You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

935 lines
30KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  102. ff_wma_scale_huffbits, 1, 1,
  103. ff_wma_scale_huffcodes, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = SAMPLE_FMT_S16;
  108. return 0;
  109. }
  110. /**
  111. * compute x^-0.25 with an exponent and mantissa table. We use linear
  112. * interpolation to reduce the mantissa table size at a small speed
  113. * expense (linear interpolation approximately doubles the number of
  114. * bits of precision).
  115. */
  116. static inline float pow_m1_4(WMACodecContext *s, float x)
  117. {
  118. union {
  119. float f;
  120. unsigned int v;
  121. } u, t;
  122. unsigned int e, m;
  123. float a, b;
  124. u.f = x;
  125. e = u.v >> 23;
  126. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  127. /* build interpolation scale: 1 <= t < 2. */
  128. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  129. a = s->lsp_pow_m_table1[m];
  130. b = s->lsp_pow_m_table2[m];
  131. return s->lsp_pow_e_table[e] * (a + b * t.f);
  132. }
  133. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  134. {
  135. float wdel, a, b;
  136. int i, e, m;
  137. wdel = M_PI / frame_len;
  138. for(i=0;i<frame_len;i++)
  139. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  140. /* tables for x^-0.25 computation */
  141. for(i=0;i<256;i++) {
  142. e = i - 126;
  143. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  144. }
  145. /* NOTE: these two tables are needed to avoid two operations in
  146. pow_m1_4 */
  147. b = 1.0;
  148. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  149. m = (1 << LSP_POW_BITS) + i;
  150. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  151. a = pow(a, -0.25);
  152. s->lsp_pow_m_table1[i] = 2 * a - b;
  153. s->lsp_pow_m_table2[i] = b - a;
  154. b = a;
  155. }
  156. #if 0
  157. for(i=1;i<20;i++) {
  158. float v, r1, r2;
  159. v = 5.0 / i;
  160. r1 = pow_m1_4(s, v);
  161. r2 = pow(v,-0.25);
  162. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  163. }
  164. #endif
  165. }
  166. /**
  167. * NOTE: We use the same code as Vorbis here
  168. * @todo optimize it further with SSE/3Dnow
  169. */
  170. static void wma_lsp_to_curve(WMACodecContext *s,
  171. float *out, float *val_max_ptr,
  172. int n, float *lsp)
  173. {
  174. int i, j;
  175. float p, q, w, v, val_max;
  176. val_max = 0;
  177. for(i=0;i<n;i++) {
  178. p = 0.5f;
  179. q = 0.5f;
  180. w = s->lsp_cos_table[i];
  181. for(j=1;j<NB_LSP_COEFS;j+=2){
  182. q *= w - lsp[j - 1];
  183. p *= w - lsp[j];
  184. }
  185. p *= p * (2.0f - w);
  186. q *= q * (2.0f + w);
  187. v = p + q;
  188. v = pow_m1_4(s, v);
  189. if (v > val_max)
  190. val_max = v;
  191. out[i] = v;
  192. }
  193. *val_max_ptr = val_max;
  194. }
  195. /**
  196. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  197. */
  198. static void decode_exp_lsp(WMACodecContext *s, int ch)
  199. {
  200. float lsp_coefs[NB_LSP_COEFS];
  201. int val, i;
  202. for(i = 0; i < NB_LSP_COEFS; i++) {
  203. if (i == 0 || i >= 8)
  204. val = get_bits(&s->gb, 3);
  205. else
  206. val = get_bits(&s->gb, 4);
  207. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  208. }
  209. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  210. s->block_len, lsp_coefs);
  211. }
  212. /** pow(10, i / 16.0) for i in -60..95 */
  213. static const float pow_tab[] = {
  214. 1.7782794100389e-04, 2.0535250264571e-04,
  215. 2.3713737056617e-04, 2.7384196342644e-04,
  216. 3.1622776601684e-04, 3.6517412725484e-04,
  217. 4.2169650342858e-04, 4.8696752516586e-04,
  218. 5.6234132519035e-04, 6.4938163157621e-04,
  219. 7.4989420933246e-04, 8.6596432336006e-04,
  220. 1.0000000000000e-03, 1.1547819846895e-03,
  221. 1.3335214321633e-03, 1.5399265260595e-03,
  222. 1.7782794100389e-03, 2.0535250264571e-03,
  223. 2.3713737056617e-03, 2.7384196342644e-03,
  224. 3.1622776601684e-03, 3.6517412725484e-03,
  225. 4.2169650342858e-03, 4.8696752516586e-03,
  226. 5.6234132519035e-03, 6.4938163157621e-03,
  227. 7.4989420933246e-03, 8.6596432336006e-03,
  228. 1.0000000000000e-02, 1.1547819846895e-02,
  229. 1.3335214321633e-02, 1.5399265260595e-02,
  230. 1.7782794100389e-02, 2.0535250264571e-02,
  231. 2.3713737056617e-02, 2.7384196342644e-02,
  232. 3.1622776601684e-02, 3.6517412725484e-02,
  233. 4.2169650342858e-02, 4.8696752516586e-02,
  234. 5.6234132519035e-02, 6.4938163157621e-02,
  235. 7.4989420933246e-02, 8.6596432336007e-02,
  236. 1.0000000000000e-01, 1.1547819846895e-01,
  237. 1.3335214321633e-01, 1.5399265260595e-01,
  238. 1.7782794100389e-01, 2.0535250264571e-01,
  239. 2.3713737056617e-01, 2.7384196342644e-01,
  240. 3.1622776601684e-01, 3.6517412725484e-01,
  241. 4.2169650342858e-01, 4.8696752516586e-01,
  242. 5.6234132519035e-01, 6.4938163157621e-01,
  243. 7.4989420933246e-01, 8.6596432336007e-01,
  244. 1.0000000000000e+00, 1.1547819846895e+00,
  245. 1.3335214321633e+00, 1.5399265260595e+00,
  246. 1.7782794100389e+00, 2.0535250264571e+00,
  247. 2.3713737056617e+00, 2.7384196342644e+00,
  248. 3.1622776601684e+00, 3.6517412725484e+00,
  249. 4.2169650342858e+00, 4.8696752516586e+00,
  250. 5.6234132519035e+00, 6.4938163157621e+00,
  251. 7.4989420933246e+00, 8.6596432336007e+00,
  252. 1.0000000000000e+01, 1.1547819846895e+01,
  253. 1.3335214321633e+01, 1.5399265260595e+01,
  254. 1.7782794100389e+01, 2.0535250264571e+01,
  255. 2.3713737056617e+01, 2.7384196342644e+01,
  256. 3.1622776601684e+01, 3.6517412725484e+01,
  257. 4.2169650342858e+01, 4.8696752516586e+01,
  258. 5.6234132519035e+01, 6.4938163157621e+01,
  259. 7.4989420933246e+01, 8.6596432336007e+01,
  260. 1.0000000000000e+02, 1.1547819846895e+02,
  261. 1.3335214321633e+02, 1.5399265260595e+02,
  262. 1.7782794100389e+02, 2.0535250264571e+02,
  263. 2.3713737056617e+02, 2.7384196342644e+02,
  264. 3.1622776601684e+02, 3.6517412725484e+02,
  265. 4.2169650342858e+02, 4.8696752516586e+02,
  266. 5.6234132519035e+02, 6.4938163157621e+02,
  267. 7.4989420933246e+02, 8.6596432336007e+02,
  268. 1.0000000000000e+03, 1.1547819846895e+03,
  269. 1.3335214321633e+03, 1.5399265260595e+03,
  270. 1.7782794100389e+03, 2.0535250264571e+03,
  271. 2.3713737056617e+03, 2.7384196342644e+03,
  272. 3.1622776601684e+03, 3.6517412725484e+03,
  273. 4.2169650342858e+03, 4.8696752516586e+03,
  274. 5.6234132519035e+03, 6.4938163157621e+03,
  275. 7.4989420933246e+03, 8.6596432336007e+03,
  276. 1.0000000000000e+04, 1.1547819846895e+04,
  277. 1.3335214321633e+04, 1.5399265260595e+04,
  278. 1.7782794100389e+04, 2.0535250264571e+04,
  279. 2.3713737056617e+04, 2.7384196342644e+04,
  280. 3.1622776601684e+04, 3.6517412725484e+04,
  281. 4.2169650342858e+04, 4.8696752516586e+04,
  282. 5.6234132519035e+04, 6.4938163157621e+04,
  283. 7.4989420933246e+04, 8.6596432336007e+04,
  284. 1.0000000000000e+05, 1.1547819846895e+05,
  285. 1.3335214321633e+05, 1.5399265260595e+05,
  286. 1.7782794100389e+05, 2.0535250264571e+05,
  287. 2.3713737056617e+05, 2.7384196342644e+05,
  288. 3.1622776601684e+05, 3.6517412725484e+05,
  289. 4.2169650342858e+05, 4.8696752516586e+05,
  290. 5.6234132519035e+05, 6.4938163157621e+05,
  291. 7.4989420933246e+05, 8.6596432336007e+05,
  292. };
  293. /**
  294. * decode exponents coded with VLC codes
  295. */
  296. static int decode_exp_vlc(WMACodecContext *s, int ch)
  297. {
  298. int last_exp, n, code;
  299. const uint16_t *ptr;
  300. float v, max_scale;
  301. uint32_t *q, *q_end, iv;
  302. const float *ptab = pow_tab + 60;
  303. const uint32_t *iptab = (const uint32_t*)ptab;
  304. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  305. q = (uint32_t *)s->exponents[ch];
  306. q_end = q + s->block_len;
  307. max_scale = 0;
  308. if (s->version == 1) {
  309. last_exp = get_bits(&s->gb, 5) + 10;
  310. v = ptab[last_exp];
  311. iv = iptab[last_exp];
  312. max_scale = v;
  313. n = *ptr++;
  314. switch (n & 3) do {
  315. case 0: *q++ = iv;
  316. case 3: *q++ = iv;
  317. case 2: *q++ = iv;
  318. case 1: *q++ = iv;
  319. } while ((n -= 4) > 0);
  320. }else
  321. last_exp = 36;
  322. while (q < q_end) {
  323. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  324. if (code < 0)
  325. return -1;
  326. /* NOTE: this offset is the same as MPEG4 AAC ! */
  327. last_exp += code - 60;
  328. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  329. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  330. last_exp);
  331. return -1;
  332. }
  333. v = ptab[last_exp];
  334. iv = iptab[last_exp];
  335. if (v > max_scale)
  336. max_scale = v;
  337. n = *ptr++;
  338. switch (n & 3) do {
  339. case 0: *q++ = iv;
  340. case 3: *q++ = iv;
  341. case 2: *q++ = iv;
  342. case 1: *q++ = iv;
  343. } while ((n -= 4) > 0);
  344. }
  345. s->max_exponent[ch] = max_scale;
  346. return 0;
  347. }
  348. /**
  349. * Apply MDCT window and add into output.
  350. *
  351. * We ensure that when the windows overlap their squared sum
  352. * is always 1 (MDCT reconstruction rule).
  353. */
  354. static void wma_window(WMACodecContext *s, float *out)
  355. {
  356. float *in = s->output;
  357. int block_len, bsize, n;
  358. /* left part */
  359. if (s->block_len_bits <= s->prev_block_len_bits) {
  360. block_len = s->block_len;
  361. bsize = s->frame_len_bits - s->block_len_bits;
  362. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  363. out, block_len);
  364. } else {
  365. block_len = 1 << s->prev_block_len_bits;
  366. n = (s->block_len - block_len) / 2;
  367. bsize = s->frame_len_bits - s->prev_block_len_bits;
  368. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  369. out+n, block_len);
  370. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  371. }
  372. out += s->block_len;
  373. in += s->block_len;
  374. /* right part */
  375. if (s->block_len_bits <= s->next_block_len_bits) {
  376. block_len = s->block_len;
  377. bsize = s->frame_len_bits - s->block_len_bits;
  378. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  379. } else {
  380. block_len = 1 << s->next_block_len_bits;
  381. n = (s->block_len - block_len) / 2;
  382. bsize = s->frame_len_bits - s->next_block_len_bits;
  383. memcpy(out, in, n*sizeof(float));
  384. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  385. memset(out+n+block_len, 0, n*sizeof(float));
  386. }
  387. }
  388. /**
  389. * @return 0 if OK. 1 if last block of frame. return -1 if
  390. * unrecorrable error.
  391. */
  392. static int wma_decode_block(WMACodecContext *s)
  393. {
  394. int n, v, a, ch, bsize;
  395. int coef_nb_bits, total_gain;
  396. int nb_coefs[MAX_CHANNELS];
  397. float mdct_norm;
  398. #ifdef TRACE
  399. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  400. #endif
  401. /* compute current block length */
  402. if (s->use_variable_block_len) {
  403. n = av_log2(s->nb_block_sizes - 1) + 1;
  404. if (s->reset_block_lengths) {
  405. s->reset_block_lengths = 0;
  406. v = get_bits(&s->gb, n);
  407. if (v >= s->nb_block_sizes)
  408. return -1;
  409. s->prev_block_len_bits = s->frame_len_bits - v;
  410. v = get_bits(&s->gb, n);
  411. if (v >= s->nb_block_sizes)
  412. return -1;
  413. s->block_len_bits = s->frame_len_bits - v;
  414. } else {
  415. /* update block lengths */
  416. s->prev_block_len_bits = s->block_len_bits;
  417. s->block_len_bits = s->next_block_len_bits;
  418. }
  419. v = get_bits(&s->gb, n);
  420. if (v >= s->nb_block_sizes)
  421. return -1;
  422. s->next_block_len_bits = s->frame_len_bits - v;
  423. } else {
  424. /* fixed block len */
  425. s->next_block_len_bits = s->frame_len_bits;
  426. s->prev_block_len_bits = s->frame_len_bits;
  427. s->block_len_bits = s->frame_len_bits;
  428. }
  429. /* now check if the block length is coherent with the frame length */
  430. s->block_len = 1 << s->block_len_bits;
  431. if ((s->block_pos + s->block_len) > s->frame_len)
  432. return -1;
  433. if (s->nb_channels == 2) {
  434. s->ms_stereo = get_bits1(&s->gb);
  435. }
  436. v = 0;
  437. for(ch = 0; ch < s->nb_channels; ch++) {
  438. a = get_bits1(&s->gb);
  439. s->channel_coded[ch] = a;
  440. v |= a;
  441. }
  442. bsize = s->frame_len_bits - s->block_len_bits;
  443. /* if no channel coded, no need to go further */
  444. /* XXX: fix potential framing problems */
  445. if (!v)
  446. goto next;
  447. /* read total gain and extract corresponding number of bits for
  448. coef escape coding */
  449. total_gain = 1;
  450. for(;;) {
  451. a = get_bits(&s->gb, 7);
  452. total_gain += a;
  453. if (a != 127)
  454. break;
  455. }
  456. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  457. /* compute number of coefficients */
  458. n = s->coefs_end[bsize] - s->coefs_start;
  459. for(ch = 0; ch < s->nb_channels; ch++)
  460. nb_coefs[ch] = n;
  461. /* complex coding */
  462. if (s->use_noise_coding) {
  463. for(ch = 0; ch < s->nb_channels; ch++) {
  464. if (s->channel_coded[ch]) {
  465. int i, n, a;
  466. n = s->exponent_high_sizes[bsize];
  467. for(i=0;i<n;i++) {
  468. a = get_bits1(&s->gb);
  469. s->high_band_coded[ch][i] = a;
  470. /* if noise coding, the coefficients are not transmitted */
  471. if (a)
  472. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  473. }
  474. }
  475. }
  476. for(ch = 0; ch < s->nb_channels; ch++) {
  477. if (s->channel_coded[ch]) {
  478. int i, n, val, code;
  479. n = s->exponent_high_sizes[bsize];
  480. val = (int)0x80000000;
  481. for(i=0;i<n;i++) {
  482. if (s->high_band_coded[ch][i]) {
  483. if (val == (int)0x80000000) {
  484. val = get_bits(&s->gb, 7) - 19;
  485. } else {
  486. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  487. if (code < 0)
  488. return -1;
  489. val += code - 18;
  490. }
  491. s->high_band_values[ch][i] = val;
  492. }
  493. }
  494. }
  495. }
  496. }
  497. /* exponents can be reused in short blocks. */
  498. if ((s->block_len_bits == s->frame_len_bits) ||
  499. get_bits1(&s->gb)) {
  500. for(ch = 0; ch < s->nb_channels; ch++) {
  501. if (s->channel_coded[ch]) {
  502. if (s->use_exp_vlc) {
  503. if (decode_exp_vlc(s, ch) < 0)
  504. return -1;
  505. } else {
  506. decode_exp_lsp(s, ch);
  507. }
  508. s->exponents_bsize[ch] = bsize;
  509. }
  510. }
  511. }
  512. /* parse spectral coefficients : just RLE encoding */
  513. for(ch = 0; ch < s->nb_channels; ch++) {
  514. if (s->channel_coded[ch]) {
  515. int tindex;
  516. WMACoef* ptr = &s->coefs1[ch][0];
  517. /* special VLC tables are used for ms stereo because
  518. there is potentially less energy there */
  519. tindex = (ch == 1 && s->ms_stereo);
  520. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  521. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  522. s->level_table[tindex], s->run_table[tindex],
  523. 0, ptr, 0, nb_coefs[ch],
  524. s->block_len, s->frame_len_bits, coef_nb_bits);
  525. }
  526. if (s->version == 1 && s->nb_channels >= 2) {
  527. align_get_bits(&s->gb);
  528. }
  529. }
  530. /* normalize */
  531. {
  532. int n4 = s->block_len / 2;
  533. mdct_norm = 1.0 / (float)n4;
  534. if (s->version == 1) {
  535. mdct_norm *= sqrt(n4);
  536. }
  537. }
  538. /* finally compute the MDCT coefficients */
  539. for(ch = 0; ch < s->nb_channels; ch++) {
  540. if (s->channel_coded[ch]) {
  541. WMACoef *coefs1;
  542. float *coefs, *exponents, mult, mult1, noise;
  543. int i, j, n, n1, last_high_band, esize;
  544. float exp_power[HIGH_BAND_MAX_SIZE];
  545. coefs1 = s->coefs1[ch];
  546. exponents = s->exponents[ch];
  547. esize = s->exponents_bsize[ch];
  548. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  549. mult *= mdct_norm;
  550. coefs = s->coefs[ch];
  551. if (s->use_noise_coding) {
  552. mult1 = mult;
  553. /* very low freqs : noise */
  554. for(i = 0;i < s->coefs_start; i++) {
  555. *coefs++ = s->noise_table[s->noise_index] *
  556. exponents[i<<bsize>>esize] * mult1;
  557. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  558. }
  559. n1 = s->exponent_high_sizes[bsize];
  560. /* compute power of high bands */
  561. exponents = s->exponents[ch] +
  562. (s->high_band_start[bsize]<<bsize);
  563. last_high_band = 0; /* avoid warning */
  564. for(j=0;j<n1;j++) {
  565. n = s->exponent_high_bands[s->frame_len_bits -
  566. s->block_len_bits][j];
  567. if (s->high_band_coded[ch][j]) {
  568. float e2, v;
  569. e2 = 0;
  570. for(i = 0;i < n; i++) {
  571. v = exponents[i<<bsize>>esize];
  572. e2 += v * v;
  573. }
  574. exp_power[j] = e2 / n;
  575. last_high_band = j;
  576. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  577. }
  578. exponents += n<<bsize;
  579. }
  580. /* main freqs and high freqs */
  581. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  582. for(j=-1;j<n1;j++) {
  583. if (j < 0) {
  584. n = s->high_band_start[bsize] -
  585. s->coefs_start;
  586. } else {
  587. n = s->exponent_high_bands[s->frame_len_bits -
  588. s->block_len_bits][j];
  589. }
  590. if (j >= 0 && s->high_band_coded[ch][j]) {
  591. /* use noise with specified power */
  592. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  593. /* XXX: use a table */
  594. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  595. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  596. mult1 *= mdct_norm;
  597. for(i = 0;i < n; i++) {
  598. noise = s->noise_table[s->noise_index];
  599. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  600. *coefs++ = noise *
  601. exponents[i<<bsize>>esize] * mult1;
  602. }
  603. exponents += n<<bsize;
  604. } else {
  605. /* coded values + small noise */
  606. for(i = 0;i < n; i++) {
  607. noise = s->noise_table[s->noise_index];
  608. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  609. *coefs++ = ((*coefs1++) + noise) *
  610. exponents[i<<bsize>>esize] * mult;
  611. }
  612. exponents += n<<bsize;
  613. }
  614. }
  615. /* very high freqs : noise */
  616. n = s->block_len - s->coefs_end[bsize];
  617. mult1 = mult * exponents[((-1<<bsize))>>esize];
  618. for(i = 0; i < n; i++) {
  619. *coefs++ = s->noise_table[s->noise_index] * mult1;
  620. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  621. }
  622. } else {
  623. /* XXX: optimize more */
  624. for(i = 0;i < s->coefs_start; i++)
  625. *coefs++ = 0.0;
  626. n = nb_coefs[ch];
  627. for(i = 0;i < n; i++) {
  628. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  629. }
  630. n = s->block_len - s->coefs_end[bsize];
  631. for(i = 0;i < n; i++)
  632. *coefs++ = 0.0;
  633. }
  634. }
  635. }
  636. #ifdef TRACE
  637. for(ch = 0; ch < s->nb_channels; ch++) {
  638. if (s->channel_coded[ch]) {
  639. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  640. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  641. }
  642. }
  643. #endif
  644. if (s->ms_stereo && s->channel_coded[1]) {
  645. /* nominal case for ms stereo: we do it before mdct */
  646. /* no need to optimize this case because it should almost
  647. never happen */
  648. if (!s->channel_coded[0]) {
  649. tprintf(s->avctx, "rare ms-stereo case happened\n");
  650. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  651. s->channel_coded[0] = 1;
  652. }
  653. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  654. }
  655. next:
  656. for(ch = 0; ch < s->nb_channels; ch++) {
  657. int n4, index;
  658. n4 = s->block_len / 2;
  659. if(s->channel_coded[ch]){
  660. ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
  661. }else if(!(s->ms_stereo && ch==1))
  662. memset(s->output, 0, sizeof(s->output));
  663. /* multiply by the window and add in the frame */
  664. index = (s->frame_len / 2) + s->block_pos - n4;
  665. wma_window(s, &s->frame_out[ch][index]);
  666. }
  667. /* update block number */
  668. s->block_num++;
  669. s->block_pos += s->block_len;
  670. if (s->block_pos >= s->frame_len)
  671. return 1;
  672. else
  673. return 0;
  674. }
  675. /* decode a frame of frame_len samples */
  676. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  677. {
  678. int ret, i, n, ch, incr;
  679. int16_t *ptr;
  680. float *iptr;
  681. #ifdef TRACE
  682. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  683. #endif
  684. /* read each block */
  685. s->block_num = 0;
  686. s->block_pos = 0;
  687. for(;;) {
  688. ret = wma_decode_block(s);
  689. if (ret < 0)
  690. return -1;
  691. if (ret)
  692. break;
  693. }
  694. /* convert frame to integer */
  695. n = s->frame_len;
  696. incr = s->nb_channels;
  697. for(ch = 0; ch < s->nb_channels; ch++) {
  698. ptr = samples + ch;
  699. iptr = s->frame_out[ch];
  700. for(i=0;i<n;i++) {
  701. *ptr = av_clip_int16(lrintf(*iptr++));
  702. ptr += incr;
  703. }
  704. /* prepare for next block */
  705. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  706. s->frame_len * sizeof(float));
  707. }
  708. #ifdef TRACE
  709. dump_shorts(s, "samples", samples, n * s->nb_channels);
  710. #endif
  711. return 0;
  712. }
  713. static int wma_decode_superframe(AVCodecContext *avctx,
  714. void *data, int *data_size,
  715. AVPacket *avpkt)
  716. {
  717. const uint8_t *buf = avpkt->data;
  718. int buf_size = avpkt->size;
  719. WMACodecContext *s = avctx->priv_data;
  720. int nb_frames, bit_offset, i, pos, len;
  721. uint8_t *q;
  722. int16_t *samples;
  723. tprintf(avctx, "***decode_superframe:\n");
  724. if(buf_size==0){
  725. s->last_superframe_len = 0;
  726. return 0;
  727. }
  728. if (buf_size < s->block_align)
  729. return 0;
  730. buf_size = s->block_align;
  731. samples = data;
  732. init_get_bits(&s->gb, buf, buf_size*8);
  733. if (s->use_bit_reservoir) {
  734. /* read super frame header */
  735. skip_bits(&s->gb, 4); /* super frame index */
  736. nb_frames = get_bits(&s->gb, 4) - 1;
  737. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  738. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  739. goto fail;
  740. }
  741. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  742. if (s->last_superframe_len > 0) {
  743. // printf("skip=%d\n", s->last_bitoffset);
  744. /* add bit_offset bits to last frame */
  745. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  746. MAX_CODED_SUPERFRAME_SIZE)
  747. goto fail;
  748. q = s->last_superframe + s->last_superframe_len;
  749. len = bit_offset;
  750. while (len > 7) {
  751. *q++ = (get_bits)(&s->gb, 8);
  752. len -= 8;
  753. }
  754. if (len > 0) {
  755. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  756. }
  757. /* XXX: bit_offset bits into last frame */
  758. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  759. /* skip unused bits */
  760. if (s->last_bitoffset > 0)
  761. skip_bits(&s->gb, s->last_bitoffset);
  762. /* this frame is stored in the last superframe and in the
  763. current one */
  764. if (wma_decode_frame(s, samples) < 0)
  765. goto fail;
  766. samples += s->nb_channels * s->frame_len;
  767. }
  768. /* read each frame starting from bit_offset */
  769. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  770. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  771. len = pos & 7;
  772. if (len > 0)
  773. skip_bits(&s->gb, len);
  774. s->reset_block_lengths = 1;
  775. for(i=0;i<nb_frames;i++) {
  776. if (wma_decode_frame(s, samples) < 0)
  777. goto fail;
  778. samples += s->nb_channels * s->frame_len;
  779. }
  780. /* we copy the end of the frame in the last frame buffer */
  781. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  782. s->last_bitoffset = pos & 7;
  783. pos >>= 3;
  784. len = buf_size - pos;
  785. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  786. goto fail;
  787. }
  788. s->last_superframe_len = len;
  789. memcpy(s->last_superframe, buf + pos, len);
  790. } else {
  791. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  792. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  793. goto fail;
  794. }
  795. /* single frame decode */
  796. if (wma_decode_frame(s, samples) < 0)
  797. goto fail;
  798. samples += s->nb_channels * s->frame_len;
  799. }
  800. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  801. *data_size = (int8_t *)samples - (int8_t *)data;
  802. return s->block_align;
  803. fail:
  804. /* when error, we reset the bit reservoir */
  805. s->last_superframe_len = 0;
  806. return -1;
  807. }
  808. AVCodec wmav1_decoder =
  809. {
  810. "wmav1",
  811. CODEC_TYPE_AUDIO,
  812. CODEC_ID_WMAV1,
  813. sizeof(WMACodecContext),
  814. wma_decode_init,
  815. NULL,
  816. ff_wma_end,
  817. wma_decode_superframe,
  818. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  819. };
  820. AVCodec wmav2_decoder =
  821. {
  822. "wmav2",
  823. CODEC_TYPE_AUDIO,
  824. CODEC_ID_WMAV2,
  825. sizeof(WMACodecContext),
  826. wma_decode_init,
  827. NULL,
  828. ff_wma_end,
  829. wma_decode_superframe,
  830. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  831. };