You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2270 lines
63KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance, and are described in the filter
  35. descriptions below.
  36. The list of arguments can be quoted using the character "'" as initial
  37. and ending mark, and the character '\' for escaping the characters
  38. within the quoted text; otherwise the argument string is considered
  39. terminated when the next special character (belonging to the set
  40. "[]=;,") is encountered.
  41. The name and arguments of the filter are optionally preceded and
  42. followed by a list of link labels.
  43. A link label allows to name a link and associate it to a filter output
  44. or input pad. The preceding labels @var{in_link_1}
  45. ... @var{in_link_N}, are associated to the filter input pads,
  46. the following labels @var{out_link_1} ... @var{out_link_M}, are
  47. associated to the output pads.
  48. When two link labels with the same name are found in the
  49. filtergraph, a link between the corresponding input and output pad is
  50. created.
  51. If an output pad is not labelled, it is linked by default to the first
  52. unlabelled input pad of the next filter in the filterchain.
  53. For example in the filterchain:
  54. @example
  55. nullsrc, split[L1], [L2]overlay, nullsink
  56. @end example
  57. the split filter instance has two output pads, and the overlay filter
  58. instance two input pads. The first output pad of split is labelled
  59. "L1", the first input pad of overlay is labelled "L2", and the second
  60. output pad of split is linked to the second input pad of overlay,
  61. which are both unlabelled.
  62. In a complete filterchain all the unlabelled filter input and output
  63. pads must be connected. A filtergraph is considered valid if all the
  64. filter input and output pads of all the filterchains are connected.
  65. Libavfilter will automatically insert scale filters where format
  66. conversion is required. It is possible to specify swscale flags
  67. for those automatically inserted scalers by prepending
  68. @code{sws_flags=@var{flags};}
  69. to the filtergraph description.
  70. Follows a BNF description for the filtergraph syntax:
  71. @example
  72. @var{NAME} ::= sequence of alphanumeric characters and '_'
  73. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  74. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  75. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  76. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  77. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  78. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  79. @end example
  80. @c man end FILTERGRAPH DESCRIPTION
  81. @chapter Audio Filters
  82. @c man begin AUDIO FILTERS
  83. When you configure your Libav build, you can disable any of the
  84. existing filters using --disable-filters.
  85. The configure output will show the audio filters included in your
  86. build.
  87. Below is a description of the currently available audio filters.
  88. @section aformat
  89. Convert the input audio to one of the specified formats. The framework will
  90. negotiate the most appropriate format to minimize conversions.
  91. The filter accepts the following named parameters:
  92. @table @option
  93. @item sample_fmts
  94. A comma-separated list of requested sample formats.
  95. @item sample_rates
  96. A comma-separated list of requested sample rates.
  97. @item channel_layouts
  98. A comma-separated list of requested channel layouts.
  99. @end table
  100. If a parameter is omitted, all values are allowed.
  101. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  102. @example
  103. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  104. @end example
  105. @section amix
  106. Mixes multiple audio inputs into a single output.
  107. For example
  108. @example
  109. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  110. @end example
  111. will mix 3 input audio streams to a single output with the same duration as the
  112. first input and a dropout transition time of 3 seconds.
  113. The filter accepts the following named parameters:
  114. @table @option
  115. @item inputs
  116. Number of inputs. If unspecified, it defaults to 2.
  117. @item duration
  118. How to determine the end-of-stream.
  119. @table @option
  120. @item longest
  121. Duration of longest input. (default)
  122. @item shortest
  123. Duration of shortest input.
  124. @item first
  125. Duration of first input.
  126. @end table
  127. @item dropout_transition
  128. Transition time, in seconds, for volume renormalization when an input
  129. stream ends. The default value is 2 seconds.
  130. @end table
  131. @section anull
  132. Pass the audio source unchanged to the output.
  133. @section asplit
  134. Split input audio into several identical outputs.
  135. The filter accepts a single parameter which specifies the number of outputs. If
  136. unspecified, it defaults to 2.
  137. For example
  138. @example
  139. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  140. @end example
  141. will create 5 copies of the input audio.
  142. @section asyncts
  143. Synchronize audio data with timestamps by squeezing/stretching it and/or
  144. dropping samples/adding silence when needed.
  145. The filter accepts the following named parameters:
  146. @table @option
  147. @item compensate
  148. Enable stretching/squeezing the data to make it match the timestamps.
  149. @item min_delta
  150. Minimum difference between timestamps and audio data (in seconds) to trigger
  151. adding/dropping samples.
  152. @item max_comp
  153. Maximum compensation in samples per second.
  154. @end table
  155. @section channelsplit
  156. Split each channel in input audio stream into a separate output stream.
  157. This filter accepts the following named parameters:
  158. @table @option
  159. @item channel_layout
  160. Channel layout of the input stream. Default is "stereo".
  161. @end table
  162. For example, assuming a stereo input MP3 file
  163. @example
  164. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  165. @end example
  166. will create an output Matroska file with two audio streams, one containing only
  167. the left channel and the other the right channel.
  168. To split a 5.1 WAV file into per-channel files
  169. @example
  170. avconv -i in.wav -filter_complex
  171. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  172. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  173. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  174. side_right.wav
  175. @end example
  176. @section resample
  177. Convert the audio sample format, sample rate and channel layout. This filter is
  178. not meant to be used directly, it is inserted automatically by libavfilter
  179. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  180. conversion.
  181. @c man end AUDIO FILTERS
  182. @chapter Audio Sources
  183. @c man begin AUDIO SOURCES
  184. Below is a description of the currently available audio sources.
  185. @section anullsrc
  186. Null audio source, never return audio frames. It is mainly useful as a
  187. template and to be employed in analysis / debugging tools.
  188. It accepts as optional parameter a string of the form
  189. @var{sample_rate}:@var{channel_layout}.
  190. @var{sample_rate} specify the sample rate, and defaults to 44100.
  191. @var{channel_layout} specify the channel layout, and can be either an
  192. integer or a string representing a channel layout. The default value
  193. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  194. Check the channel_layout_map definition in
  195. @file{libavcodec/audioconvert.c} for the mapping between strings and
  196. channel layout values.
  197. Follow some examples:
  198. @example
  199. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  200. anullsrc=48000:4
  201. # same as
  202. anullsrc=48000:mono
  203. @end example
  204. @section abuffer
  205. Buffer audio frames, and make them available to the filter chain.
  206. This source is not intended to be part of user-supplied graph descriptions but
  207. for insertion by calling programs through the interface defined in
  208. @file{libavfilter/buffersrc.h}.
  209. It accepts the following named parameters:
  210. @table @option
  211. @item time_base
  212. Timebase which will be used for timestamps of submitted frames. It must be
  213. either a floating-point number or in @var{numerator}/@var{denominator} form.
  214. @item sample_rate
  215. Audio sample rate.
  216. @item sample_fmt
  217. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  218. @item channel_layout
  219. Channel layout of the audio data, in the form that can be accepted by
  220. @code{av_get_channel_layout()}.
  221. @end table
  222. All the parameters need to be explicitly defined.
  223. @c man end AUDIO SOURCES
  224. @chapter Audio Sinks
  225. @c man begin AUDIO SINKS
  226. Below is a description of the currently available audio sinks.
  227. @section anullsink
  228. Null audio sink, do absolutely nothing with the input audio. It is
  229. mainly useful as a template and to be employed in analysis / debugging
  230. tools.
  231. @section abuffersink
  232. This sink is intended for programmatic use. Frames that arrive on this sink can
  233. be retrieved by the calling program using the interface defined in
  234. @file{libavfilter/buffersink.h}.
  235. This filter accepts no parameters.
  236. @c man end AUDIO SINKS
  237. @chapter Video Filters
  238. @c man begin VIDEO FILTERS
  239. When you configure your Libav build, you can disable any of the
  240. existing filters using --disable-filters.
  241. The configure output will show the video filters included in your
  242. build.
  243. Below is a description of the currently available video filters.
  244. @section blackframe
  245. Detect frames that are (almost) completely black. Can be useful to
  246. detect chapter transitions or commercials. Output lines consist of
  247. the frame number of the detected frame, the percentage of blackness,
  248. the position in the file if known or -1 and the timestamp in seconds.
  249. In order to display the output lines, you need to set the loglevel at
  250. least to the AV_LOG_INFO value.
  251. The filter accepts the syntax:
  252. @example
  253. blackframe[=@var{amount}:[@var{threshold}]]
  254. @end example
  255. @var{amount} is the percentage of the pixels that have to be below the
  256. threshold, and defaults to 98.
  257. @var{threshold} is the threshold below which a pixel value is
  258. considered black, and defaults to 32.
  259. @section boxblur
  260. Apply boxblur algorithm to the input video.
  261. This filter accepts the parameters:
  262. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  263. Chroma and alpha parameters are optional, if not specified they default
  264. to the corresponding values set for @var{luma_radius} and
  265. @var{luma_power}.
  266. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  267. the radius in pixels of the box used for blurring the corresponding
  268. input plane. They are expressions, and can contain the following
  269. constants:
  270. @table @option
  271. @item w, h
  272. the input width and height in pixels
  273. @item cw, ch
  274. the input chroma image width and height in pixels
  275. @item hsub, vsub
  276. horizontal and vertical chroma subsample values. For example for the
  277. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  278. @end table
  279. The radius must be a non-negative number, and must not be greater than
  280. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  281. and of @code{min(cw,ch)/2} for the chroma planes.
  282. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  283. how many times the boxblur filter is applied to the corresponding
  284. plane.
  285. Some examples follow:
  286. @itemize
  287. @item
  288. Apply a boxblur filter with luma, chroma, and alpha radius
  289. set to 2:
  290. @example
  291. boxblur=2:1
  292. @end example
  293. @item
  294. Set luma radius to 2, alpha and chroma radius to 0
  295. @example
  296. boxblur=2:1:0:0:0:0
  297. @end example
  298. @item
  299. Set luma and chroma radius to a fraction of the video dimension
  300. @example
  301. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  302. @end example
  303. @end itemize
  304. @section copy
  305. Copy the input source unchanged to the output. Mainly useful for
  306. testing purposes.
  307. @section crop
  308. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  309. The parameters are expressions containing the following constants:
  310. @table @option
  311. @item E, PI, PHI
  312. the corresponding mathematical approximated values for e
  313. (euler number), pi (greek PI), PHI (golden ratio)
  314. @item x, y
  315. the computed values for @var{x} and @var{y}. They are evaluated for
  316. each new frame.
  317. @item in_w, in_h
  318. the input width and height
  319. @item iw, ih
  320. same as @var{in_w} and @var{in_h}
  321. @item out_w, out_h
  322. the output (cropped) width and height
  323. @item ow, oh
  324. same as @var{out_w} and @var{out_h}
  325. @item n
  326. the number of input frame, starting from 0
  327. @item pos
  328. the position in the file of the input frame, NAN if unknown
  329. @item t
  330. timestamp expressed in seconds, NAN if the input timestamp is unknown
  331. @end table
  332. The @var{out_w} and @var{out_h} parameters specify the expressions for
  333. the width and height of the output (cropped) video. They are
  334. evaluated just at the configuration of the filter.
  335. The default value of @var{out_w} is "in_w", and the default value of
  336. @var{out_h} is "in_h".
  337. The expression for @var{out_w} may depend on the value of @var{out_h},
  338. and the expression for @var{out_h} may depend on @var{out_w}, but they
  339. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  340. evaluated after @var{out_w} and @var{out_h}.
  341. The @var{x} and @var{y} parameters specify the expressions for the
  342. position of the top-left corner of the output (non-cropped) area. They
  343. are evaluated for each frame. If the evaluated value is not valid, it
  344. is approximated to the nearest valid value.
  345. The default value of @var{x} is "(in_w-out_w)/2", and the default
  346. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  347. the center of the input image.
  348. The expression for @var{x} may depend on @var{y}, and the expression
  349. for @var{y} may depend on @var{x}.
  350. Follow some examples:
  351. @example
  352. # crop the central input area with size 100x100
  353. crop=100:100
  354. # crop the central input area with size 2/3 of the input video
  355. "crop=2/3*in_w:2/3*in_h"
  356. # crop the input video central square
  357. crop=in_h
  358. # delimit the rectangle with the top-left corner placed at position
  359. # 100:100 and the right-bottom corner corresponding to the right-bottom
  360. # corner of the input image.
  361. crop=in_w-100:in_h-100:100:100
  362. # crop 10 pixels from the left and right borders, and 20 pixels from
  363. # the top and bottom borders
  364. "crop=in_w-2*10:in_h-2*20"
  365. # keep only the bottom right quarter of the input image
  366. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  367. # crop height for getting Greek harmony
  368. "crop=in_w:1/PHI*in_w"
  369. # trembling effect
  370. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  371. # erratic camera effect depending on timestamp
  372. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  373. # set x depending on the value of y
  374. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  375. @end example
  376. @section cropdetect
  377. Auto-detect crop size.
  378. Calculate necessary cropping parameters and prints the recommended
  379. parameters through the logging system. The detected dimensions
  380. correspond to the non-black area of the input video.
  381. It accepts the syntax:
  382. @example
  383. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  384. @end example
  385. @table @option
  386. @item limit
  387. Threshold, which can be optionally specified from nothing (0) to
  388. everything (255), defaults to 24.
  389. @item round
  390. Value which the width/height should be divisible by, defaults to
  391. 16. The offset is automatically adjusted to center the video. Use 2 to
  392. get only even dimensions (needed for 4:2:2 video). 16 is best when
  393. encoding to most video codecs.
  394. @item reset
  395. Counter that determines after how many frames cropdetect will reset
  396. the previously detected largest video area and start over to detect
  397. the current optimal crop area. Defaults to 0.
  398. This can be useful when channel logos distort the video area. 0
  399. indicates never reset and return the largest area encountered during
  400. playback.
  401. @end table
  402. @section delogo
  403. Suppress a TV station logo by a simple interpolation of the surrounding
  404. pixels. Just set a rectangle covering the logo and watch it disappear
  405. (and sometimes something even uglier appear - your mileage may vary).
  406. The filter accepts parameters as a string of the form
  407. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  408. @var{key}=@var{value} pairs, separated by ":".
  409. The description of the accepted parameters follows.
  410. @table @option
  411. @item x, y
  412. Specify the top left corner coordinates of the logo. They must be
  413. specified.
  414. @item w, h
  415. Specify the width and height of the logo to clear. They must be
  416. specified.
  417. @item band, t
  418. Specify the thickness of the fuzzy edge of the rectangle (added to
  419. @var{w} and @var{h}). The default value is 4.
  420. @item show
  421. When set to 1, a green rectangle is drawn on the screen to simplify
  422. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  423. @var{band} is set to 4. The default value is 0.
  424. @end table
  425. Some examples follow.
  426. @itemize
  427. @item
  428. Set a rectangle covering the area with top left corner coordinates 0,0
  429. and size 100x77, setting a band of size 10:
  430. @example
  431. delogo=0:0:100:77:10
  432. @end example
  433. @item
  434. As the previous example, but use named options:
  435. @example
  436. delogo=x=0:y=0:w=100:h=77:band=10
  437. @end example
  438. @end itemize
  439. @section drawbox
  440. Draw a colored box on the input image.
  441. It accepts the syntax:
  442. @example
  443. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  444. @end example
  445. @table @option
  446. @item x, y
  447. Specify the top left corner coordinates of the box. Default to 0.
  448. @item width, height
  449. Specify the width and height of the box, if 0 they are interpreted as
  450. the input width and height. Default to 0.
  451. @item color
  452. Specify the color of the box to write, it can be the name of a color
  453. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  454. @end table
  455. Follow some examples:
  456. @example
  457. # draw a black box around the edge of the input image
  458. drawbox
  459. # draw a box with color red and an opacity of 50%
  460. drawbox=10:20:200:60:red@@0.5"
  461. @end example
  462. @section drawtext
  463. Draw text string or text from specified file on top of video using the
  464. libfreetype library.
  465. To enable compilation of this filter you need to configure Libav with
  466. @code{--enable-libfreetype}.
  467. The filter also recognizes strftime() sequences in the provided text
  468. and expands them accordingly. Check the documentation of strftime().
  469. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  470. separated by ":".
  471. The description of the accepted parameters follows.
  472. @table @option
  473. @item fontfile
  474. The font file to be used for drawing text. Path must be included.
  475. This parameter is mandatory.
  476. @item text
  477. The text string to be drawn. The text must be a sequence of UTF-8
  478. encoded characters.
  479. This parameter is mandatory if no file is specified with the parameter
  480. @var{textfile}.
  481. @item textfile
  482. A text file containing text to be drawn. The text must be a sequence
  483. of UTF-8 encoded characters.
  484. This parameter is mandatory if no text string is specified with the
  485. parameter @var{text}.
  486. If both text and textfile are specified, an error is thrown.
  487. @item x, y
  488. The offsets where text will be drawn within the video frame.
  489. Relative to the top/left border of the output image.
  490. They accept expressions similar to the @ref{overlay} filter:
  491. @table @option
  492. @item x, y
  493. the computed values for @var{x} and @var{y}. They are evaluated for
  494. each new frame.
  495. @item main_w, main_h
  496. main input width and height
  497. @item W, H
  498. same as @var{main_w} and @var{main_h}
  499. @item text_w, text_h
  500. rendered text width and height
  501. @item w, h
  502. same as @var{text_w} and @var{text_h}
  503. @item n
  504. the number of frames processed, starting from 0
  505. @item t
  506. timestamp expressed in seconds, NAN if the input timestamp is unknown
  507. @end table
  508. The default value of @var{x} and @var{y} is 0.
  509. @item fontsize
  510. The font size to be used for drawing text.
  511. The default value of @var{fontsize} is 16.
  512. @item fontcolor
  513. The color to be used for drawing fonts.
  514. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  515. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  516. The default value of @var{fontcolor} is "black".
  517. @item boxcolor
  518. The color to be used for drawing box around text.
  519. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  520. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  521. The default value of @var{boxcolor} is "white".
  522. @item box
  523. Used to draw a box around text using background color.
  524. Value should be either 1 (enable) or 0 (disable).
  525. The default value of @var{box} is 0.
  526. @item shadowx, shadowy
  527. The x and y offsets for the text shadow position with respect to the
  528. position of the text. They can be either positive or negative
  529. values. Default value for both is "0".
  530. @item shadowcolor
  531. The color to be used for drawing a shadow behind the drawn text. It
  532. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  533. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  534. The default value of @var{shadowcolor} is "black".
  535. @item ft_load_flags
  536. Flags to be used for loading the fonts.
  537. The flags map the corresponding flags supported by libfreetype, and are
  538. a combination of the following values:
  539. @table @var
  540. @item default
  541. @item no_scale
  542. @item no_hinting
  543. @item render
  544. @item no_bitmap
  545. @item vertical_layout
  546. @item force_autohint
  547. @item crop_bitmap
  548. @item pedantic
  549. @item ignore_global_advance_width
  550. @item no_recurse
  551. @item ignore_transform
  552. @item monochrome
  553. @item linear_design
  554. @item no_autohint
  555. @item end table
  556. @end table
  557. Default value is "render".
  558. For more information consult the documentation for the FT_LOAD_*
  559. libfreetype flags.
  560. @item tabsize
  561. The size in number of spaces to use for rendering the tab.
  562. Default value is 4.
  563. @item fix_bounds
  564. If true, check and fix text coords to avoid clipping.
  565. @end table
  566. For example the command:
  567. @example
  568. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  569. @end example
  570. will draw "Test Text" with font FreeSerif, using the default values
  571. for the optional parameters.
  572. The command:
  573. @example
  574. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  575. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  576. @end example
  577. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  578. and y=50 (counting from the top-left corner of the screen), text is
  579. yellow with a red box around it. Both the text and the box have an
  580. opacity of 20%.
  581. Note that the double quotes are not necessary if spaces are not used
  582. within the parameter list.
  583. For more information about libfreetype, check:
  584. @url{http://www.freetype.org/}.
  585. @section fade
  586. Apply fade-in/out effect to input video.
  587. It accepts the parameters:
  588. @var{type}:@var{start_frame}:@var{nb_frames}
  589. @var{type} specifies if the effect type, can be either "in" for
  590. fade-in, or "out" for a fade-out effect.
  591. @var{start_frame} specifies the number of the start frame for starting
  592. to apply the fade effect.
  593. @var{nb_frames} specifies the number of frames for which the fade
  594. effect has to last. At the end of the fade-in effect the output video
  595. will have the same intensity as the input video, at the end of the
  596. fade-out transition the output video will be completely black.
  597. A few usage examples follow, usable too as test scenarios.
  598. @example
  599. # fade in first 30 frames of video
  600. fade=in:0:30
  601. # fade out last 45 frames of a 200-frame video
  602. fade=out:155:45
  603. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  604. fade=in:0:25, fade=out:975:25
  605. # make first 5 frames black, then fade in from frame 5-24
  606. fade=in:5:20
  607. @end example
  608. @section fieldorder
  609. Transform the field order of the input video.
  610. It accepts one parameter which specifies the required field order that
  611. the input interlaced video will be transformed to. The parameter can
  612. assume one of the following values:
  613. @table @option
  614. @item 0 or bff
  615. output bottom field first
  616. @item 1 or tff
  617. output top field first
  618. @end table
  619. Default value is "tff".
  620. Transformation is achieved by shifting the picture content up or down
  621. by one line, and filling the remaining line with appropriate picture content.
  622. This method is consistent with most broadcast field order converters.
  623. If the input video is not flagged as being interlaced, or it is already
  624. flagged as being of the required output field order then this filter does
  625. not alter the incoming video.
  626. This filter is very useful when converting to or from PAL DV material,
  627. which is bottom field first.
  628. For example:
  629. @example
  630. ./avconv -i in.vob -vf "fieldorder=bff" out.dv
  631. @end example
  632. @section fifo
  633. Buffer input images and send them when they are requested.
  634. This filter is mainly useful when auto-inserted by the libavfilter
  635. framework.
  636. The filter does not take parameters.
  637. @section format
  638. Convert the input video to one of the specified pixel formats.
  639. Libavfilter will try to pick one that is supported for the input to
  640. the next filter.
  641. The filter accepts a list of pixel format names, separated by ":",
  642. for example "yuv420p:monow:rgb24".
  643. Some examples follow:
  644. @example
  645. # convert the input video to the format "yuv420p"
  646. format=yuv420p
  647. # convert the input video to any of the formats in the list
  648. format=yuv420p:yuv444p:yuv410p
  649. @end example
  650. @section fps
  651. Convert the video to specified constant framerate by duplicating or dropping
  652. frames as necessary.
  653. This filter accepts the following named parameters:
  654. @table @option
  655. @item fps
  656. Desired output framerate.
  657. @end table
  658. @anchor{frei0r}
  659. @section frei0r
  660. Apply a frei0r effect to the input video.
  661. To enable compilation of this filter you need to install the frei0r
  662. header and configure Libav with --enable-frei0r.
  663. The filter supports the syntax:
  664. @example
  665. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  666. @end example
  667. @var{filter_name} is the name to the frei0r effect to load. If the
  668. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  669. is searched in each one of the directories specified by the colon
  670. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  671. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  672. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  673. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  674. for the frei0r effect.
  675. A frei0r effect parameter can be a boolean (whose values are specified
  676. with "y" and "n"), a double, a color (specified by the syntax
  677. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  678. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  679. description), a position (specified by the syntax @var{X}/@var{Y},
  680. @var{X} and @var{Y} being float numbers) and a string.
  681. The number and kind of parameters depend on the loaded effect. If an
  682. effect parameter is not specified the default value is set.
  683. Some examples follow:
  684. @example
  685. # apply the distort0r effect, set the first two double parameters
  686. frei0r=distort0r:0.5:0.01
  687. # apply the colordistance effect, takes a color as first parameter
  688. frei0r=colordistance:0.2/0.3/0.4
  689. frei0r=colordistance:violet
  690. frei0r=colordistance:0x112233
  691. # apply the perspective effect, specify the top left and top right
  692. # image positions
  693. frei0r=perspective:0.2/0.2:0.8/0.2
  694. @end example
  695. For more information see:
  696. @url{http://piksel.org/frei0r}
  697. @section gradfun
  698. Fix the banding artifacts that are sometimes introduced into nearly flat
  699. regions by truncation to 8bit colordepth.
  700. Interpolate the gradients that should go where the bands are, and
  701. dither them.
  702. This filter is designed for playback only. Do not use it prior to
  703. lossy compression, because compression tends to lose the dither and
  704. bring back the bands.
  705. The filter takes two optional parameters, separated by ':':
  706. @var{strength}:@var{radius}
  707. @var{strength} is the maximum amount by which the filter will change
  708. any one pixel. Also the threshold for detecting nearly flat
  709. regions. Acceptable values range from .51 to 255, default value is
  710. 1.2, out-of-range values will be clipped to the valid range.
  711. @var{radius} is the neighborhood to fit the gradient to. A larger
  712. radius makes for smoother gradients, but also prevents the filter from
  713. modifying the pixels near detailed regions. Acceptable values are
  714. 8-32, default value is 16, out-of-range values will be clipped to the
  715. valid range.
  716. @example
  717. # default parameters
  718. gradfun=1.2:16
  719. # omitting radius
  720. gradfun=1.2
  721. @end example
  722. @section hflip
  723. Flip the input video horizontally.
  724. For example to horizontally flip the input video with @command{avconv}:
  725. @example
  726. avconv -i in.avi -vf "hflip" out.avi
  727. @end example
  728. @section hqdn3d
  729. High precision/quality 3d denoise filter. This filter aims to reduce
  730. image noise producing smooth images and making still images really
  731. still. It should enhance compressibility.
  732. It accepts the following optional parameters:
  733. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  734. @table @option
  735. @item luma_spatial
  736. a non-negative float number which specifies spatial luma strength,
  737. defaults to 4.0
  738. @item chroma_spatial
  739. a non-negative float number which specifies spatial chroma strength,
  740. defaults to 3.0*@var{luma_spatial}/4.0
  741. @item luma_tmp
  742. a float number which specifies luma temporal strength, defaults to
  743. 6.0*@var{luma_spatial}/4.0
  744. @item chroma_tmp
  745. a float number which specifies chroma temporal strength, defaults to
  746. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  747. @end table
  748. @section lut, lutrgb, lutyuv
  749. Compute a look-up table for binding each pixel component input value
  750. to an output value, and apply it to input video.
  751. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  752. to an RGB input video.
  753. These filters accept in input a ":"-separated list of options, which
  754. specify the expressions used for computing the lookup table for the
  755. corresponding pixel component values.
  756. The @var{lut} filter requires either YUV or RGB pixel formats in
  757. input, and accepts the options:
  758. @table @option
  759. @var{c0} (first pixel component)
  760. @var{c1} (second pixel component)
  761. @var{c2} (third pixel component)
  762. @var{c3} (fourth pixel component, corresponds to the alpha component)
  763. @end table
  764. The exact component associated to each option depends on the format in
  765. input.
  766. The @var{lutrgb} filter requires RGB pixel formats in input, and
  767. accepts the options:
  768. @table @option
  769. @var{r} (red component)
  770. @var{g} (green component)
  771. @var{b} (blue component)
  772. @var{a} (alpha component)
  773. @end table
  774. The @var{lutyuv} filter requires YUV pixel formats in input, and
  775. accepts the options:
  776. @table @option
  777. @var{y} (Y/luminance component)
  778. @var{u} (U/Cb component)
  779. @var{v} (V/Cr component)
  780. @var{a} (alpha component)
  781. @end table
  782. The expressions can contain the following constants and functions:
  783. @table @option
  784. @item E, PI, PHI
  785. the corresponding mathematical approximated values for e
  786. (euler number), pi (greek PI), PHI (golden ratio)
  787. @item w, h
  788. the input width and height
  789. @item val
  790. input value for the pixel component
  791. @item clipval
  792. the input value clipped in the @var{minval}-@var{maxval} range
  793. @item maxval
  794. maximum value for the pixel component
  795. @item minval
  796. minimum value for the pixel component
  797. @item negval
  798. the negated value for the pixel component value clipped in the
  799. @var{minval}-@var{maxval} range , it corresponds to the expression
  800. "maxval-clipval+minval"
  801. @item clip(val)
  802. the computed value in @var{val} clipped in the
  803. @var{minval}-@var{maxval} range
  804. @item gammaval(gamma)
  805. the computed gamma correction value of the pixel component value
  806. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  807. expression
  808. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  809. @end table
  810. All expressions default to "val".
  811. Some examples follow:
  812. @example
  813. # negate input video
  814. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  815. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  816. # the above is the same as
  817. lutrgb="r=negval:g=negval:b=negval"
  818. lutyuv="y=negval:u=negval:v=negval"
  819. # negate luminance
  820. lutyuv=negval
  821. # remove chroma components, turns the video into a graytone image
  822. lutyuv="u=128:v=128"
  823. # apply a luma burning effect
  824. lutyuv="y=2*val"
  825. # remove green and blue components
  826. lutrgb="g=0:b=0"
  827. # set a constant alpha channel value on input
  828. format=rgba,lutrgb=a="maxval-minval/2"
  829. # correct luminance gamma by a 0.5 factor
  830. lutyuv=y=gammaval(0.5)
  831. @end example
  832. @section negate
  833. Negate input video.
  834. This filter accepts an integer in input, if non-zero it negates the
  835. alpha component (if available). The default value in input is 0.
  836. Force libavfilter not to use any of the specified pixel formats for the
  837. input to the next filter.
  838. The filter accepts a list of pixel format names, separated by ":",
  839. for example "yuv420p:monow:rgb24".
  840. Some examples follow:
  841. @example
  842. # force libavfilter to use a format different from "yuv420p" for the
  843. # input to the vflip filter
  844. noformat=yuv420p,vflip
  845. # convert the input video to any of the formats not contained in the list
  846. noformat=yuv420p:yuv444p:yuv410p
  847. @end example
  848. @section null
  849. Pass the video source unchanged to the output.
  850. @section ocv
  851. Apply video transform using libopencv.
  852. To enable this filter install libopencv library and headers and
  853. configure Libav with --enable-libopencv.
  854. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  855. @var{filter_name} is the name of the libopencv filter to apply.
  856. @var{filter_params} specifies the parameters to pass to the libopencv
  857. filter. If not specified the default values are assumed.
  858. Refer to the official libopencv documentation for more precise
  859. information:
  860. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  861. Follows the list of supported libopencv filters.
  862. @anchor{dilate}
  863. @subsection dilate
  864. Dilate an image by using a specific structuring element.
  865. This filter corresponds to the libopencv function @code{cvDilate}.
  866. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  867. @var{struct_el} represents a structuring element, and has the syntax:
  868. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  869. @var{cols} and @var{rows} represent the number of columns and rows of
  870. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  871. point, and @var{shape} the shape for the structuring element, and
  872. can be one of the values "rect", "cross", "ellipse", "custom".
  873. If the value for @var{shape} is "custom", it must be followed by a
  874. string of the form "=@var{filename}". The file with name
  875. @var{filename} is assumed to represent a binary image, with each
  876. printable character corresponding to a bright pixel. When a custom
  877. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  878. or columns and rows of the read file are assumed instead.
  879. The default value for @var{struct_el} is "3x3+0x0/rect".
  880. @var{nb_iterations} specifies the number of times the transform is
  881. applied to the image, and defaults to 1.
  882. Follow some example:
  883. @example
  884. # use the default values
  885. ocv=dilate
  886. # dilate using a structuring element with a 5x5 cross, iterate two times
  887. ocv=dilate=5x5+2x2/cross:2
  888. # read the shape from the file diamond.shape, iterate two times
  889. # the file diamond.shape may contain a pattern of characters like this:
  890. # *
  891. # ***
  892. # *****
  893. # ***
  894. # *
  895. # the specified cols and rows are ignored (but not the anchor point coordinates)
  896. ocv=0x0+2x2/custom=diamond.shape:2
  897. @end example
  898. @subsection erode
  899. Erode an image by using a specific structuring element.
  900. This filter corresponds to the libopencv function @code{cvErode}.
  901. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  902. with the same syntax and semantics as the @ref{dilate} filter.
  903. @subsection smooth
  904. Smooth the input video.
  905. The filter takes the following parameters:
  906. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  907. @var{type} is the type of smooth filter to apply, and can be one of
  908. the following values: "blur", "blur_no_scale", "median", "gaussian",
  909. "bilateral". The default value is "gaussian".
  910. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  911. parameters whose meanings depend on smooth type. @var{param1} and
  912. @var{param2} accept integer positive values or 0, @var{param3} and
  913. @var{param4} accept float values.
  914. The default value for @var{param1} is 3, the default value for the
  915. other parameters is 0.
  916. These parameters correspond to the parameters assigned to the
  917. libopencv function @code{cvSmooth}.
  918. @anchor{overlay}
  919. @section overlay
  920. Overlay one video on top of another.
  921. It takes two inputs and one output, the first input is the "main"
  922. video on which the second input is overlayed.
  923. It accepts the parameters: @var{x}:@var{y}.
  924. @var{x} is the x coordinate of the overlayed video on the main video,
  925. @var{y} is the y coordinate. The parameters are expressions containing
  926. the following parameters:
  927. @table @option
  928. @item main_w, main_h
  929. main input width and height
  930. @item W, H
  931. same as @var{main_w} and @var{main_h}
  932. @item overlay_w, overlay_h
  933. overlay input width and height
  934. @item w, h
  935. same as @var{overlay_w} and @var{overlay_h}
  936. @end table
  937. Be aware that frames are taken from each input video in timestamp
  938. order, hence, if their initial timestamps differ, it is a a good idea
  939. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  940. have them begin in the same zero timestamp, as it does the example for
  941. the @var{movie} filter.
  942. Follow some examples:
  943. @example
  944. # draw the overlay at 10 pixels from the bottom right
  945. # corner of the main video.
  946. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  947. # insert a transparent PNG logo in the bottom left corner of the input
  948. avconv -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  949. # insert 2 different transparent PNG logos (second logo on bottom
  950. # right corner):
  951. avconv -i input -i logo1 -i logo2 -filter_complex
  952. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  953. # add a transparent color layer on top of the main video,
  954. # WxH specifies the size of the main input to the overlay filter
  955. color=red@.3:WxH [over]; [in][over] overlay [out]
  956. @end example
  957. You can chain together more overlays but the efficiency of such
  958. approach is yet to be tested.
  959. @section pad
  960. Add paddings to the input image, and places the original input at the
  961. given coordinates @var{x}, @var{y}.
  962. It accepts the following parameters:
  963. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  964. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  965. expressions containing the following constants:
  966. @table @option
  967. @item E, PI, PHI
  968. the corresponding mathematical approximated values for e
  969. (euler number), pi (greek PI), phi (golden ratio)
  970. @item in_w, in_h
  971. the input video width and height
  972. @item iw, ih
  973. same as @var{in_w} and @var{in_h}
  974. @item out_w, out_h
  975. the output width and height, that is the size of the padded area as
  976. specified by the @var{width} and @var{height} expressions
  977. @item ow, oh
  978. same as @var{out_w} and @var{out_h}
  979. @item x, y
  980. x and y offsets as specified by the @var{x} and @var{y}
  981. expressions, or NAN if not yet specified
  982. @item a
  983. input display aspect ratio, same as @var{iw} / @var{ih}
  984. @item hsub, vsub
  985. horizontal and vertical chroma subsample values. For example for the
  986. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  987. @end table
  988. Follows the description of the accepted parameters.
  989. @table @option
  990. @item width, height
  991. Specify the size of the output image with the paddings added. If the
  992. value for @var{width} or @var{height} is 0, the corresponding input size
  993. is used for the output.
  994. The @var{width} expression can reference the value set by the
  995. @var{height} expression, and vice versa.
  996. The default value of @var{width} and @var{height} is 0.
  997. @item x, y
  998. Specify the offsets where to place the input image in the padded area
  999. with respect to the top/left border of the output image.
  1000. The @var{x} expression can reference the value set by the @var{y}
  1001. expression, and vice versa.
  1002. The default value of @var{x} and @var{y} is 0.
  1003. @item color
  1004. Specify the color of the padded area, it can be the name of a color
  1005. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1006. The default value of @var{color} is "black".
  1007. @end table
  1008. Some examples follow:
  1009. @example
  1010. # Add paddings with color "violet" to the input video. Output video
  1011. # size is 640x480, the top-left corner of the input video is placed at
  1012. # column 0, row 40.
  1013. pad=640:480:0:40:violet
  1014. # pad the input to get an output with dimensions increased bt 3/2,
  1015. # and put the input video at the center of the padded area
  1016. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1017. # pad the input to get a squared output with size equal to the maximum
  1018. # value between the input width and height, and put the input video at
  1019. # the center of the padded area
  1020. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1021. # pad the input to get a final w/h ratio of 16:9
  1022. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1023. # double output size and put the input video in the bottom-right
  1024. # corner of the output padded area
  1025. pad="2*iw:2*ih:ow-iw:oh-ih"
  1026. @end example
  1027. @section pixdesctest
  1028. Pixel format descriptor test filter, mainly useful for internal
  1029. testing. The output video should be equal to the input video.
  1030. For example:
  1031. @example
  1032. format=monow, pixdesctest
  1033. @end example
  1034. can be used to test the monowhite pixel format descriptor definition.
  1035. @section scale
  1036. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1037. The parameters @var{width} and @var{height} are expressions containing
  1038. the following constants:
  1039. @table @option
  1040. @item E, PI, PHI
  1041. the corresponding mathematical approximated values for e
  1042. (euler number), pi (greek PI), phi (golden ratio)
  1043. @item in_w, in_h
  1044. the input width and height
  1045. @item iw, ih
  1046. same as @var{in_w} and @var{in_h}
  1047. @item out_w, out_h
  1048. the output (cropped) width and height
  1049. @item ow, oh
  1050. same as @var{out_w} and @var{out_h}
  1051. @item dar, a
  1052. input display aspect ratio, same as @var{iw} / @var{ih}
  1053. @item sar
  1054. input sample aspect ratio
  1055. @item hsub, vsub
  1056. horizontal and vertical chroma subsample values. For example for the
  1057. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1058. @end table
  1059. If the input image format is different from the format requested by
  1060. the next filter, the scale filter will convert the input to the
  1061. requested format.
  1062. If the value for @var{width} or @var{height} is 0, the respective input
  1063. size is used for the output.
  1064. If the value for @var{width} or @var{height} is -1, the scale filter will
  1065. use, for the respective output size, a value that maintains the aspect
  1066. ratio of the input image.
  1067. The default value of @var{width} and @var{height} is 0.
  1068. Some examples follow:
  1069. @example
  1070. # scale the input video to a size of 200x100.
  1071. scale=200:100
  1072. # scale the input to 2x
  1073. scale=2*iw:2*ih
  1074. # the above is the same as
  1075. scale=2*in_w:2*in_h
  1076. # scale the input to half size
  1077. scale=iw/2:ih/2
  1078. # increase the width, and set the height to the same size
  1079. scale=3/2*iw:ow
  1080. # seek for Greek harmony
  1081. scale=iw:1/PHI*iw
  1082. scale=ih*PHI:ih
  1083. # increase the height, and set the width to 3/2 of the height
  1084. scale=3/2*oh:3/5*ih
  1085. # increase the size, but make the size a multiple of the chroma
  1086. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1087. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1088. scale='min(500\, iw*3/2):-1'
  1089. @end example
  1090. @section select
  1091. Select frames to pass in output.
  1092. It accepts in input an expression, which is evaluated for each input
  1093. frame. If the expression is evaluated to a non-zero value, the frame
  1094. is selected and passed to the output, otherwise it is discarded.
  1095. The expression can contain the following constants:
  1096. @table @option
  1097. @item PI
  1098. Greek PI
  1099. @item PHI
  1100. golden ratio
  1101. @item E
  1102. Euler number
  1103. @item n
  1104. the sequential number of the filtered frame, starting from 0
  1105. @item selected_n
  1106. the sequential number of the selected frame, starting from 0
  1107. @item prev_selected_n
  1108. the sequential number of the last selected frame, NAN if undefined
  1109. @item TB
  1110. timebase of the input timestamps
  1111. @item pts
  1112. the PTS (Presentation TimeStamp) of the filtered video frame,
  1113. expressed in @var{TB} units, NAN if undefined
  1114. @item t
  1115. the PTS (Presentation TimeStamp) of the filtered video frame,
  1116. expressed in seconds, NAN if undefined
  1117. @item prev_pts
  1118. the PTS of the previously filtered video frame, NAN if undefined
  1119. @item prev_selected_pts
  1120. the PTS of the last previously filtered video frame, NAN if undefined
  1121. @item prev_selected_t
  1122. the PTS of the last previously selected video frame, NAN if undefined
  1123. @item start_pts
  1124. the PTS of the first video frame in the video, NAN if undefined
  1125. @item start_t
  1126. the time of the first video frame in the video, NAN if undefined
  1127. @item pict_type
  1128. the type of the filtered frame, can assume one of the following
  1129. values:
  1130. @table @option
  1131. @item I
  1132. @item P
  1133. @item B
  1134. @item S
  1135. @item SI
  1136. @item SP
  1137. @item BI
  1138. @end table
  1139. @item interlace_type
  1140. the frame interlace type, can assume one of the following values:
  1141. @table @option
  1142. @item PROGRESSIVE
  1143. the frame is progressive (not interlaced)
  1144. @item TOPFIRST
  1145. the frame is top-field-first
  1146. @item BOTTOMFIRST
  1147. the frame is bottom-field-first
  1148. @end table
  1149. @item key
  1150. 1 if the filtered frame is a key-frame, 0 otherwise
  1151. @item pos
  1152. the position in the file of the filtered frame, -1 if the information
  1153. is not available (e.g. for synthetic video)
  1154. @end table
  1155. The default value of the select expression is "1".
  1156. Some examples follow:
  1157. @example
  1158. # select all frames in input
  1159. select
  1160. # the above is the same as:
  1161. select=1
  1162. # skip all frames:
  1163. select=0
  1164. # select only I-frames
  1165. select='eq(pict_type\,I)'
  1166. # select one frame every 100
  1167. select='not(mod(n\,100))'
  1168. # select only frames contained in the 10-20 time interval
  1169. select='gte(t\,10)*lte(t\,20)'
  1170. # select only I frames contained in the 10-20 time interval
  1171. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1172. # select frames with a minimum distance of 10 seconds
  1173. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1174. @end example
  1175. @anchor{setdar}
  1176. @section setdar
  1177. Set the Display Aspect Ratio for the filter output video.
  1178. This is done by changing the specified Sample (aka Pixel) Aspect
  1179. Ratio, according to the following equation:
  1180. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1181. Keep in mind that this filter does not modify the pixel dimensions of
  1182. the video frame. Also the display aspect ratio set by this filter may
  1183. be changed by later filters in the filterchain, e.g. in case of
  1184. scaling or if another "setdar" or a "setsar" filter is applied.
  1185. The filter accepts a parameter string which represents the wanted
  1186. display aspect ratio.
  1187. The parameter can be a floating point number string, or an expression
  1188. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1189. numerator and denominator of the aspect ratio.
  1190. If the parameter is not specified, it is assumed the value "0:1".
  1191. For example to change the display aspect ratio to 16:9, specify:
  1192. @example
  1193. setdar=16:9
  1194. # the above is equivalent to
  1195. setdar=1.77777
  1196. @end example
  1197. See also the @ref{setsar} filter documentation.
  1198. @section setpts
  1199. Change the PTS (presentation timestamp) of the input video frames.
  1200. Accept in input an expression evaluated through the eval API, which
  1201. can contain the following constants:
  1202. @table @option
  1203. @item PTS
  1204. the presentation timestamp in input
  1205. @item PI
  1206. Greek PI
  1207. @item PHI
  1208. golden ratio
  1209. @item E
  1210. Euler number
  1211. @item N
  1212. the count of the input frame, starting from 0.
  1213. @item STARTPTS
  1214. the PTS of the first video frame
  1215. @item INTERLACED
  1216. tell if the current frame is interlaced
  1217. @item POS
  1218. original position in the file of the frame, or undefined if undefined
  1219. for the current frame
  1220. @item PREV_INPTS
  1221. previous input PTS
  1222. @item PREV_OUTPTS
  1223. previous output PTS
  1224. @end table
  1225. Some examples follow:
  1226. @example
  1227. # start counting PTS from zero
  1228. setpts=PTS-STARTPTS
  1229. # fast motion
  1230. setpts=0.5*PTS
  1231. # slow motion
  1232. setpts=2.0*PTS
  1233. # fixed rate 25 fps
  1234. setpts=N/(25*TB)
  1235. # fixed rate 25 fps with some jitter
  1236. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1237. @end example
  1238. @anchor{setsar}
  1239. @section setsar
  1240. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1241. Note that as a consequence of the application of this filter, the
  1242. output display aspect ratio will change according to the following
  1243. equation:
  1244. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1245. Keep in mind that the sample aspect ratio set by this filter may be
  1246. changed by later filters in the filterchain, e.g. if another "setsar"
  1247. or a "setdar" filter is applied.
  1248. The filter accepts a parameter string which represents the wanted
  1249. sample aspect ratio.
  1250. The parameter can be a floating point number string, or an expression
  1251. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1252. numerator and denominator of the aspect ratio.
  1253. If the parameter is not specified, it is assumed the value "0:1".
  1254. For example to change the sample aspect ratio to 10:11, specify:
  1255. @example
  1256. setsar=10:11
  1257. @end example
  1258. @section settb
  1259. Set the timebase to use for the output frames timestamps.
  1260. It is mainly useful for testing timebase configuration.
  1261. It accepts in input an arithmetic expression representing a rational.
  1262. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1263. default timebase), and "intb" (the input timebase).
  1264. The default value for the input is "intb".
  1265. Follow some examples.
  1266. @example
  1267. # set the timebase to 1/25
  1268. settb=1/25
  1269. # set the timebase to 1/10
  1270. settb=0.1
  1271. #set the timebase to 1001/1000
  1272. settb=1+0.001
  1273. #set the timebase to 2*intb
  1274. settb=2*intb
  1275. #set the default timebase value
  1276. settb=AVTB
  1277. @end example
  1278. @section showinfo
  1279. Show a line containing various information for each input video frame.
  1280. The input video is not modified.
  1281. The shown line contains a sequence of key/value pairs of the form
  1282. @var{key}:@var{value}.
  1283. A description of each shown parameter follows:
  1284. @table @option
  1285. @item n
  1286. sequential number of the input frame, starting from 0
  1287. @item pts
  1288. Presentation TimeStamp of the input frame, expressed as a number of
  1289. time base units. The time base unit depends on the filter input pad.
  1290. @item pts_time
  1291. Presentation TimeStamp of the input frame, expressed as a number of
  1292. seconds
  1293. @item pos
  1294. position of the frame in the input stream, -1 if this information in
  1295. unavailable and/or meaningless (for example in case of synthetic video)
  1296. @item fmt
  1297. pixel format name
  1298. @item sar
  1299. sample aspect ratio of the input frame, expressed in the form
  1300. @var{num}/@var{den}
  1301. @item s
  1302. size of the input frame, expressed in the form
  1303. @var{width}x@var{height}
  1304. @item i
  1305. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1306. for bottom field first)
  1307. @item iskey
  1308. 1 if the frame is a key frame, 0 otherwise
  1309. @item type
  1310. picture type of the input frame ("I" for an I-frame, "P" for a
  1311. P-frame, "B" for a B-frame, "?" for unknown type).
  1312. Check also the documentation of the @code{AVPictureType} enum and of
  1313. the @code{av_get_picture_type_char} function defined in
  1314. @file{libavutil/avutil.h}.
  1315. @item checksum
  1316. Adler-32 checksum of all the planes of the input frame
  1317. @item plane_checksum
  1318. Adler-32 checksum of each plane of the input frame, expressed in the form
  1319. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1320. @end table
  1321. @section slicify
  1322. Pass the images of input video on to next video filter as multiple
  1323. slices.
  1324. @example
  1325. ./avconv -i in.avi -vf "slicify=32" out.avi
  1326. @end example
  1327. The filter accepts the slice height as parameter. If the parameter is
  1328. not specified it will use the default value of 16.
  1329. Adding this in the beginning of filter chains should make filtering
  1330. faster due to better use of the memory cache.
  1331. @section split
  1332. Split input video into several identical outputs.
  1333. The filter accepts a single parameter which specifies the number of outputs. If
  1334. unspecified, it defaults to 2.
  1335. For example
  1336. @example
  1337. avconv -i INPUT -filter_complex split=5 OUTPUT
  1338. @end example
  1339. will create 5 copies of the input video.
  1340. @section transpose
  1341. Transpose rows with columns in the input video and optionally flip it.
  1342. It accepts a parameter representing an integer, which can assume the
  1343. values:
  1344. @table @samp
  1345. @item 0
  1346. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1347. @example
  1348. L.R L.l
  1349. . . -> . .
  1350. l.r R.r
  1351. @end example
  1352. @item 1
  1353. Rotate by 90 degrees clockwise, that is:
  1354. @example
  1355. L.R l.L
  1356. . . -> . .
  1357. l.r r.R
  1358. @end example
  1359. @item 2
  1360. Rotate by 90 degrees counterclockwise, that is:
  1361. @example
  1362. L.R R.r
  1363. . . -> . .
  1364. l.r L.l
  1365. @end example
  1366. @item 3
  1367. Rotate by 90 degrees clockwise and vertically flip, that is:
  1368. @example
  1369. L.R r.R
  1370. . . -> . .
  1371. l.r l.L
  1372. @end example
  1373. @end table
  1374. @section unsharp
  1375. Sharpen or blur the input video.
  1376. It accepts the following parameters:
  1377. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1378. Negative values for the amount will blur the input video, while positive
  1379. values will sharpen. All parameters are optional and default to the
  1380. equivalent of the string '5:5:1.0:5:5:0.0'.
  1381. @table @option
  1382. @item luma_msize_x
  1383. Set the luma matrix horizontal size. It can be an integer between 3
  1384. and 13, default value is 5.
  1385. @item luma_msize_y
  1386. Set the luma matrix vertical size. It can be an integer between 3
  1387. and 13, default value is 5.
  1388. @item luma_amount
  1389. Set the luma effect strength. It can be a float number between -2.0
  1390. and 5.0, default value is 1.0.
  1391. @item chroma_msize_x
  1392. Set the chroma matrix horizontal size. It can be an integer between 3
  1393. and 13, default value is 5.
  1394. @item chroma_msize_y
  1395. Set the chroma matrix vertical size. It can be an integer between 3
  1396. and 13, default value is 5.
  1397. @item luma_amount
  1398. Set the chroma effect strength. It can be a float number between -2.0
  1399. and 5.0, default value is 0.0.
  1400. @end table
  1401. @example
  1402. # Strong luma sharpen effect parameters
  1403. unsharp=7:7:2.5
  1404. # Strong blur of both luma and chroma parameters
  1405. unsharp=7:7:-2:7:7:-2
  1406. # Use the default values with @command{avconv}
  1407. ./avconv -i in.avi -vf "unsharp" out.mp4
  1408. @end example
  1409. @section vflip
  1410. Flip the input video vertically.
  1411. @example
  1412. ./avconv -i in.avi -vf "vflip" out.avi
  1413. @end example
  1414. @section yadif
  1415. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1416. filter").
  1417. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1418. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1419. following values:
  1420. @table @option
  1421. @item 0
  1422. output 1 frame for each frame
  1423. @item 1
  1424. output 1 frame for each field
  1425. @item 2
  1426. like 0 but skips spatial interlacing check
  1427. @item 3
  1428. like 1 but skips spatial interlacing check
  1429. @end table
  1430. Default value is 0.
  1431. @var{parity} specifies the picture field parity assumed for the input
  1432. interlaced video, accepts one of the following values:
  1433. @table @option
  1434. @item 0
  1435. assume top field first
  1436. @item 1
  1437. assume bottom field first
  1438. @item -1
  1439. enable automatic detection
  1440. @end table
  1441. Default value is -1.
  1442. If interlacing is unknown or decoder does not export this information,
  1443. top field first will be assumed.
  1444. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1445. and only deinterlace frames marked as interlaced
  1446. @table @option
  1447. @item 0
  1448. deinterlace all frames
  1449. @item 1
  1450. only deinterlace frames marked as interlaced
  1451. @end table
  1452. Default value is 0.
  1453. @c man end VIDEO FILTERS
  1454. @chapter Video Sources
  1455. @c man begin VIDEO SOURCES
  1456. Below is a description of the currently available video sources.
  1457. @section buffer
  1458. Buffer video frames, and make them available to the filter chain.
  1459. This source is mainly intended for a programmatic use, in particular
  1460. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1461. It accepts the following parameters:
  1462. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}
  1463. All the parameters need to be explicitly defined.
  1464. Follows the list of the accepted parameters.
  1465. @table @option
  1466. @item width, height
  1467. Specify the width and height of the buffered video frames.
  1468. @item pix_fmt_string
  1469. A string representing the pixel format of the buffered video frames.
  1470. It may be a number corresponding to a pixel format, or a pixel format
  1471. name.
  1472. @item timebase_num, timebase_den
  1473. Specify numerator and denomitor of the timebase assumed by the
  1474. timestamps of the buffered frames.
  1475. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1476. Specify numerator and denominator of the sample aspect ratio assumed
  1477. by the video frames.
  1478. @end table
  1479. For example:
  1480. @example
  1481. buffer=320:240:yuv410p:1:24:1:1
  1482. @end example
  1483. will instruct the source to accept video frames with size 320x240 and
  1484. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1485. square pixels (1:1 sample aspect ratio).
  1486. Since the pixel format with name "yuv410p" corresponds to the number 6
  1487. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1488. this example corresponds to:
  1489. @example
  1490. buffer=320:240:6:1:24
  1491. @end example
  1492. @section color
  1493. Provide an uniformly colored input.
  1494. It accepts the following parameters:
  1495. @var{color}:@var{frame_size}:@var{frame_rate}
  1496. Follows the description of the accepted parameters.
  1497. @table @option
  1498. @item color
  1499. Specify the color of the source. It can be the name of a color (case
  1500. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1501. alpha specifier. The default value is "black".
  1502. @item frame_size
  1503. Specify the size of the sourced video, it may be a string of the form
  1504. @var{width}x@var{height}, or the name of a size abbreviation. The
  1505. default value is "320x240".
  1506. @item frame_rate
  1507. Specify the frame rate of the sourced video, as the number of frames
  1508. generated per second. It has to be a string in the format
  1509. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1510. number or a valid video frame rate abbreviation. The default value is
  1511. "25".
  1512. @end table
  1513. For example the following graph description will generate a red source
  1514. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1515. frames per second, which will be overlayed over the source connected
  1516. to the pad with identifier "in".
  1517. @example
  1518. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1519. @end example
  1520. @section movie
  1521. Read a video stream from a movie container.
  1522. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1523. @var{movie_name} is the name of the resource to read (not necessarily
  1524. a file but also a device or a stream accessed through some protocol),
  1525. and @var{options} is an optional sequence of @var{key}=@var{value}
  1526. pairs, separated by ":".
  1527. The description of the accepted options follows.
  1528. @table @option
  1529. @item format_name, f
  1530. Specifies the format assumed for the movie to read, and can be either
  1531. the name of a container or an input device. If not specified the
  1532. format is guessed from @var{movie_name} or by probing.
  1533. @item seek_point, sp
  1534. Specifies the seek point in seconds, the frames will be output
  1535. starting from this seek point, the parameter is evaluated with
  1536. @code{av_strtod} so the numerical value may be suffixed by an IS
  1537. postfix. Default value is "0".
  1538. @item stream_index, si
  1539. Specifies the index of the video stream to read. If the value is -1,
  1540. the best suited video stream will be automatically selected. Default
  1541. value is "-1".
  1542. @end table
  1543. This filter allows to overlay a second video on top of main input of
  1544. a filtergraph as shown in this graph:
  1545. @example
  1546. input -----------> deltapts0 --> overlay --> output
  1547. ^
  1548. |
  1549. movie --> scale--> deltapts1 -------+
  1550. @end example
  1551. Some examples follow:
  1552. @example
  1553. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1554. # on top of the input labelled as "in".
  1555. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1556. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1557. # read from a video4linux2 device, and overlay it on top of the input
  1558. # labelled as "in"
  1559. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1560. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1561. @end example
  1562. @section nullsrc
  1563. Null video source, never return images. It is mainly useful as a
  1564. template and to be employed in analysis / debugging tools.
  1565. It accepts as optional parameter a string of the form
  1566. @var{width}:@var{height}:@var{timebase}.
  1567. @var{width} and @var{height} specify the size of the configured
  1568. source. The default values of @var{width} and @var{height} are
  1569. respectively 352 and 288 (corresponding to the CIF size format).
  1570. @var{timebase} specifies an arithmetic expression representing a
  1571. timebase. The expression can contain the constants "PI", "E", "PHI",
  1572. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1573. @section frei0r_src
  1574. Provide a frei0r source.
  1575. To enable compilation of this filter you need to install the frei0r
  1576. header and configure Libav with --enable-frei0r.
  1577. The source supports the syntax:
  1578. @example
  1579. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1580. @end example
  1581. @var{size} is the size of the video to generate, may be a string of the
  1582. form @var{width}x@var{height} or a frame size abbreviation.
  1583. @var{rate} is the rate of the video to generate, may be a string of
  1584. the form @var{num}/@var{den} or a frame rate abbreviation.
  1585. @var{src_name} is the name to the frei0r source to load. For more
  1586. information regarding frei0r and how to set the parameters read the
  1587. section @ref{frei0r} in the description of the video filters.
  1588. Some examples follow:
  1589. @example
  1590. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1591. # which is overlayed on the overlay filter main input
  1592. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1593. @end example
  1594. @section rgbtestsrc, testsrc
  1595. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1596. detecting RGB vs BGR issues. You should see a red, green and blue
  1597. stripe from top to bottom.
  1598. The @code{testsrc} source generates a test video pattern, showing a
  1599. color pattern, a scrolling gradient and a timestamp. This is mainly
  1600. intended for testing purposes.
  1601. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1602. separated by ":". The description of the accepted options follows.
  1603. @table @option
  1604. @item size, s
  1605. Specify the size of the sourced video, it may be a string of the form
  1606. @var{width}x@var{height}, or the name of a size abbreviation. The
  1607. default value is "320x240".
  1608. @item rate, r
  1609. Specify the frame rate of the sourced video, as the number of frames
  1610. generated per second. It has to be a string in the format
  1611. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1612. number or a valid video frame rate abbreviation. The default value is
  1613. "25".
  1614. @item sar
  1615. Set the sample aspect ratio of the sourced video.
  1616. @item duration
  1617. Set the video duration of the sourced video. The accepted syntax is:
  1618. @example
  1619. [-]HH[:MM[:SS[.m...]]]
  1620. [-]S+[.m...]
  1621. @end example
  1622. See also the function @code{av_parse_time()}.
  1623. If not specified, or the expressed duration is negative, the video is
  1624. supposed to be generated forever.
  1625. @end table
  1626. For example the following:
  1627. @example
  1628. testsrc=duration=5.3:size=qcif:rate=10
  1629. @end example
  1630. will generate a video with a duration of 5.3 seconds, with size
  1631. 176x144 and a framerate of 10 frames per second.
  1632. @c man end VIDEO SOURCES
  1633. @chapter Video Sinks
  1634. @c man begin VIDEO SINKS
  1635. Below is a description of the currently available video sinks.
  1636. @section buffersink
  1637. Buffer video frames, and make them available to the end of the filter
  1638. graph.
  1639. This sink is intended for a programmatic use through the interface defined in
  1640. @file{libavfilter/buffersink.h}.
  1641. @section nullsink
  1642. Null video sink, do absolutely nothing with the input video. It is
  1643. mainly useful as a template and to be employed in analysis / debugging
  1644. tools.
  1645. @c man end VIDEO SINKS