get_bits1(gbc);
  704. if (s->cpl_in_use) {
  705. /* coupling in use */
  706. int cpl_begin_freq, cpl_end_freq;
  707. /* determine which channels are coupled */
  708. for (ch = 1; ch <= fbw_channels; ch++)
  709. s->channel_in_cpl[ch] = get_bits1(gbc);
  710. /* phase flags in use */
  711. if (channel_mode == AC3_CHMODE_STEREO)
  712. s->phase_flags_in_use = get_bits1(gbc);
  713. /* coupling frequency range and band structure */
  714. cpl_begin_freq = get_bits(gbc, 4);
  715. cpl_end_freq = get_bits(gbc, 4);
  716. if (3 + cpl_end_freq - cpl_begin_freq < 0) {
  717. av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
  718. return -1;
  719. }
  720. s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
  721. s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
  722. s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
  723. for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
  724. if (get_bits1(gbc)) {
  725. s->cpl_band_struct[bnd] = 1;
  726. s->num_cpl_bands--;
  727. }
  728. }
  729. s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
  730. } else {
  731. /* coupling not in use */
  732. for (ch = 1; ch <= fbw_channels; ch++)
  733. s->channel_in_cpl[ch] = 0;
  734. }
  735. }
  736. /* coupling coordinates */
  737. if (s->cpl_in_use) {
  738. int cpl_coords_exist = 0;
  739. for (ch = 1; ch <= fbw_channels; ch++) {
  740. if (s->channel_in_cpl[ch]) {
  741. if (get_bits1(gbc)) {
  742. int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
  743. cpl_coords_exist = 1;
  744. master_cpl_coord = 3 * get_bits(gbc, 2);
  745. for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  746. cpl_coord_exp = get_bits(gbc, 4);
  747. cpl_coord_mant = get_bits(gbc, 4);
  748. if (cpl_coord_exp == 15)
  749. s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
  750. else
  751. s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
  752. s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
  753. }
  754. }
  755. }
  756. }
  757. /* phase flags */
  758. if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
  759. for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
  760. s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
  761. }
  762. }
  763. }
  764. /* stereo rematrixing strategy and band structure */
  765. if (channel_mode == AC3_CHMODE_STEREO) {
  766. if (get_bits1(gbc)) {
  767. s->num_rematrixing_bands = 4;
  768. if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
  769. s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
  770. for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
  771. s->rematrixing_flags[bnd] = get_bits1(gbc);
  772. }
  773. }
  774. /* exponent strategies for each channel */
  775. s->exp_strategy[CPL_CH] = EXP_REUSE;
  776. s->exp_strategy[s->lfe_ch] = EXP_REUSE;
  777. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
  778. if(ch == s->lfe_ch)
  779. s->exp_strategy[ch] = get_bits(gbc, 1);
  780. else
  781. s->exp_strategy[ch] = get_bits(gbc, 2);
  782. if(s->exp_strategy[ch] != EXP_REUSE)
  783. bit_alloc_stages[ch] = 3;
  784. }
  785. /* channel bandwidth */
  786. for (ch = 1; ch <= fbw_channels; ch++) {
  787. s->start_freq[ch] = 0;
  788. if (s->exp_strategy[ch] != EXP_REUSE) {
  789. int prev = s->end_freq[ch];
  790. if (s->channel_in_cpl[ch])
  791. s->end_freq[ch] = s->start_freq[CPL_CH];
  792. else {
  793. int bandwidth_code = get_bits(gbc, 6);
  794. if (bandwidth_code > 60) {
  795. av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
  796. return -1;
  797. }
  798. s->end_freq[ch] = bandwidth_code * 3 + 73;
  799. }
  800. if(blk > 0 && s->end_freq[ch] != prev)
  801. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  802. }
  803. }
  804. s->start_freq[s->lfe_ch] = 0;
  805. s->end_freq[s->lfe_ch] = 7;
  806. /* decode exponents for each channel */
  807. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
  808. if (s->exp_strategy[ch] != EXP_REUSE) {
  809. int group_size, num_groups;
  810. group_size = 3 << (s->exp_strategy[ch] - 1);
  811. if(ch == CPL_CH)
  812. num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
  813. else if(ch == s->lfe_ch)
  814. num_groups = 2;
  815. else
  816. num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
  817. s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
  818. decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
  819. &s->dexps[ch][s->start_freq[ch]+!!ch]);
  820. if(ch != CPL_CH && ch != s->lfe_ch)
  821. skip_bits(gbc, 2); /* skip gainrng */
  822. }
  823. }
  824. /* bit allocation information */
  825. if (get_bits1(gbc)) {
  826. s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
  827. s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
  828. s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
  829. s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
  830. s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
  831. for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
  832. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  833. }
  834. }
  835. /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
  836. if (get_bits1(gbc)) {
  837. int csnr;
  838. csnr = (get_bits(gbc, 6) - 15) << 4;
  839. for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
  840. s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
  841. s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
  842. }
  843. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  844. }
  845. /* coupling leak information */
  846. if (s->cpl_in_use && get_bits1(gbc)) {
  847. s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
  848. s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
  849. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  850. }
  851. /* delta bit allocation information */
  852. if (get_bits1(gbc)) {
  853. /* delta bit allocation exists (strategy) */
  854. for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
  855. s->dba_mode[ch] = get_bits(gbc, 2);
  856. if (s->dba_mode[ch] == DBA_RESERVED) {
  857. av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  858. return -1;
  859. }
  860. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  861. }
  862. /* channel delta offset, len and bit allocation */
  863. for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
  864. if (s->dba_mode[ch] == DBA_NEW) {
  865. s->dba_nsegs[ch] = get_bits(gbc, 3);
  866. for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
  867. s->dba_offsets[ch][seg] = get_bits(gbc, 5);
  868. s->dba_lengths[ch][seg] = get_bits(gbc, 4);
  869. s->dba_values[ch][seg] = get_bits(gbc, 3);
  870. }
  871. }
  872. }
  873. } else if(blk == 0) {
  874. for(ch=0; ch<=s->channels; ch++) {
  875. s->dba_mode[ch] = DBA_NONE;
  876. }
  877. }
  878. /* Bit allocation */
  879. for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
  880. if(bit_alloc_stages[ch] > 2) {
  881. /* Exponent mapping into PSD and PSD integration */
  882. ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
  883. s->start_freq[ch], s->end_freq[ch],
  884. s->psd[ch], s->band_psd[ch]);
  885. }
  886. if(bit_alloc_stages[ch] > 1) {
  887. /* Compute excitation function, Compute masking curve, and
  888. Apply delta bit allocation */
  889. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
  890. s->start_freq[ch], s->end_freq[ch],
  891. s->fast_gain[ch], (ch == s->lfe_ch),
  892. s->dba_mode[ch], s->dba_nsegs[ch],
  893. s->dba_offsets[ch], s->dba_lengths[ch],
  894. s->dba_values[ch], s->mask[ch]);
  895. }
  896. if(bit_alloc_stages[ch] > 0) {
  897. /* Compute bit allocation */
  898. ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
  899. s->start_freq[ch], s->end_freq[ch],
  900. s->snr_offset[ch],
  901. s->bit_alloc_params.floor,
  902. s->bap[ch]);
  903. }
  904. }
  905. /* unused dummy data */
  906. if (get_bits1(gbc)) {
  907. int skipl = get_bits(gbc, 9);
  908. while(skipl--)
  909. skip_bits(gbc, 8);
  910. }
  911. /* unpack the transform coefficients
  912. this also uncouples channels if coupling is in use. */
  913. if (get_transform_coeffs(s)) {
  914. av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  915. return -1;
  916. }
  917. /* recover coefficients if rematrixing is in use */
  918. if(s->channel_mode == AC3_CHMODE_STEREO)
  919. do_rematrixing(s);
  920. /* apply scaling to coefficients (headroom, dynrng) */
  921. for(ch=1; ch<=s->channels; ch++) {
  922. float gain = s->mul_bias / 4194304.0f;
  923. if(s->channel_mode == AC3_CHMODE_DUALMONO) {
  924. gain *= s->dynamic_range[ch-1];
  925. } else {
  926. gain *= s->dynamic_range[0];
  927. }
  928. for(i=0; i<256; i++) {
  929. s->transform_coeffs[ch][i] = s->fixed_coeffs[ch][i] * gain;
  930. }
  931. }
  932. do_imdct(s);
  933. /* downmix output if needed */
  934. if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
  935. s->fbw_channels == s->out_channels)) {
  936. ac3_downmix(s);
  937. }
  938. /* convert float to 16-bit integer */
  939. for(ch=0; ch<s->out_channels; ch++) {
  940. for(i=0; i<256; i++) {
  941. s->output[ch][i] += s->add_bias;
  942. }
  943. s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
  944. }
  945. return 0;
  946. }
  947. /**
  948. * Decode a single AC-3 frame.
  949. */
  950. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  951. {
  952. AC3DecodeContext *s = avctx->priv_data;
  953. int16_t *out_samples = (int16_t *)data;
  954. int i, blk, ch, err;
  955. /* initialize the GetBitContext with the start of valid AC-3 Frame */
  956. init_get_bits(&s->gbc, buf, buf_size * 8);
  957. /* parse the syncinfo */
  958. err = ac3_parse_header(s);
  959. if(err) {
  960. switch(err) {
  961. case AC3_PARSE_ERROR_SYNC:
  962. av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
  963. break;
  964. case AC3_PARSE_ERROR_BSID:
  965. av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
  966. break;
  967. case AC3_PARSE_ERROR_SAMPLE_RATE:
  968. av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
  969. break;
  970. case AC3_PARSE_ERROR_FRAME_SIZE:
  971. av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
  972. break;
  973. default:
  974. av_log(avctx, AV_LOG_ERROR, "invalid header\n");
  975. break;
  976. }
  977. return -1;
  978. }
  979. /* check that reported frame size fits in input buffer */
  980. if(s->frame_size > buf_size) {
  981. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  982. return -1;
  983. }
  984. /* check for crc mismatch */
  985. if(avctx->error_resilience >= FF_ER_CAREFUL) {
  986. if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
  987. av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
  988. return -1;
  989. }
  990. /* TODO: error concealment */
  991. }
  992. avctx->sample_rate = s->sample_rate;
  993. avctx->bit_rate = s->bit_rate;
  994. /* channel config */
  995. s->out_channels = s->channels;
  996. if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
  997. avctx->request_channels < s->channels) {
  998. s->out_channels = avctx->request_channels;
  999. s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
  1000. }
  1001. avctx->channels = s->out_channels;
  1002. /* set downmixing coefficients if needed */
  1003. if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
  1004. s->fbw_channels == s->out_channels)) {
  1005. set_downmix_coeffs(s);
  1006. }
  1007. /* parse the audio blocks */
  1008. for (blk = 0; blk < NB_BLOCKS; blk++) {
  1009. if (ac3_parse_audio_block(s, blk)) {
  1010. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  1011. *data_size = 0;
  1012. return s->frame_size;
  1013. }
  1014. for (i = 0; i < 256; i++)
  1015. for (ch = 0; ch < s->out_channels; ch++)
  1016. *(out_samples++) = s->int_output[ch][i];
  1017. }
  1018. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  1019. return s->frame_size;
  1020. }
  1021. /**
  1022. * Uninitialize the AC-3 decoder.
  1023. */
  1024. static int ac3_decode_end(AVCodecContext *avctx)
  1025. {
  1026. AC3DecodeContext *s = avctx->priv_data;
  1027. ff_mdct_end(&s->imdct_512);
  1028. ff_mdct_end(&s->imdct_256);
  1029. return 0;
  1030. }
  1031. AVCodec ac3_decoder = {
  1032. .name = "ac3",
  1033. .type = CODEC_TYPE_AUDIO,
  1034. .id = CODEC_ID_AC3,
  1035. .priv_data_size = sizeof (AC3DecodeContext),
  1036. .init = ac3_decode_init,
  1037. .close = ac3_decode_end,
  1038. .decode = ac3_decode_frame,
  1039. };