You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3386 lines
122KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1dec.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  48. 9262, 10202, 10756, 11310, 12228, 15078
  49. };
  50. /**
  51. * Init VC-1 specific tables and VC1Context members
  52. * @param v The VC1Context to initialize
  53. * @return Status
  54. */
  55. static int vc1_init_common(VC1Context *v)
  56. {
  57. static int done = 0;
  58. int i = 0;
  59. static VLC_TYPE vlc_table[15078][2];
  60. v->hrd_rate = v->hrd_buffer = NULL;
  61. /* VLC tables */
  62. if(!done)
  63. {
  64. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  65. ff_vc1_bfraction_bits, 1, 1,
  66. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  67. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  68. ff_vc1_norm2_bits, 1, 1,
  69. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  70. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  71. ff_vc1_norm6_bits, 1, 1,
  72. ff_vc1_norm6_codes, 2, 2, 556);
  73. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  74. ff_vc1_imode_bits, 1, 1,
  75. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  76. for (i=0; i<3; i++)
  77. {
  78. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  79. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  80. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  81. ff_vc1_ttmb_bits[i], 1, 1,
  82. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  83. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  84. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  85. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  86. ff_vc1_ttblk_bits[i], 1, 1,
  87. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  89. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  90. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  91. ff_vc1_subblkpat_bits[i], 1, 1,
  92. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. }
  94. for(i=0; i<4; i++)
  95. {
  96. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  97. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  98. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  99. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  100. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  101. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  102. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  103. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  104. ff_vc1_cbpcy_p_bits[i], 1, 1,
  105. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  106. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  107. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  108. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  109. ff_vc1_mv_diff_bits[i], 1, 1,
  110. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  111. }
  112. for(i=0; i<8; i++){
  113. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  114. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  115. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  116. &vc1_ac_tables[i][0][1], 8, 4,
  117. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. done = 1;
  120. }
  121. /* Other defaults */
  122. v->pq = -1;
  123. v->mvrange = 0; /* 7.1.1.18, p80 */
  124. return 0;
  125. }
  126. /***********************************************************************/
  127. /**
  128. * @defgroup vc1bitplane VC-1 Bitplane decoding
  129. * @see 8.7, p56
  130. * @{
  131. */
  132. /**
  133. * Imode types
  134. * @{
  135. */
  136. enum Imode {
  137. IMODE_RAW,
  138. IMODE_NORM2,
  139. IMODE_DIFF2,
  140. IMODE_NORM6,
  141. IMODE_DIFF6,
  142. IMODE_ROWSKIP,
  143. IMODE_COLSKIP
  144. };
  145. /** @} */ //imode defines
  146. /** @} */ //Bitplane group
  147. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  148. {
  149. int i, j;
  150. if(!s->first_slice_line)
  151. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  152. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  153. for(i = !s->mb_x*8; i < 16; i += 8)
  154. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  155. for(j = 0; j < 2; j++){
  156. if(!s->first_slice_line)
  157. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  158. if(s->mb_x)
  159. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  160. }
  161. }
  162. /** Put block onto picture
  163. */
  164. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  165. {
  166. uint8_t *Y;
  167. int ys, us, vs;
  168. DSPContext *dsp = &v->s.dsp;
  169. if(v->rangeredfrm) {
  170. int i, j, k;
  171. for(k = 0; k < 6; k++)
  172. for(j = 0; j < 8; j++)
  173. for(i = 0; i < 8; i++)
  174. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  175. }
  176. ys = v->s.current_picture.linesize[0];
  177. us = v->s.current_picture.linesize[1];
  178. vs = v->s.current_picture.linesize[2];
  179. Y = v->s.dest[0];
  180. dsp->put_pixels_clamped(block[0], Y, ys);
  181. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  182. Y += ys * 8;
  183. dsp->put_pixels_clamped(block[2], Y, ys);
  184. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  185. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  186. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  187. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  188. }
  189. }
  190. /** Do motion compensation over 1 macroblock
  191. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  192. */
  193. static void vc1_mc_1mv(VC1Context *v, int dir)
  194. {
  195. MpegEncContext *s = &v->s;
  196. DSPContext *dsp = &v->s.dsp;
  197. uint8_t *srcY, *srcU, *srcV;
  198. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  199. if(!v->s.last_picture.data[0])return;
  200. mx = s->mv[dir][0][0];
  201. my = s->mv[dir][0][1];
  202. // store motion vectors for further use in B frames
  203. if(s->pict_type == FF_P_TYPE) {
  204. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  205. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  206. }
  207. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  208. uvmy = (my + ((my & 3) == 3)) >> 1;
  209. if(v->fastuvmc) {
  210. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  211. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  212. }
  213. if(!dir) {
  214. srcY = s->last_picture.data[0];
  215. srcU = s->last_picture.data[1];
  216. srcV = s->last_picture.data[2];
  217. } else {
  218. srcY = s->next_picture.data[0];
  219. srcU = s->next_picture.data[1];
  220. srcV = s->next_picture.data[2];
  221. }
  222. src_x = s->mb_x * 16 + (mx >> 2);
  223. src_y = s->mb_y * 16 + (my >> 2);
  224. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  225. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  226. if(v->profile != PROFILE_ADVANCED){
  227. src_x = av_clip( src_x, -16, s->mb_width * 16);
  228. src_y = av_clip( src_y, -16, s->mb_height * 16);
  229. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  230. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  231. }else{
  232. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  233. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  234. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  235. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  236. }
  237. srcY += src_y * s->linesize + src_x;
  238. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  239. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  240. /* for grayscale we should not try to read from unknown area */
  241. if(s->flags & CODEC_FLAG_GRAY) {
  242. srcU = s->edge_emu_buffer + 18 * s->linesize;
  243. srcV = s->edge_emu_buffer + 18 * s->linesize;
  244. }
  245. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  246. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  247. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  248. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  249. srcY -= s->mspel * (1 + s->linesize);
  250. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  251. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  252. srcY = s->edge_emu_buffer;
  253. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  254. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  255. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  256. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  257. srcU = uvbuf;
  258. srcV = uvbuf + 16;
  259. /* if we deal with range reduction we need to scale source blocks */
  260. if(v->rangeredfrm) {
  261. int i, j;
  262. uint8_t *src, *src2;
  263. src = srcY;
  264. for(j = 0; j < 17 + s->mspel*2; j++) {
  265. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  266. src += s->linesize;
  267. }
  268. src = srcU; src2 = srcV;
  269. for(j = 0; j < 9; j++) {
  270. for(i = 0; i < 9; i++) {
  271. src[i] = ((src[i] - 128) >> 1) + 128;
  272. src2[i] = ((src2[i] - 128) >> 1) + 128;
  273. }
  274. src += s->uvlinesize;
  275. src2 += s->uvlinesize;
  276. }
  277. }
  278. /* if we deal with intensity compensation we need to scale source blocks */
  279. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  280. int i, j;
  281. uint8_t *src, *src2;
  282. src = srcY;
  283. for(j = 0; j < 17 + s->mspel*2; j++) {
  284. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  285. src += s->linesize;
  286. }
  287. src = srcU; src2 = srcV;
  288. for(j = 0; j < 9; j++) {
  289. for(i = 0; i < 9; i++) {
  290. src[i] = v->lutuv[src[i]];
  291. src2[i] = v->lutuv[src2[i]];
  292. }
  293. src += s->uvlinesize;
  294. src2 += s->uvlinesize;
  295. }
  296. }
  297. srcY += s->mspel * (1 + s->linesize);
  298. }
  299. if(s->mspel) {
  300. dxy = ((my & 3) << 2) | (mx & 3);
  301. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  302. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  303. srcY += s->linesize * 8;
  304. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  305. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  306. } else { // hpel mc - always used for luma
  307. dxy = (my & 2) | ((mx & 2) >> 1);
  308. if(!v->rnd)
  309. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  310. else
  311. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  312. }
  313. if(s->flags & CODEC_FLAG_GRAY) return;
  314. /* Chroma MC always uses qpel bilinear */
  315. uvmx = (uvmx&3)<<1;
  316. uvmy = (uvmy&3)<<1;
  317. if(!v->rnd){
  318. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  319. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  320. }else{
  321. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  322. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  323. }
  324. }
  325. /** Do motion compensation for 4-MV macroblock - luminance block
  326. */
  327. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  328. {
  329. MpegEncContext *s = &v->s;
  330. DSPContext *dsp = &v->s.dsp;
  331. uint8_t *srcY;
  332. int dxy, mx, my, src_x, src_y;
  333. int off;
  334. if(!v->s.last_picture.data[0])return;
  335. mx = s->mv[0][n][0];
  336. my = s->mv[0][n][1];
  337. srcY = s->last_picture.data[0];
  338. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  339. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  340. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  341. if(v->profile != PROFILE_ADVANCED){
  342. src_x = av_clip( src_x, -16, s->mb_width * 16);
  343. src_y = av_clip( src_y, -16, s->mb_height * 16);
  344. }else{
  345. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  346. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  347. }
  348. srcY += src_y * s->linesize + src_x;
  349. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  350. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  351. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  352. srcY -= s->mspel * (1 + s->linesize);
  353. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  354. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  355. srcY = s->edge_emu_buffer;
  356. /* if we deal with range reduction we need to scale source blocks */
  357. if(v->rangeredfrm) {
  358. int i, j;
  359. uint8_t *src;
  360. src = srcY;
  361. for(j = 0; j < 9 + s->mspel*2; j++) {
  362. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  363. src += s->linesize;
  364. }
  365. }
  366. /* if we deal with intensity compensation we need to scale source blocks */
  367. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  368. int i, j;
  369. uint8_t *src;
  370. src = srcY;
  371. for(j = 0; j < 9 + s->mspel*2; j++) {
  372. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  373. src += s->linesize;
  374. }
  375. }
  376. srcY += s->mspel * (1 + s->linesize);
  377. }
  378. if(s->mspel) {
  379. dxy = ((my & 3) << 2) | (mx & 3);
  380. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  381. } else { // hpel mc - always used for luma
  382. dxy = (my & 2) | ((mx & 2) >> 1);
  383. if(!v->rnd)
  384. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  385. else
  386. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  387. }
  388. }
  389. static inline int median4(int a, int b, int c, int d)
  390. {
  391. if(a < b) {
  392. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  393. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  394. } else {
  395. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  396. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  397. }
  398. }
  399. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  400. */
  401. static void vc1_mc_4mv_chroma(VC1Context *v)
  402. {
  403. MpegEncContext *s = &v->s;
  404. DSPContext *dsp = &v->s.dsp;
  405. uint8_t *srcU, *srcV;
  406. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  407. int i, idx, tx = 0, ty = 0;
  408. int mvx[4], mvy[4], intra[4];
  409. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  410. if(!v->s.last_picture.data[0])return;
  411. if(s->flags & CODEC_FLAG_GRAY) return;
  412. for(i = 0; i < 4; i++) {
  413. mvx[i] = s->mv[0][i][0];
  414. mvy[i] = s->mv[0][i][1];
  415. intra[i] = v->mb_type[0][s->block_index[i]];
  416. }
  417. /* calculate chroma MV vector from four luma MVs */
  418. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  419. if(!idx) { // all blocks are inter
  420. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  421. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  422. } else if(count[idx] == 1) { // 3 inter blocks
  423. switch(idx) {
  424. case 0x1:
  425. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  426. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  427. break;
  428. case 0x2:
  429. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  430. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  431. break;
  432. case 0x4:
  433. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  434. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  435. break;
  436. case 0x8:
  437. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  438. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  439. break;
  440. }
  441. } else if(count[idx] == 2) {
  442. int t1 = 0, t2 = 0;
  443. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  444. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  445. tx = (mvx[t1] + mvx[t2]) / 2;
  446. ty = (mvy[t1] + mvy[t2]) / 2;
  447. } else {
  448. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  449. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  450. return; //no need to do MC for inter blocks
  451. }
  452. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  453. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  454. uvmx = (tx + ((tx&3) == 3)) >> 1;
  455. uvmy = (ty + ((ty&3) == 3)) >> 1;
  456. if(v->fastuvmc) {
  457. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  458. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  459. }
  460. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  461. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  462. if(v->profile != PROFILE_ADVANCED){
  463. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  464. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  465. }else{
  466. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  467. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  468. }
  469. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  470. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  471. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  472. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  473. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  474. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  475. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  476. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  477. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  478. srcU = s->edge_emu_buffer;
  479. srcV = s->edge_emu_buffer + 16;
  480. /* if we deal with range reduction we need to scale source blocks */
  481. if(v->rangeredfrm) {
  482. int i, j;
  483. uint8_t *src, *src2;
  484. src = srcU; src2 = srcV;
  485. for(j = 0; j < 9; j++) {
  486. for(i = 0; i < 9; i++) {
  487. src[i] = ((src[i] - 128) >> 1) + 128;
  488. src2[i] = ((src2[i] - 128) >> 1) + 128;
  489. }
  490. src += s->uvlinesize;
  491. src2 += s->uvlinesize;
  492. }
  493. }
  494. /* if we deal with intensity compensation we need to scale source blocks */
  495. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  496. int i, j;
  497. uint8_t *src, *src2;
  498. src = srcU; src2 = srcV;
  499. for(j = 0; j < 9; j++) {
  500. for(i = 0; i < 9; i++) {
  501. src[i] = v->lutuv[src[i]];
  502. src2[i] = v->lutuv[src2[i]];
  503. }
  504. src += s->uvlinesize;
  505. src2 += s->uvlinesize;
  506. }
  507. }
  508. }
  509. /* Chroma MC always uses qpel bilinear */
  510. uvmx = (uvmx&3)<<1;
  511. uvmy = (uvmy&3)<<1;
  512. if(!v->rnd){
  513. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  514. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  515. }else{
  516. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  517. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  518. }
  519. }
  520. /***********************************************************************/
  521. /**
  522. * @defgroup vc1block VC-1 Block-level functions
  523. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  524. * @{
  525. */
  526. /**
  527. * @def GET_MQUANT
  528. * @brief Get macroblock-level quantizer scale
  529. */
  530. #define GET_MQUANT() \
  531. if (v->dquantfrm) \
  532. { \
  533. int edges = 0; \
  534. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  535. { \
  536. if (v->dqbilevel) \
  537. { \
  538. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  539. } \
  540. else \
  541. { \
  542. mqdiff = get_bits(gb, 3); \
  543. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  544. else mquant = get_bits(gb, 5); \
  545. } \
  546. } \
  547. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  548. edges = 1 << v->dqsbedge; \
  549. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  550. edges = (3 << v->dqsbedge) % 15; \
  551. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  552. edges = 15; \
  553. if((edges&1) && !s->mb_x) \
  554. mquant = v->altpq; \
  555. if((edges&2) && s->first_slice_line) \
  556. mquant = v->altpq; \
  557. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  558. mquant = v->altpq; \
  559. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  560. mquant = v->altpq; \
  561. }
  562. /**
  563. * @def GET_MVDATA(_dmv_x, _dmv_y)
  564. * @brief Get MV differentials
  565. * @see MVDATA decoding from 8.3.5.2, p(1)20
  566. * @param _dmv_x Horizontal differential for decoded MV
  567. * @param _dmv_y Vertical differential for decoded MV
  568. */
  569. #define GET_MVDATA(_dmv_x, _dmv_y) \
  570. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  571. VC1_MV_DIFF_VLC_BITS, 2); \
  572. if (index > 36) \
  573. { \
  574. mb_has_coeffs = 1; \
  575. index -= 37; \
  576. } \
  577. else mb_has_coeffs = 0; \
  578. s->mb_intra = 0; \
  579. if (!index) { _dmv_x = _dmv_y = 0; } \
  580. else if (index == 35) \
  581. { \
  582. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  583. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  584. } \
  585. else if (index == 36) \
  586. { \
  587. _dmv_x = 0; \
  588. _dmv_y = 0; \
  589. s->mb_intra = 1; \
  590. } \
  591. else \
  592. { \
  593. index1 = index%6; \
  594. if (!s->quarter_sample && index1 == 5) val = 1; \
  595. else val = 0; \
  596. if(size_table[index1] - val > 0) \
  597. val = get_bits(gb, size_table[index1] - val); \
  598. else val = 0; \
  599. sign = 0 - (val&1); \
  600. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  601. \
  602. index1 = index/6; \
  603. if (!s->quarter_sample && index1 == 5) val = 1; \
  604. else val = 0; \
  605. if(size_table[index1] - val > 0) \
  606. val = get_bits(gb, size_table[index1] - val); \
  607. else val = 0; \
  608. sign = 0 - (val&1); \
  609. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  610. }
  611. /** Predict and set motion vector
  612. */
  613. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  614. {
  615. int xy, wrap, off = 0;
  616. int16_t *A, *B, *C;
  617. int px, py;
  618. int sum;
  619. /* scale MV difference to be quad-pel */
  620. dmv_x <<= 1 - s->quarter_sample;
  621. dmv_y <<= 1 - s->quarter_sample;
  622. wrap = s->b8_stride;
  623. xy = s->block_index[n];
  624. if(s->mb_intra){
  625. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  626. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  627. s->current_picture.motion_val[1][xy][0] = 0;
  628. s->current_picture.motion_val[1][xy][1] = 0;
  629. if(mv1) { /* duplicate motion data for 1-MV block */
  630. s->current_picture.motion_val[0][xy + 1][0] = 0;
  631. s->current_picture.motion_val[0][xy + 1][1] = 0;
  632. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  633. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  634. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  635. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  636. s->current_picture.motion_val[1][xy + 1][0] = 0;
  637. s->current_picture.motion_val[1][xy + 1][1] = 0;
  638. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  639. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  640. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  641. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  642. }
  643. return;
  644. }
  645. C = s->current_picture.motion_val[0][xy - 1];
  646. A = s->current_picture.motion_val[0][xy - wrap];
  647. if(mv1)
  648. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  649. else {
  650. //in 4-MV mode different blocks have different B predictor position
  651. switch(n){
  652. case 0:
  653. off = (s->mb_x > 0) ? -1 : 1;
  654. break;
  655. case 1:
  656. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  657. break;
  658. case 2:
  659. off = 1;
  660. break;
  661. case 3:
  662. off = -1;
  663. }
  664. }
  665. B = s->current_picture.motion_val[0][xy - wrap + off];
  666. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  667. if(s->mb_width == 1) {
  668. px = A[0];
  669. py = A[1];
  670. } else {
  671. px = mid_pred(A[0], B[0], C[0]);
  672. py = mid_pred(A[1], B[1], C[1]);
  673. }
  674. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  675. px = C[0];
  676. py = C[1];
  677. } else {
  678. px = py = 0;
  679. }
  680. /* Pullback MV as specified in 8.3.5.3.4 */
  681. {
  682. int qx, qy, X, Y;
  683. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  684. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  685. X = (s->mb_width << 6) - 4;
  686. Y = (s->mb_height << 6) - 4;
  687. if(mv1) {
  688. if(qx + px < -60) px = -60 - qx;
  689. if(qy + py < -60) py = -60 - qy;
  690. } else {
  691. if(qx + px < -28) px = -28 - qx;
  692. if(qy + py < -28) py = -28 - qy;
  693. }
  694. if(qx + px > X) px = X - qx;
  695. if(qy + py > Y) py = Y - qy;
  696. }
  697. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  698. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  699. if(is_intra[xy - wrap])
  700. sum = FFABS(px) + FFABS(py);
  701. else
  702. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  703. if(sum > 32) {
  704. if(get_bits1(&s->gb)) {
  705. px = A[0];
  706. py = A[1];
  707. } else {
  708. px = C[0];
  709. py = C[1];
  710. }
  711. } else {
  712. if(is_intra[xy - 1])
  713. sum = FFABS(px) + FFABS(py);
  714. else
  715. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  716. if(sum > 32) {
  717. if(get_bits1(&s->gb)) {
  718. px = A[0];
  719. py = A[1];
  720. } else {
  721. px = C[0];
  722. py = C[1];
  723. }
  724. }
  725. }
  726. }
  727. /* store MV using signed modulus of MV range defined in 4.11 */
  728. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  729. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  730. if(mv1) { /* duplicate motion data for 1-MV block */
  731. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  732. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  733. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  734. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  735. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  736. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  737. }
  738. }
  739. /** Motion compensation for direct or interpolated blocks in B-frames
  740. */
  741. static void vc1_interp_mc(VC1Context *v)
  742. {
  743. MpegEncContext *s = &v->s;
  744. DSPContext *dsp = &v->s.dsp;
  745. uint8_t *srcY, *srcU, *srcV;
  746. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  747. if(!v->s.next_picture.data[0])return;
  748. mx = s->mv[1][0][0];
  749. my = s->mv[1][0][1];
  750. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  751. uvmy = (my + ((my & 3) == 3)) >> 1;
  752. if(v->fastuvmc) {
  753. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  754. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  755. }
  756. srcY = s->next_picture.data[0];
  757. srcU = s->next_picture.data[1];
  758. srcV = s->next_picture.data[2];
  759. src_x = s->mb_x * 16 + (mx >> 2);
  760. src_y = s->mb_y * 16 + (my >> 2);
  761. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  762. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  763. if(v->profile != PROFILE_ADVANCED){
  764. src_x = av_clip( src_x, -16, s->mb_width * 16);
  765. src_y = av_clip( src_y, -16, s->mb_height * 16);
  766. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  767. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  768. }else{
  769. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  770. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  771. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  772. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  773. }
  774. srcY += src_y * s->linesize + src_x;
  775. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  776. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  777. /* for grayscale we should not try to read from unknown area */
  778. if(s->flags & CODEC_FLAG_GRAY) {
  779. srcU = s->edge_emu_buffer + 18 * s->linesize;
  780. srcV = s->edge_emu_buffer + 18 * s->linesize;
  781. }
  782. if(v->rangeredfrm
  783. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  784. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  785. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  786. srcY -= s->mspel * (1 + s->linesize);
  787. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  788. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  789. srcY = s->edge_emu_buffer;
  790. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  791. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  792. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  793. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  794. srcU = uvbuf;
  795. srcV = uvbuf + 16;
  796. /* if we deal with range reduction we need to scale source blocks */
  797. if(v->rangeredfrm) {
  798. int i, j;
  799. uint8_t *src, *src2;
  800. src = srcY;
  801. for(j = 0; j < 17 + s->mspel*2; j++) {
  802. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  803. src += s->linesize;
  804. }
  805. src = srcU; src2 = srcV;
  806. for(j = 0; j < 9; j++) {
  807. for(i = 0; i < 9; i++) {
  808. src[i] = ((src[i] - 128) >> 1) + 128;
  809. src2[i] = ((src2[i] - 128) >> 1) + 128;
  810. }
  811. src += s->uvlinesize;
  812. src2 += s->uvlinesize;
  813. }
  814. }
  815. srcY += s->mspel * (1 + s->linesize);
  816. }
  817. if(s->mspel) {
  818. dxy = ((my & 3) << 2) | (mx & 3);
  819. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  820. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  821. srcY += s->linesize * 8;
  822. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  823. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  824. } else { // hpel mc
  825. dxy = (my & 2) | ((mx & 2) >> 1);
  826. if(!v->rnd)
  827. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  828. else
  829. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  830. }
  831. if(s->flags & CODEC_FLAG_GRAY) return;
  832. /* Chroma MC always uses qpel blilinear */
  833. uvmx = (uvmx&3)<<1;
  834. uvmy = (uvmy&3)<<1;
  835. if(!v->rnd){
  836. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  837. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  838. }else{
  839. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  840. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  841. }
  842. }
  843. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  844. {
  845. int n = bfrac;
  846. #if B_FRACTION_DEN==256
  847. if(inv)
  848. n -= 256;
  849. if(!qs)
  850. return 2 * ((value * n + 255) >> 9);
  851. return (value * n + 128) >> 8;
  852. #else
  853. if(inv)
  854. n -= B_FRACTION_DEN;
  855. if(!qs)
  856. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  857. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  858. #endif
  859. }
  860. /** Reconstruct motion vector for B-frame and do motion compensation
  861. */
  862. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  863. {
  864. if(v->use_ic) {
  865. v->mv_mode2 = v->mv_mode;
  866. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  867. }
  868. if(direct) {
  869. vc1_mc_1mv(v, 0);
  870. vc1_interp_mc(v);
  871. if(v->use_ic) v->mv_mode = v->mv_mode2;
  872. return;
  873. }
  874. if(mode == BMV_TYPE_INTERPOLATED) {
  875. vc1_mc_1mv(v, 0);
  876. vc1_interp_mc(v);
  877. if(v->use_ic) v->mv_mode = v->mv_mode2;
  878. return;
  879. }
  880. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  881. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  882. if(v->use_ic) v->mv_mode = v->mv_mode2;
  883. }
  884. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  885. {
  886. MpegEncContext *s = &v->s;
  887. int xy, wrap, off = 0;
  888. int16_t *A, *B, *C;
  889. int px, py;
  890. int sum;
  891. int r_x, r_y;
  892. const uint8_t *is_intra = v->mb_type[0];
  893. r_x = v->range_x;
  894. r_y = v->range_y;
  895. /* scale MV difference to be quad-pel */
  896. dmv_x[0] <<= 1 - s->quarter_sample;
  897. dmv_y[0] <<= 1 - s->quarter_sample;
  898. dmv_x[1] <<= 1 - s->quarter_sample;
  899. dmv_y[1] <<= 1 - s->quarter_sample;
  900. wrap = s->b8_stride;
  901. xy = s->block_index[0];
  902. if(s->mb_intra) {
  903. s->current_picture.motion_val[0][xy][0] =
  904. s->current_picture.motion_val[0][xy][1] =
  905. s->current_picture.motion_val[1][xy][0] =
  906. s->current_picture.motion_val[1][xy][1] = 0;
  907. return;
  908. }
  909. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  910. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  911. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  912. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  913. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  914. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  915. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  916. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  917. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  918. if(direct) {
  919. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  920. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  921. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  922. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  923. return;
  924. }
  925. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  926. C = s->current_picture.motion_val[0][xy - 2];
  927. A = s->current_picture.motion_val[0][xy - wrap*2];
  928. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  929. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  930. if(!s->mb_x) C[0] = C[1] = 0;
  931. if(!s->first_slice_line) { // predictor A is not out of bounds
  932. if(s->mb_width == 1) {
  933. px = A[0];
  934. py = A[1];
  935. } else {
  936. px = mid_pred(A[0], B[0], C[0]);
  937. py = mid_pred(A[1], B[1], C[1]);
  938. }
  939. } else if(s->mb_x) { // predictor C is not out of bounds
  940. px = C[0];
  941. py = C[1];
  942. } else {
  943. px = py = 0;
  944. }
  945. /* Pullback MV as specified in 8.3.5.3.4 */
  946. {
  947. int qx, qy, X, Y;
  948. if(v->profile < PROFILE_ADVANCED) {
  949. qx = (s->mb_x << 5);
  950. qy = (s->mb_y << 5);
  951. X = (s->mb_width << 5) - 4;
  952. Y = (s->mb_height << 5) - 4;
  953. if(qx + px < -28) px = -28 - qx;
  954. if(qy + py < -28) py = -28 - qy;
  955. if(qx + px > X) px = X - qx;
  956. if(qy + py > Y) py = Y - qy;
  957. } else {
  958. qx = (s->mb_x << 6);
  959. qy = (s->mb_y << 6);
  960. X = (s->mb_width << 6) - 4;
  961. Y = (s->mb_height << 6) - 4;
  962. if(qx + px < -60) px = -60 - qx;
  963. if(qy + py < -60) py = -60 - qy;
  964. if(qx + px > X) px = X - qx;
  965. if(qy + py > Y) py = Y - qy;
  966. }
  967. }
  968. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  969. if(0 && !s->first_slice_line && s->mb_x) {
  970. if(is_intra[xy - wrap])
  971. sum = FFABS(px) + FFABS(py);
  972. else
  973. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  974. if(sum > 32) {
  975. if(get_bits1(&s->gb)) {
  976. px = A[0];
  977. py = A[1];
  978. } else {
  979. px = C[0];
  980. py = C[1];
  981. }
  982. } else {
  983. if(is_intra[xy - 2])
  984. sum = FFABS(px) + FFABS(py);
  985. else
  986. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  987. if(sum > 32) {
  988. if(get_bits1(&s->gb)) {
  989. px = A[0];
  990. py = A[1];
  991. } else {
  992. px = C[0];
  993. py = C[1];
  994. }
  995. }
  996. }
  997. }
  998. /* store MV using signed modulus of MV range defined in 4.11 */
  999. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1000. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1001. }
  1002. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1003. C = s->current_picture.motion_val[1][xy - 2];
  1004. A = s->current_picture.motion_val[1][xy - wrap*2];
  1005. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1006. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1007. if(!s->mb_x) C[0] = C[1] = 0;
  1008. if(!s->first_slice_line) { // predictor A is not out of bounds
  1009. if(s->mb_width == 1) {
  1010. px = A[0];
  1011. py = A[1];
  1012. } else {
  1013. px = mid_pred(A[0], B[0], C[0]);
  1014. py = mid_pred(A[1], B[1], C[1]);
  1015. }
  1016. } else if(s->mb_x) { // predictor C is not out of bounds
  1017. px = C[0];
  1018. py = C[1];
  1019. } else {
  1020. px = py = 0;
  1021. }
  1022. /* Pullback MV as specified in 8.3.5.3.4 */
  1023. {
  1024. int qx, qy, X, Y;
  1025. if(v->profile < PROFILE_ADVANCED) {
  1026. qx = (s->mb_x << 5);
  1027. qy = (s->mb_y << 5);
  1028. X = (s->mb_width << 5) - 4;
  1029. Y = (s->mb_height << 5) - 4;
  1030. if(qx + px < -28) px = -28 - qx;
  1031. if(qy + py < -28) py = -28 - qy;
  1032. if(qx + px > X) px = X - qx;
  1033. if(qy + py > Y) py = Y - qy;
  1034. } else {
  1035. qx = (s->mb_x << 6);
  1036. qy = (s->mb_y << 6);
  1037. X = (s->mb_width << 6) - 4;
  1038. Y = (s->mb_height << 6) - 4;
  1039. if(qx + px < -60) px = -60 - qx;
  1040. if(qy + py < -60) py = -60 - qy;
  1041. if(qx + px > X) px = X - qx;
  1042. if(qy + py > Y) py = Y - qy;
  1043. }
  1044. }
  1045. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1046. if(0 && !s->first_slice_line && s->mb_x) {
  1047. if(is_intra[xy - wrap])
  1048. sum = FFABS(px) + FFABS(py);
  1049. else
  1050. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1051. if(sum > 32) {
  1052. if(get_bits1(&s->gb)) {
  1053. px = A[0];
  1054. py = A[1];
  1055. } else {
  1056. px = C[0];
  1057. py = C[1];
  1058. }
  1059. } else {
  1060. if(is_intra[xy - 2])
  1061. sum = FFABS(px) + FFABS(py);
  1062. else
  1063. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1064. if(sum > 32) {
  1065. if(get_bits1(&s->gb)) {
  1066. px = A[0];
  1067. py = A[1];
  1068. } else {
  1069. px = C[0];
  1070. py = C[1];
  1071. }
  1072. }
  1073. }
  1074. }
  1075. /* store MV using signed modulus of MV range defined in 4.11 */
  1076. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1077. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1078. }
  1079. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1080. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1081. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1082. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1083. }
  1084. /** Get predicted DC value for I-frames only
  1085. * prediction dir: left=0, top=1
  1086. * @param s MpegEncContext
  1087. * @param overlap flag indicating that overlap filtering is used
  1088. * @param pq integer part of picture quantizer
  1089. * @param[in] n block index in the current MB
  1090. * @param dc_val_ptr Pointer to DC predictor
  1091. * @param dir_ptr Prediction direction for use in AC prediction
  1092. */
  1093. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1094. int16_t **dc_val_ptr, int *dir_ptr)
  1095. {
  1096. int a, b, c, wrap, pred, scale;
  1097. int16_t *dc_val;
  1098. static const uint16_t dcpred[32] = {
  1099. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1100. 114, 102, 93, 85, 79, 73, 68, 64,
  1101. 60, 57, 54, 51, 49, 47, 45, 43,
  1102. 41, 39, 38, 37, 35, 34, 33
  1103. };
  1104. /* find prediction - wmv3_dc_scale always used here in fact */
  1105. if (n < 4) scale = s->y_dc_scale;
  1106. else scale = s->c_dc_scale;
  1107. wrap = s->block_wrap[n];
  1108. dc_val= s->dc_val[0] + s->block_index[n];
  1109. /* B A
  1110. * C X
  1111. */
  1112. c = dc_val[ - 1];
  1113. b = dc_val[ - 1 - wrap];
  1114. a = dc_val[ - wrap];
  1115. if (pq < 9 || !overlap)
  1116. {
  1117. /* Set outer values */
  1118. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1119. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1120. }
  1121. else
  1122. {
  1123. /* Set outer values */
  1124. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1125. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1126. }
  1127. if (abs(a - b) <= abs(b - c)) {
  1128. pred = c;
  1129. *dir_ptr = 1;//left
  1130. } else {
  1131. pred = a;
  1132. *dir_ptr = 0;//top
  1133. }
  1134. /* update predictor */
  1135. *dc_val_ptr = &dc_val[0];
  1136. return pred;
  1137. }
  1138. /** Get predicted DC value
  1139. * prediction dir: left=0, top=1
  1140. * @param s MpegEncContext
  1141. * @param overlap flag indicating that overlap filtering is used
  1142. * @param pq integer part of picture quantizer
  1143. * @param[in] n block index in the current MB
  1144. * @param a_avail flag indicating top block availability
  1145. * @param c_avail flag indicating left block availability
  1146. * @param dc_val_ptr Pointer to DC predictor
  1147. * @param dir_ptr Prediction direction for use in AC prediction
  1148. */
  1149. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1150. int a_avail, int c_avail,
  1151. int16_t **dc_val_ptr, int *dir_ptr)
  1152. {
  1153. int a, b, c, wrap, pred;
  1154. int16_t *dc_val;
  1155. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1156. int q1, q2 = 0;
  1157. wrap = s->block_wrap[n];
  1158. dc_val= s->dc_val[0] + s->block_index[n];
  1159. /* B A
  1160. * C X
  1161. */
  1162. c = dc_val[ - 1];
  1163. b = dc_val[ - 1 - wrap];
  1164. a = dc_val[ - wrap];
  1165. /* scale predictors if needed */
  1166. q1 = s->current_picture.qscale_table[mb_pos];
  1167. if(c_avail && (n!= 1 && n!=3)) {
  1168. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1169. if(q2 && q2 != q1)
  1170. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1171. }
  1172. if(a_avail && (n!= 2 && n!=3)) {
  1173. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1174. if(q2 && q2 != q1)
  1175. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1176. }
  1177. if(a_avail && c_avail && (n!=3)) {
  1178. int off = mb_pos;
  1179. if(n != 1) off--;
  1180. if(n != 2) off -= s->mb_stride;
  1181. q2 = s->current_picture.qscale_table[off];
  1182. if(q2 && q2 != q1)
  1183. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1184. }
  1185. if(a_avail && c_avail) {
  1186. if(abs(a - b) <= abs(b - c)) {
  1187. pred = c;
  1188. *dir_ptr = 1;//left
  1189. } else {
  1190. pred = a;
  1191. *dir_ptr = 0;//top
  1192. }
  1193. } else if(a_avail) {
  1194. pred = a;
  1195. *dir_ptr = 0;//top
  1196. } else if(c_avail) {
  1197. pred = c;
  1198. *dir_ptr = 1;//left
  1199. } else {
  1200. pred = 0;
  1201. *dir_ptr = 1;//left
  1202. }
  1203. /* update predictor */
  1204. *dc_val_ptr = &dc_val[0];
  1205. return pred;
  1206. }
  1207. /** @} */ // Block group
  1208. /**
  1209. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1210. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1211. * @{
  1212. */
  1213. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1214. {
  1215. int xy, wrap, pred, a, b, c;
  1216. xy = s->block_index[n];
  1217. wrap = s->b8_stride;
  1218. /* B C
  1219. * A X
  1220. */
  1221. a = s->coded_block[xy - 1 ];
  1222. b = s->coded_block[xy - 1 - wrap];
  1223. c = s->coded_block[xy - wrap];
  1224. if (b == c) {
  1225. pred = a;
  1226. } else {
  1227. pred = c;
  1228. }
  1229. /* store value */
  1230. *coded_block_ptr = &s->coded_block[xy];
  1231. return pred;
  1232. }
  1233. /**
  1234. * Decode one AC coefficient
  1235. * @param v The VC1 context
  1236. * @param last Last coefficient
  1237. * @param skip How much zero coefficients to skip
  1238. * @param value Decoded AC coefficient value
  1239. * @param codingset set of VLC to decode data
  1240. * @see 8.1.3.4
  1241. */
  1242. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1243. {
  1244. GetBitContext *gb = &v->s.gb;
  1245. int index, escape, run = 0, level = 0, lst = 0;
  1246. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1247. if (index != vc1_ac_sizes[codingset] - 1) {
  1248. run = vc1_index_decode_table[codingset][index][0];
  1249. level = vc1_index_decode_table[codingset][index][1];
  1250. lst = index >= vc1_last_decode_table[codingset];
  1251. if(get_bits1(gb))
  1252. level = -level;
  1253. } else {
  1254. escape = decode210(gb);
  1255. if (escape != 2) {
  1256. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1257. run = vc1_index_decode_table[codingset][index][0];
  1258. level = vc1_index_decode_table[codingset][index][1];
  1259. lst = index >= vc1_last_decode_table[codingset];
  1260. if(escape == 0) {
  1261. if(lst)
  1262. level += vc1_last_delta_level_table[codingset][run];
  1263. else
  1264. level += vc1_delta_level_table[codingset][run];
  1265. } else {
  1266. if(lst)
  1267. run += vc1_last_delta_run_table[codingset][level] + 1;
  1268. else
  1269. run += vc1_delta_run_table[codingset][level] + 1;
  1270. }
  1271. if(get_bits1(gb))
  1272. level = -level;
  1273. } else {
  1274. int sign;
  1275. lst = get_bits1(gb);
  1276. if(v->s.esc3_level_length == 0) {
  1277. if(v->pq < 8 || v->dquantfrm) { // table 59
  1278. v->s.esc3_level_length = get_bits(gb, 3);
  1279. if(!v->s.esc3_level_length)
  1280. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1281. } else { //table 60
  1282. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1283. }
  1284. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1285. }
  1286. run = get_bits(gb, v->s.esc3_run_length);
  1287. sign = get_bits1(gb);
  1288. level = get_bits(gb, v->s.esc3_level_length);
  1289. if(sign)
  1290. level = -level;
  1291. }
  1292. }
  1293. *last = lst;
  1294. *skip = run;
  1295. *value = level;
  1296. }
  1297. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1298. * @param v VC1Context
  1299. * @param block block to decode
  1300. * @param[in] n subblock index
  1301. * @param coded are AC coeffs present or not
  1302. * @param codingset set of VLC to decode data
  1303. */
  1304. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1305. {
  1306. GetBitContext *gb = &v->s.gb;
  1307. MpegEncContext *s = &v->s;
  1308. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1309. int i;
  1310. int16_t *dc_val;
  1311. int16_t *ac_val, *ac_val2;
  1312. int dcdiff;
  1313. /* Get DC differential */
  1314. if (n < 4) {
  1315. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1316. } else {
  1317. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1318. }
  1319. if (dcdiff < 0){
  1320. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1321. return -1;
  1322. }
  1323. if (dcdiff)
  1324. {
  1325. if (dcdiff == 119 /* ESC index value */)
  1326. {
  1327. /* TODO: Optimize */
  1328. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1329. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1330. else dcdiff = get_bits(gb, 8);
  1331. }
  1332. else
  1333. {
  1334. if (v->pq == 1)
  1335. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1336. else if (v->pq == 2)
  1337. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1338. }
  1339. if (get_bits1(gb))
  1340. dcdiff = -dcdiff;
  1341. }
  1342. /* Prediction */
  1343. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1344. *dc_val = dcdiff;
  1345. /* Store the quantized DC coeff, used for prediction */
  1346. if (n < 4) {
  1347. block[0] = dcdiff * s->y_dc_scale;
  1348. } else {
  1349. block[0] = dcdiff * s->c_dc_scale;
  1350. }
  1351. /* Skip ? */
  1352. if (!coded) {
  1353. goto not_coded;
  1354. }
  1355. //AC Decoding
  1356. i = 1;
  1357. {
  1358. int last = 0, skip, value;
  1359. const int8_t *zz_table;
  1360. int scale;
  1361. int k;
  1362. scale = v->pq * 2 + v->halfpq;
  1363. if(v->s.ac_pred) {
  1364. if(!dc_pred_dir)
  1365. zz_table = wmv1_scantable[2];
  1366. else
  1367. zz_table = wmv1_scantable[3];
  1368. } else
  1369. zz_table = wmv1_scantable[1];
  1370. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1371. ac_val2 = ac_val;
  1372. if(dc_pred_dir) //left
  1373. ac_val -= 16;
  1374. else //top
  1375. ac_val -= 16 * s->block_wrap[n];
  1376. while (!last) {
  1377. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1378. i += skip;
  1379. if(i > 63)
  1380. break;
  1381. block[zz_table[i++]] = value;
  1382. }
  1383. /* apply AC prediction if needed */
  1384. if(s->ac_pred) {
  1385. if(dc_pred_dir) { //left
  1386. for(k = 1; k < 8; k++)
  1387. block[k << 3] += ac_val[k];
  1388. } else { //top
  1389. for(k = 1; k < 8; k++)
  1390. block[k] += ac_val[k + 8];
  1391. }
  1392. }
  1393. /* save AC coeffs for further prediction */
  1394. for(k = 1; k < 8; k++) {
  1395. ac_val2[k] = block[k << 3];
  1396. ac_val2[k + 8] = block[k];
  1397. }
  1398. /* scale AC coeffs */
  1399. for(k = 1; k < 64; k++)
  1400. if(block[k]) {
  1401. block[k] *= scale;
  1402. if(!v->pquantizer)
  1403. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1404. }
  1405. if(s->ac_pred) i = 63;
  1406. }
  1407. not_coded:
  1408. if(!coded) {
  1409. int k, scale;
  1410. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1411. ac_val2 = ac_val;
  1412. i = 0;
  1413. scale = v->pq * 2 + v->halfpq;
  1414. memset(ac_val2, 0, 16 * 2);
  1415. if(dc_pred_dir) {//left
  1416. ac_val -= 16;
  1417. if(s->ac_pred)
  1418. memcpy(ac_val2, ac_val, 8 * 2);
  1419. } else {//top
  1420. ac_val -= 16 * s->block_wrap[n];
  1421. if(s->ac_pred)
  1422. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1423. }
  1424. /* apply AC prediction if needed */
  1425. if(s->ac_pred) {
  1426. if(dc_pred_dir) { //left
  1427. for(k = 1; k < 8; k++) {
  1428. block[k << 3] = ac_val[k] * scale;
  1429. if(!v->pquantizer && block[k << 3])
  1430. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1431. }
  1432. } else { //top
  1433. for(k = 1; k < 8; k++) {
  1434. block[k] = ac_val[k + 8] * scale;
  1435. if(!v->pquantizer && block[k])
  1436. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1437. }
  1438. }
  1439. i = 63;
  1440. }
  1441. }
  1442. s->block_last_index[n] = i;
  1443. return 0;
  1444. }
  1445. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1446. * @param v VC1Context
  1447. * @param block block to decode
  1448. * @param[in] n subblock number
  1449. * @param coded are AC coeffs present or not
  1450. * @param codingset set of VLC to decode data
  1451. * @param mquant quantizer value for this macroblock
  1452. */
  1453. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1454. {
  1455. GetBitContext *gb = &v->s.gb;
  1456. MpegEncContext *s = &v->s;
  1457. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1458. int i;
  1459. int16_t *dc_val;
  1460. int16_t *ac_val, *ac_val2;
  1461. int dcdiff;
  1462. int a_avail = v->a_avail, c_avail = v->c_avail;
  1463. int use_pred = s->ac_pred;
  1464. int scale;
  1465. int q1, q2 = 0;
  1466. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1467. /* Get DC differential */
  1468. if (n < 4) {
  1469. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1470. } else {
  1471. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1472. }
  1473. if (dcdiff < 0){
  1474. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1475. return -1;
  1476. }
  1477. if (dcdiff)
  1478. {
  1479. if (dcdiff == 119 /* ESC index value */)
  1480. {
  1481. /* TODO: Optimize */
  1482. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1483. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1484. else dcdiff = get_bits(gb, 8);
  1485. }
  1486. else
  1487. {
  1488. if (mquant == 1)
  1489. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1490. else if (mquant == 2)
  1491. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1492. }
  1493. if (get_bits1(gb))
  1494. dcdiff = -dcdiff;
  1495. }
  1496. /* Prediction */
  1497. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1498. *dc_val = dcdiff;
  1499. /* Store the quantized DC coeff, used for prediction */
  1500. if (n < 4) {
  1501. block[0] = dcdiff * s->y_dc_scale;
  1502. } else {
  1503. block[0] = dcdiff * s->c_dc_scale;
  1504. }
  1505. //AC Decoding
  1506. i = 1;
  1507. /* check if AC is needed at all */
  1508. if(!a_avail && !c_avail) use_pred = 0;
  1509. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1510. ac_val2 = ac_val;
  1511. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1512. if(dc_pred_dir) //left
  1513. ac_val -= 16;
  1514. else //top
  1515. ac_val -= 16 * s->block_wrap[n];
  1516. q1 = s->current_picture.qscale_table[mb_pos];
  1517. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1518. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1519. if(dc_pred_dir && n==1) q2 = q1;
  1520. if(!dc_pred_dir && n==2) q2 = q1;
  1521. if(n==3) q2 = q1;
  1522. if(coded) {
  1523. int last = 0, skip, value;
  1524. const int8_t *zz_table;
  1525. int k;
  1526. if(v->s.ac_pred) {
  1527. if(!dc_pred_dir)
  1528. zz_table = wmv1_scantable[2];
  1529. else
  1530. zz_table = wmv1_scantable[3];
  1531. } else
  1532. zz_table = wmv1_scantable[1];
  1533. while (!last) {
  1534. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1535. i += skip;
  1536. if(i > 63)
  1537. break;
  1538. block[zz_table[i++]] = value;
  1539. }
  1540. /* apply AC prediction if needed */
  1541. if(use_pred) {
  1542. /* scale predictors if needed*/
  1543. if(q2 && q1!=q2) {
  1544. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1545. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1546. if(dc_pred_dir) { //left
  1547. for(k = 1; k < 8; k++)
  1548. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1549. } else { //top
  1550. for(k = 1; k < 8; k++)
  1551. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1552. }
  1553. } else {
  1554. if(dc_pred_dir) { //left
  1555. for(k = 1; k < 8; k++)
  1556. block[k << 3] += ac_val[k];
  1557. } else { //top
  1558. for(k = 1; k < 8; k++)
  1559. block[k] += ac_val[k + 8];
  1560. }
  1561. }
  1562. }
  1563. /* save AC coeffs for further prediction */
  1564. for(k = 1; k < 8; k++) {
  1565. ac_val2[k] = block[k << 3];
  1566. ac_val2[k + 8] = block[k];
  1567. }
  1568. /* scale AC coeffs */
  1569. for(k = 1; k < 64; k++)
  1570. if(block[k]) {
  1571. block[k] *= scale;
  1572. if(!v->pquantizer)
  1573. block[k] += (block[k] < 0) ? -mquant : mquant;
  1574. }
  1575. if(use_pred) i = 63;
  1576. } else { // no AC coeffs
  1577. int k;
  1578. memset(ac_val2, 0, 16 * 2);
  1579. if(dc_pred_dir) {//left
  1580. if(use_pred) {
  1581. memcpy(ac_val2, ac_val, 8 * 2);
  1582. if(q2 && q1!=q2) {
  1583. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1584. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1585. for(k = 1; k < 8; k++)
  1586. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1587. }
  1588. }
  1589. } else {//top
  1590. if(use_pred) {
  1591. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1592. if(q2 && q1!=q2) {
  1593. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1594. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1595. for(k = 1; k < 8; k++)
  1596. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1597. }
  1598. }
  1599. }
  1600. /* apply AC prediction if needed */
  1601. if(use_pred) {
  1602. if(dc_pred_dir) { //left
  1603. for(k = 1; k < 8; k++) {
  1604. block[k << 3] = ac_val2[k] * scale;
  1605. if(!v->pquantizer && block[k << 3])
  1606. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1607. }
  1608. } else { //top
  1609. for(k = 1; k < 8; k++) {
  1610. block[k] = ac_val2[k + 8] * scale;
  1611. if(!v->pquantizer && block[k])
  1612. block[k] += (block[k] < 0) ? -mquant : mquant;
  1613. }
  1614. }
  1615. i = 63;
  1616. }
  1617. }
  1618. s->block_last_index[n] = i;
  1619. return 0;
  1620. }
  1621. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1622. * @param v VC1Context
  1623. * @param block block to decode
  1624. * @param[in] n subblock index
  1625. * @param coded are AC coeffs present or not
  1626. * @param mquant block quantizer
  1627. * @param codingset set of VLC to decode data
  1628. */
  1629. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1630. {
  1631. GetBitContext *gb = &v->s.gb;
  1632. MpegEncContext *s = &v->s;
  1633. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1634. int i;
  1635. int16_t *dc_val;
  1636. int16_t *ac_val, *ac_val2;
  1637. int dcdiff;
  1638. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1639. int a_avail = v->a_avail, c_avail = v->c_avail;
  1640. int use_pred = s->ac_pred;
  1641. int scale;
  1642. int q1, q2 = 0;
  1643. s->dsp.clear_block(block);
  1644. /* XXX: Guard against dumb values of mquant */
  1645. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1646. /* Set DC scale - y and c use the same */
  1647. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1648. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1649. /* Get DC differential */
  1650. if (n < 4) {
  1651. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1652. } else {
  1653. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1654. }
  1655. if (dcdiff < 0){
  1656. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1657. return -1;
  1658. }
  1659. if (dcdiff)
  1660. {
  1661. if (dcdiff == 119 /* ESC index value */)
  1662. {
  1663. /* TODO: Optimize */
  1664. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1665. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1666. else dcdiff = get_bits(gb, 8);
  1667. }
  1668. else
  1669. {
  1670. if (mquant == 1)
  1671. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1672. else if (mquant == 2)
  1673. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1674. }
  1675. if (get_bits1(gb))
  1676. dcdiff = -dcdiff;
  1677. }
  1678. /* Prediction */
  1679. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1680. *dc_val = dcdiff;
  1681. /* Store the quantized DC coeff, used for prediction */
  1682. if (n < 4) {
  1683. block[0] = dcdiff * s->y_dc_scale;
  1684. } else {
  1685. block[0] = dcdiff * s->c_dc_scale;
  1686. }
  1687. //AC Decoding
  1688. i = 1;
  1689. /* check if AC is needed at all and adjust direction if needed */
  1690. if(!a_avail) dc_pred_dir = 1;
  1691. if(!c_avail) dc_pred_dir = 0;
  1692. if(!a_avail && !c_avail) use_pred = 0;
  1693. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1694. ac_val2 = ac_val;
  1695. scale = mquant * 2 + v->halfpq;
  1696. if(dc_pred_dir) //left
  1697. ac_val -= 16;
  1698. else //top
  1699. ac_val -= 16 * s->block_wrap[n];
  1700. q1 = s->current_picture.qscale_table[mb_pos];
  1701. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1702. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1703. if(dc_pred_dir && n==1) q2 = q1;
  1704. if(!dc_pred_dir && n==2) q2 = q1;
  1705. if(n==3) q2 = q1;
  1706. if(coded) {
  1707. int last = 0, skip, value;
  1708. const int8_t *zz_table;
  1709. int k;
  1710. zz_table = wmv1_scantable[0];
  1711. while (!last) {
  1712. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1713. i += skip;
  1714. if(i > 63)
  1715. break;
  1716. block[zz_table[i++]] = value;
  1717. }
  1718. /* apply AC prediction if needed */
  1719. if(use_pred) {
  1720. /* scale predictors if needed*/
  1721. if(q2 && q1!=q2) {
  1722. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1723. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1724. if(dc_pred_dir) { //left
  1725. for(k = 1; k < 8; k++)
  1726. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1727. } else { //top
  1728. for(k = 1; k < 8; k++)
  1729. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1730. }
  1731. } else {
  1732. if(dc_pred_dir) { //left
  1733. for(k = 1; k < 8; k++)
  1734. block[k << 3] += ac_val[k];
  1735. } else { //top
  1736. for(k = 1; k < 8; k++)
  1737. block[k] += ac_val[k + 8];
  1738. }
  1739. }
  1740. }
  1741. /* save AC coeffs for further prediction */
  1742. for(k = 1; k < 8; k++) {
  1743. ac_val2[k] = block[k << 3];
  1744. ac_val2[k + 8] = block[k];
  1745. }
  1746. /* scale AC coeffs */
  1747. for(k = 1; k < 64; k++)
  1748. if(block[k]) {
  1749. block[k] *= scale;
  1750. if(!v->pquantizer)
  1751. block[k] += (block[k] < 0) ? -mquant : mquant;
  1752. }
  1753. if(use_pred) i = 63;
  1754. } else { // no AC coeffs
  1755. int k;
  1756. memset(ac_val2, 0, 16 * 2);
  1757. if(dc_pred_dir) {//left
  1758. if(use_pred) {
  1759. memcpy(ac_val2, ac_val, 8 * 2);
  1760. if(q2 && q1!=q2) {
  1761. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1762. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1763. for(k = 1; k < 8; k++)
  1764. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1765. }
  1766. }
  1767. } else {//top
  1768. if(use_pred) {
  1769. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1770. if(q2 && q1!=q2) {
  1771. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1772. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1773. for(k = 1; k < 8; k++)
  1774. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1775. }
  1776. }
  1777. }
  1778. /* apply AC prediction if needed */
  1779. if(use_pred) {
  1780. if(dc_pred_dir) { //left
  1781. for(k = 1; k < 8; k++) {
  1782. block[k << 3] = ac_val2[k] * scale;
  1783. if(!v->pquantizer && block[k << 3])
  1784. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1785. }
  1786. } else { //top
  1787. for(k = 1; k < 8; k++) {
  1788. block[k] = ac_val2[k + 8] * scale;
  1789. if(!v->pquantizer && block[k])
  1790. block[k] += (block[k] < 0) ? -mquant : mquant;
  1791. }
  1792. }
  1793. i = 63;
  1794. }
  1795. }
  1796. s->block_last_index[n] = i;
  1797. return 0;
  1798. }
  1799. /** Decode P block
  1800. */
  1801. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1802. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1803. {
  1804. MpegEncContext *s = &v->s;
  1805. GetBitContext *gb = &s->gb;
  1806. int i, j;
  1807. int subblkpat = 0;
  1808. int scale, off, idx, last, skip, value;
  1809. int ttblk = ttmb & 7;
  1810. int pat = 0;
  1811. s->dsp.clear_block(block);
  1812. if(ttmb == -1) {
  1813. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1814. }
  1815. if(ttblk == TT_4X4) {
  1816. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1817. }
  1818. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  1819. subblkpat = decode012(gb);
  1820. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1821. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1822. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1823. }
  1824. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1825. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1826. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1827. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1828. ttblk = TT_8X4;
  1829. }
  1830. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1831. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1832. ttblk = TT_4X8;
  1833. }
  1834. switch(ttblk) {
  1835. case TT_8X8:
  1836. pat = 0xF;
  1837. i = 0;
  1838. last = 0;
  1839. while (!last) {
  1840. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1841. i += skip;
  1842. if(i > 63)
  1843. break;
  1844. idx = wmv1_scantable[0][i++];
  1845. block[idx] = value * scale;
  1846. if(!v->pquantizer)
  1847. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1848. }
  1849. if(!skip_block){
  1850. if(i==1)
  1851. s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1852. else{
  1853. s->dsp.vc1_inv_trans_8x8(block);
  1854. s->dsp.add_pixels_clamped(block, dst, linesize);
  1855. }
  1856. if(apply_filter && cbp_top & 0xC)
  1857. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1858. if(apply_filter && cbp_left & 0xA)
  1859. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1860. }
  1861. break;
  1862. case TT_4X4:
  1863. pat = ~subblkpat & 0xF;
  1864. for(j = 0; j < 4; j++) {
  1865. last = subblkpat & (1 << (3 - j));
  1866. i = 0;
  1867. off = (j & 1) * 4 + (j & 2) * 16;
  1868. while (!last) {
  1869. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1870. i += skip;
  1871. if(i > 15)
  1872. break;
  1873. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1874. block[idx + off] = value * scale;
  1875. if(!v->pquantizer)
  1876. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1877. }
  1878. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1879. if(i==1)
  1880. s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1881. else
  1882. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1883. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1884. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1885. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1886. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1887. }
  1888. }
  1889. break;
  1890. case TT_8X4:
  1891. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1892. for(j = 0; j < 2; j++) {
  1893. last = subblkpat & (1 << (1 - j));
  1894. i = 0;
  1895. off = j * 32;
  1896. while (!last) {
  1897. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1898. i += skip;
  1899. if(i > 31)
  1900. break;
  1901. idx = v->zz_8x4[i++]+off;
  1902. block[idx] = value * scale;
  1903. if(!v->pquantizer)
  1904. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1905. }
  1906. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1907. if(i==1)
  1908. s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1909. else
  1910. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1911. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1912. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1913. if(apply_filter && cbp_left & (2 << j))
  1914. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1915. }
  1916. }
  1917. break;
  1918. case TT_4X8:
  1919. pat = ~(subblkpat*5) & 0xF;
  1920. for(j = 0; j < 2; j++) {
  1921. last = subblkpat & (1 << (1 - j));
  1922. i = 0;
  1923. off = j * 4;
  1924. while (!last) {
  1925. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1926. i += skip;
  1927. if(i > 31)
  1928. break;
  1929. idx = v->zz_4x8[i++]+off;
  1930. block[idx] = value * scale;
  1931. if(!v->pquantizer)
  1932. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1933. }
  1934. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1935. if(i==1)
  1936. s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1937. else
  1938. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1939. if(apply_filter && cbp_top & (2 << j))
  1940. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1941. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1942. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1943. }
  1944. }
  1945. break;
  1946. }
  1947. return pat;
  1948. }
  1949. /** @} */ // Macroblock group
  1950. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1951. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1952. /** Decode one P-frame MB (in Simple/Main profile)
  1953. */
  1954. static int vc1_decode_p_mb(VC1Context *v)
  1955. {
  1956. MpegEncContext *s = &v->s;
  1957. GetBitContext *gb = &s->gb;
  1958. int i, j;
  1959. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1960. int cbp; /* cbp decoding stuff */
  1961. int mqdiff, mquant; /* MB quantization */
  1962. int ttmb = v->ttfrm; /* MB Transform type */
  1963. int mb_has_coeffs = 1; /* last_flag */
  1964. int dmv_x, dmv_y; /* Differential MV components */
  1965. int index, index1; /* LUT indexes */
  1966. int val, sign; /* temp values */
  1967. int first_block = 1;
  1968. int dst_idx, off;
  1969. int skipped, fourmv;
  1970. int block_cbp = 0, pat;
  1971. int apply_loop_filter;
  1972. mquant = v->pq; /* Loosy initialization */
  1973. if (v->mv_type_is_raw)
  1974. fourmv = get_bits1(gb);
  1975. else
  1976. fourmv = v->mv_type_mb_plane[mb_pos];
  1977. if (v->skip_is_raw)
  1978. skipped = get_bits1(gb);
  1979. else
  1980. skipped = v->s.mbskip_table[mb_pos];
  1981. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1982. if (!fourmv) /* 1MV mode */
  1983. {
  1984. if (!skipped)
  1985. {
  1986. GET_MVDATA(dmv_x, dmv_y);
  1987. if (s->mb_intra) {
  1988. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1989. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1990. }
  1991. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1992. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  1993. /* FIXME Set DC val for inter block ? */
  1994. if (s->mb_intra && !mb_has_coeffs)
  1995. {
  1996. GET_MQUANT();
  1997. s->ac_pred = get_bits1(gb);
  1998. cbp = 0;
  1999. }
  2000. else if (mb_has_coeffs)
  2001. {
  2002. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2003. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2004. GET_MQUANT();
  2005. }
  2006. else
  2007. {
  2008. mquant = v->pq;
  2009. cbp = 0;
  2010. }
  2011. s->current_picture.qscale_table[mb_pos] = mquant;
  2012. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2013. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2014. VC1_TTMB_VLC_BITS, 2);
  2015. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2016. dst_idx = 0;
  2017. for (i=0; i<6; i++)
  2018. {
  2019. s->dc_val[0][s->block_index[i]] = 0;
  2020. dst_idx += i >> 2;
  2021. val = ((cbp >> (5 - i)) & 1);
  2022. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2023. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2024. if(s->mb_intra) {
  2025. /* check if prediction blocks A and C are available */
  2026. v->a_avail = v->c_avail = 0;
  2027. if(i == 2 || i == 3 || !s->first_slice_line)
  2028. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2029. if(i == 1 || i == 3 || s->mb_x)
  2030. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2031. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2032. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2033. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2034. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2035. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2036. if(v->pq >= 9 && v->overlap) {
  2037. if(v->c_avail)
  2038. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2039. if(v->a_avail)
  2040. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2041. }
  2042. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2043. int left_cbp, top_cbp;
  2044. if(i & 4){
  2045. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2046. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2047. }else{
  2048. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2049. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2050. }
  2051. if(left_cbp & 0xC)
  2052. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2053. if(top_cbp & 0xA)
  2054. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2055. }
  2056. block_cbp |= 0xF << (i << 2);
  2057. } else if(val) {
  2058. int left_cbp = 0, top_cbp = 0, filter = 0;
  2059. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2060. filter = 1;
  2061. if(i & 4){
  2062. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2063. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2064. }else{
  2065. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2066. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2067. }
  2068. if(left_cbp & 0xC)
  2069. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2070. if(top_cbp & 0xA)
  2071. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2072. }
  2073. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2074. block_cbp |= pat << (i << 2);
  2075. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2076. first_block = 0;
  2077. }
  2078. }
  2079. }
  2080. else //Skipped
  2081. {
  2082. s->mb_intra = 0;
  2083. for(i = 0; i < 6; i++) {
  2084. v->mb_type[0][s->block_index[i]] = 0;
  2085. s->dc_val[0][s->block_index[i]] = 0;
  2086. }
  2087. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2088. s->current_picture.qscale_table[mb_pos] = 0;
  2089. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2090. vc1_mc_1mv(v, 0);
  2091. return 0;
  2092. }
  2093. } //1MV mode
  2094. else //4MV mode
  2095. {
  2096. if (!skipped /* unskipped MB */)
  2097. {
  2098. int intra_count = 0, coded_inter = 0;
  2099. int is_intra[6], is_coded[6];
  2100. /* Get CBPCY */
  2101. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2102. for (i=0; i<6; i++)
  2103. {
  2104. val = ((cbp >> (5 - i)) & 1);
  2105. s->dc_val[0][s->block_index[i]] = 0;
  2106. s->mb_intra = 0;
  2107. if(i < 4) {
  2108. dmv_x = dmv_y = 0;
  2109. s->mb_intra = 0;
  2110. mb_has_coeffs = 0;
  2111. if(val) {
  2112. GET_MVDATA(dmv_x, dmv_y);
  2113. }
  2114. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2115. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2116. intra_count += s->mb_intra;
  2117. is_intra[i] = s->mb_intra;
  2118. is_coded[i] = mb_has_coeffs;
  2119. }
  2120. if(i&4){
  2121. is_intra[i] = (intra_count >= 3);
  2122. is_coded[i] = val;
  2123. }
  2124. if(i == 4) vc1_mc_4mv_chroma(v);
  2125. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2126. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2127. }
  2128. // if there are no coded blocks then don't do anything more
  2129. if(!intra_count && !coded_inter) return 0;
  2130. dst_idx = 0;
  2131. GET_MQUANT();
  2132. s->current_picture.qscale_table[mb_pos] = mquant;
  2133. /* test if block is intra and has pred */
  2134. {
  2135. int intrapred = 0;
  2136. for(i=0; i<6; i++)
  2137. if(is_intra[i]) {
  2138. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2139. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2140. intrapred = 1;
  2141. break;
  2142. }
  2143. }
  2144. if(intrapred)s->ac_pred = get_bits1(gb);
  2145. else s->ac_pred = 0;
  2146. }
  2147. if (!v->ttmbf && coded_inter)
  2148. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2149. for (i=0; i<6; i++)
  2150. {
  2151. dst_idx += i >> 2;
  2152. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2153. s->mb_intra = is_intra[i];
  2154. if (is_intra[i]) {
  2155. /* check if prediction blocks A and C are available */
  2156. v->a_avail = v->c_avail = 0;
  2157. if(i == 2 || i == 3 || !s->first_slice_line)
  2158. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2159. if(i == 1 || i == 3 || s->mb_x)
  2160. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2161. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2162. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2163. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2164. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2165. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2166. if(v->pq >= 9 && v->overlap) {
  2167. if(v->c_avail)
  2168. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2169. if(v->a_avail)
  2170. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2171. }
  2172. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2173. int left_cbp, top_cbp;
  2174. if(i & 4){
  2175. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2176. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2177. }else{
  2178. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2179. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2180. }
  2181. if(left_cbp & 0xC)
  2182. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2183. if(top_cbp & 0xA)
  2184. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2185. }
  2186. block_cbp |= 0xF << (i << 2);
  2187. } else if(is_coded[i]) {
  2188. int left_cbp = 0, top_cbp = 0, filter = 0;
  2189. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2190. filter = 1;
  2191. if(i & 4){
  2192. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2193. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2194. }else{
  2195. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2196. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2197. }
  2198. if(left_cbp & 0xC)
  2199. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2200. if(top_cbp & 0xA)
  2201. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2202. }
  2203. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2204. block_cbp |= pat << (i << 2);
  2205. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2206. first_block = 0;
  2207. }
  2208. }
  2209. return 0;
  2210. }
  2211. else //Skipped MB
  2212. {
  2213. s->mb_intra = 0;
  2214. s->current_picture.qscale_table[mb_pos] = 0;
  2215. for (i=0; i<6; i++) {
  2216. v->mb_type[0][s->block_index[i]] = 0;
  2217. s->dc_val[0][s->block_index[i]] = 0;
  2218. }
  2219. for (i=0; i<4; i++)
  2220. {
  2221. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2222. vc1_mc_4mv_luma(v, i);
  2223. }
  2224. vc1_mc_4mv_chroma(v);
  2225. s->current_picture.qscale_table[mb_pos] = 0;
  2226. return 0;
  2227. }
  2228. }
  2229. v->cbp[s->mb_x] = block_cbp;
  2230. /* Should never happen */
  2231. return -1;
  2232. }
  2233. /** Decode one B-frame MB (in Main profile)
  2234. */
  2235. static void vc1_decode_b_mb(VC1Context *v)
  2236. {
  2237. MpegEncContext *s = &v->s;
  2238. GetBitContext *gb = &s->gb;
  2239. int i, j;
  2240. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2241. int cbp = 0; /* cbp decoding stuff */
  2242. int mqdiff, mquant; /* MB quantization */
  2243. int ttmb = v->ttfrm; /* MB Transform type */
  2244. int mb_has_coeffs = 0; /* last_flag */
  2245. int index, index1; /* LUT indexes */
  2246. int val, sign; /* temp values */
  2247. int first_block = 1;
  2248. int dst_idx, off;
  2249. int skipped, direct;
  2250. int dmv_x[2], dmv_y[2];
  2251. int bmvtype = BMV_TYPE_BACKWARD;
  2252. mquant = v->pq; /* Loosy initialization */
  2253. s->mb_intra = 0;
  2254. if (v->dmb_is_raw)
  2255. direct = get_bits1(gb);
  2256. else
  2257. direct = v->direct_mb_plane[mb_pos];
  2258. if (v->skip_is_raw)
  2259. skipped = get_bits1(gb);
  2260. else
  2261. skipped = v->s.mbskip_table[mb_pos];
  2262. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2263. for(i = 0; i < 6; i++) {
  2264. v->mb_type[0][s->block_index[i]] = 0;
  2265. s->dc_val[0][s->block_index[i]] = 0;
  2266. }
  2267. s->current_picture.qscale_table[mb_pos] = 0;
  2268. if (!direct) {
  2269. if (!skipped) {
  2270. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2271. dmv_x[1] = dmv_x[0];
  2272. dmv_y[1] = dmv_y[0];
  2273. }
  2274. if(skipped || !s->mb_intra) {
  2275. bmvtype = decode012(gb);
  2276. switch(bmvtype) {
  2277. case 0:
  2278. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2279. break;
  2280. case 1:
  2281. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2282. break;
  2283. case 2:
  2284. bmvtype = BMV_TYPE_INTERPOLATED;
  2285. dmv_x[0] = dmv_y[0] = 0;
  2286. }
  2287. }
  2288. }
  2289. for(i = 0; i < 6; i++)
  2290. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2291. if (skipped) {
  2292. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2293. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2294. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2295. return;
  2296. }
  2297. if (direct) {
  2298. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2299. GET_MQUANT();
  2300. s->mb_intra = 0;
  2301. s->current_picture.qscale_table[mb_pos] = mquant;
  2302. if(!v->ttmbf)
  2303. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2304. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2305. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2306. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2307. } else {
  2308. if(!mb_has_coeffs && !s->mb_intra) {
  2309. /* no coded blocks - effectively skipped */
  2310. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2311. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2312. return;
  2313. }
  2314. if(s->mb_intra && !mb_has_coeffs) {
  2315. GET_MQUANT();
  2316. s->current_picture.qscale_table[mb_pos] = mquant;
  2317. s->ac_pred = get_bits1(gb);
  2318. cbp = 0;
  2319. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2320. } else {
  2321. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2322. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2323. if(!mb_has_coeffs) {
  2324. /* interpolated skipped block */
  2325. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2326. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2327. return;
  2328. }
  2329. }
  2330. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2331. if(!s->mb_intra) {
  2332. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2333. }
  2334. if(s->mb_intra)
  2335. s->ac_pred = get_bits1(gb);
  2336. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2337. GET_MQUANT();
  2338. s->current_picture.qscale_table[mb_pos] = mquant;
  2339. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2340. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2341. }
  2342. }
  2343. dst_idx = 0;
  2344. for (i=0; i<6; i++)
  2345. {
  2346. s->dc_val[0][s->block_index[i]] = 0;
  2347. dst_idx += i >> 2;
  2348. val = ((cbp >> (5 - i)) & 1);
  2349. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2350. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2351. if(s->mb_intra) {
  2352. /* check if prediction blocks A and C are available */
  2353. v->a_avail = v->c_avail = 0;
  2354. if(i == 2 || i == 3 || !s->first_slice_line)
  2355. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2356. if(i == 1 || i == 3 || s->mb_x)
  2357. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2358. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2359. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2360. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2361. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2362. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2363. } else if(val) {
  2364. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2365. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2366. first_block = 0;
  2367. }
  2368. }
  2369. }
  2370. /** Decode blocks of I-frame
  2371. */
  2372. static void vc1_decode_i_blocks(VC1Context *v)
  2373. {
  2374. int k, j;
  2375. MpegEncContext *s = &v->s;
  2376. int cbp, val;
  2377. uint8_t *coded_val;
  2378. int mb_pos;
  2379. /* select codingmode used for VLC tables selection */
  2380. switch(v->y_ac_table_index){
  2381. case 0:
  2382. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2383. break;
  2384. case 1:
  2385. v->codingset = CS_HIGH_MOT_INTRA;
  2386. break;
  2387. case 2:
  2388. v->codingset = CS_MID_RATE_INTRA;
  2389. break;
  2390. }
  2391. switch(v->c_ac_table_index){
  2392. case 0:
  2393. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2394. break;
  2395. case 1:
  2396. v->codingset2 = CS_HIGH_MOT_INTER;
  2397. break;
  2398. case 2:
  2399. v->codingset2 = CS_MID_RATE_INTER;
  2400. break;
  2401. }
  2402. /* Set DC scale - y and c use the same */
  2403. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2404. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2405. //do frame decode
  2406. s->mb_x = s->mb_y = 0;
  2407. s->mb_intra = 1;
  2408. s->first_slice_line = 1;
  2409. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2410. s->mb_x = 0;
  2411. ff_init_block_index(s);
  2412. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2413. ff_update_block_index(s);
  2414. s->dsp.clear_blocks(s->block[0]);
  2415. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2416. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2417. s->current_picture.qscale_table[mb_pos] = v->pq;
  2418. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2419. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2420. // do actual MB decoding and displaying
  2421. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2422. v->s.ac_pred = get_bits1(&v->s.gb);
  2423. for(k = 0; k < 6; k++) {
  2424. val = ((cbp >> (5 - k)) & 1);
  2425. if (k < 4) {
  2426. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2427. val = val ^ pred;
  2428. *coded_val = val;
  2429. }
  2430. cbp |= val << (5 - k);
  2431. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2432. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2433. if(v->pq >= 9 && v->overlap) {
  2434. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2435. }
  2436. }
  2437. vc1_put_block(v, s->block);
  2438. if(v->pq >= 9 && v->overlap) {
  2439. if(s->mb_x) {
  2440. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2441. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2442. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2443. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2444. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2445. }
  2446. }
  2447. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2448. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2449. if(!s->first_slice_line) {
  2450. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2451. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2452. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2453. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2454. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2455. }
  2456. }
  2457. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2458. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2459. }
  2460. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2461. if(get_bits_count(&s->gb) > v->bits) {
  2462. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2463. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2464. return;
  2465. }
  2466. }
  2467. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2468. s->first_slice_line = 0;
  2469. }
  2470. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2471. }
  2472. /** Decode blocks of I-frame for advanced profile
  2473. */
  2474. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2475. {
  2476. int k, j;
  2477. MpegEncContext *s = &v->s;
  2478. int cbp, val;
  2479. uint8_t *coded_val;
  2480. int mb_pos;
  2481. int mquant = v->pq;
  2482. int mqdiff;
  2483. int overlap;
  2484. GetBitContext *gb = &s->gb;
  2485. /* select codingmode used for VLC tables selection */
  2486. switch(v->y_ac_table_index){
  2487. case 0:
  2488. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2489. break;
  2490. case 1:
  2491. v->codingset = CS_HIGH_MOT_INTRA;
  2492. break;
  2493. case 2:
  2494. v->codingset = CS_MID_RATE_INTRA;
  2495. break;
  2496. }
  2497. switch(v->c_ac_table_index){
  2498. case 0:
  2499. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2500. break;
  2501. case 1:
  2502. v->codingset2 = CS_HIGH_MOT_INTER;
  2503. break;
  2504. case 2:
  2505. v->codingset2 = CS_MID_RATE_INTER;
  2506. break;
  2507. }
  2508. //do frame decode
  2509. s->mb_x = s->mb_y = 0;
  2510. s->mb_intra = 1;
  2511. s->first_slice_line = 1;
  2512. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2513. s->mb_x = 0;
  2514. ff_init_block_index(s);
  2515. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2516. ff_update_block_index(s);
  2517. s->dsp.clear_blocks(s->block[0]);
  2518. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2519. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2520. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2521. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2522. // do actual MB decoding and displaying
  2523. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2524. if(v->acpred_is_raw)
  2525. v->s.ac_pred = get_bits1(&v->s.gb);
  2526. else
  2527. v->s.ac_pred = v->acpred_plane[mb_pos];
  2528. if(v->condover == CONDOVER_SELECT) {
  2529. if(v->overflg_is_raw)
  2530. overlap = get_bits1(&v->s.gb);
  2531. else
  2532. overlap = v->over_flags_plane[mb_pos];
  2533. } else
  2534. overlap = (v->condover == CONDOVER_ALL);
  2535. GET_MQUANT();
  2536. s->current_picture.qscale_table[mb_pos] = mquant;
  2537. /* Set DC scale - y and c use the same */
  2538. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2539. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2540. for(k = 0; k < 6; k++) {
  2541. val = ((cbp >> (5 - k)) & 1);
  2542. if (k < 4) {
  2543. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2544. val = val ^ pred;
  2545. *coded_val = val;
  2546. }
  2547. cbp |= val << (5 - k);
  2548. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2549. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2550. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2551. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2552. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2553. }
  2554. vc1_put_block(v, s->block);
  2555. if(overlap) {
  2556. if(s->mb_x) {
  2557. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2558. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2559. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2560. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2561. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2562. }
  2563. }
  2564. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2565. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2566. if(!s->first_slice_line) {
  2567. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2568. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2569. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2570. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2571. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2572. }
  2573. }
  2574. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2575. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2576. }
  2577. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2578. if(get_bits_count(&s->gb) > v->bits) {
  2579. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2580. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2581. return;
  2582. }
  2583. }
  2584. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2585. s->first_slice_line = 0;
  2586. }
  2587. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2588. }
  2589. static void vc1_decode_p_blocks(VC1Context *v)
  2590. {
  2591. MpegEncContext *s = &v->s;
  2592. /* select codingmode used for VLC tables selection */
  2593. switch(v->c_ac_table_index){
  2594. case 0:
  2595. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2596. break;
  2597. case 1:
  2598. v->codingset = CS_HIGH_MOT_INTRA;
  2599. break;
  2600. case 2:
  2601. v->codingset = CS_MID_RATE_INTRA;
  2602. break;
  2603. }
  2604. switch(v->c_ac_table_index){
  2605. case 0:
  2606. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2607. break;
  2608. case 1:
  2609. v->codingset2 = CS_HIGH_MOT_INTER;
  2610. break;
  2611. case 2:
  2612. v->codingset2 = CS_MID_RATE_INTER;
  2613. break;
  2614. }
  2615. s->first_slice_line = 1;
  2616. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2617. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2618. s->mb_x = 0;
  2619. ff_init_block_index(s);
  2620. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2621. ff_update_block_index(s);
  2622. vc1_decode_p_mb(v);
  2623. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2624. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2625. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2626. return;
  2627. }
  2628. }
  2629. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2630. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2631. s->first_slice_line = 0;
  2632. }
  2633. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2634. }
  2635. static void vc1_decode_b_blocks(VC1Context *v)
  2636. {
  2637. MpegEncContext *s = &v->s;
  2638. /* select codingmode used for VLC tables selection */
  2639. switch(v->c_ac_table_index){
  2640. case 0:
  2641. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2642. break;
  2643. case 1:
  2644. v->codingset = CS_HIGH_MOT_INTRA;
  2645. break;
  2646. case 2:
  2647. v->codingset = CS_MID_RATE_INTRA;
  2648. break;
  2649. }
  2650. switch(v->c_ac_table_index){
  2651. case 0:
  2652. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2653. break;
  2654. case 1:
  2655. v->codingset2 = CS_HIGH_MOT_INTER;
  2656. break;
  2657. case 2:
  2658. v->codingset2 = CS_MID_RATE_INTER;
  2659. break;
  2660. }
  2661. s->first_slice_line = 1;
  2662. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2663. s->mb_x = 0;
  2664. ff_init_block_index(s);
  2665. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2666. ff_update_block_index(s);
  2667. vc1_decode_b_mb(v);
  2668. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2669. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2670. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2671. return;
  2672. }
  2673. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2674. }
  2675. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2676. s->first_slice_line = 0;
  2677. }
  2678. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2679. }
  2680. static void vc1_decode_skip_blocks(VC1Context *v)
  2681. {
  2682. MpegEncContext *s = &v->s;
  2683. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2684. s->first_slice_line = 1;
  2685. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2686. s->mb_x = 0;
  2687. ff_init_block_index(s);
  2688. ff_update_block_index(s);
  2689. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2690. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2691. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2692. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2693. s->first_slice_line = 0;
  2694. }
  2695. s->pict_type = FF_P_TYPE;
  2696. }
  2697. static void vc1_decode_blocks(VC1Context *v)
  2698. {
  2699. v->s.esc3_level_length = 0;
  2700. if(v->x8_type){
  2701. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2702. }else{
  2703. switch(v->s.pict_type) {
  2704. case FF_I_TYPE:
  2705. if(v->profile == PROFILE_ADVANCED)
  2706. vc1_decode_i_blocks_adv(v);
  2707. else
  2708. vc1_decode_i_blocks(v);
  2709. break;
  2710. case FF_P_TYPE:
  2711. if(v->p_frame_skipped)
  2712. vc1_decode_skip_blocks(v);
  2713. else
  2714. vc1_decode_p_blocks(v);
  2715. break;
  2716. case FF_B_TYPE:
  2717. if(v->bi_type){
  2718. if(v->profile == PROFILE_ADVANCED)
  2719. vc1_decode_i_blocks_adv(v);
  2720. else
  2721. vc1_decode_i_blocks(v);
  2722. }else
  2723. vc1_decode_b_blocks(v);
  2724. break;
  2725. }
  2726. }
  2727. }
  2728. /** Initialize a VC1/WMV3 decoder
  2729. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2730. * @todo TODO: Decypher remaining bits in extra_data
  2731. */
  2732. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2733. {
  2734. VC1Context *v = avctx->priv_data;
  2735. MpegEncContext *s = &v->s;
  2736. GetBitContext gb;
  2737. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2738. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2739. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2740. else
  2741. avctx->pix_fmt = PIX_FMT_GRAY8;
  2742. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2743. v->s.avctx = avctx;
  2744. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2745. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2746. if(avctx->idct_algo==FF_IDCT_AUTO){
  2747. avctx->idct_algo=FF_IDCT_WMV2;
  2748. }
  2749. if(ff_h263_decode_init(avctx) < 0)
  2750. return -1;
  2751. if (vc1_init_common(v) < 0) return -1;
  2752. // only for ff_msmp4_mb_i_table
  2753. if (ff_msmpeg4_decode_init(s) < 0) return -1;
  2754. avctx->coded_width = avctx->width;
  2755. avctx->coded_height = avctx->height;
  2756. if (avctx->codec_id == CODEC_ID_WMV3)
  2757. {
  2758. int count = 0;
  2759. // looks like WMV3 has a sequence header stored in the extradata
  2760. // advanced sequence header may be before the first frame
  2761. // the last byte of the extradata is a version number, 1 for the
  2762. // samples we can decode
  2763. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2764. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2765. return -1;
  2766. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2767. if (count>0)
  2768. {
  2769. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2770. count, get_bits(&gb, count));
  2771. }
  2772. else if (count < 0)
  2773. {
  2774. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2775. }
  2776. } else { // VC1/WVC1
  2777. const uint8_t *start = avctx->extradata;
  2778. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2779. const uint8_t *next;
  2780. int size, buf2_size;
  2781. uint8_t *buf2 = NULL;
  2782. int seq_initialized = 0, ep_initialized = 0;
  2783. if(avctx->extradata_size < 16) {
  2784. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2785. return -1;
  2786. }
  2787. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2788. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  2789. next = start;
  2790. for(; next < end; start = next){
  2791. next = find_next_marker(start + 4, end);
  2792. size = next - start - 4;
  2793. if(size <= 0) continue;
  2794. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2795. init_get_bits(&gb, buf2, buf2_size * 8);
  2796. switch(AV_RB32(start)){
  2797. case VC1_CODE_SEQHDR:
  2798. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2799. av_free(buf2);
  2800. return -1;
  2801. }
  2802. seq_initialized = 1;
  2803. break;
  2804. case VC1_CODE_ENTRYPOINT:
  2805. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2806. av_free(buf2);
  2807. return -1;
  2808. }
  2809. ep_initialized = 1;
  2810. break;
  2811. }
  2812. }
  2813. av_free(buf2);
  2814. if(!seq_initialized || !ep_initialized){
  2815. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2816. return -1;
  2817. }
  2818. }
  2819. avctx->has_b_frames= !!(avctx->max_b_frames);
  2820. s->low_delay = !avctx->has_b_frames;
  2821. s->mb_width = (avctx->coded_width+15)>>4;
  2822. s->mb_height = (avctx->coded_height+15)>>4;
  2823. /* Allocate mb bitplanes */
  2824. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2825. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2826. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2827. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2828. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2829. v->cbp = v->cbp_base + s->mb_stride;
  2830. /* allocate block type info in that way so it could be used with s->block_index[] */
  2831. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2832. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2833. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2834. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2835. /* Init coded blocks info */
  2836. if (v->profile == PROFILE_ADVANCED)
  2837. {
  2838. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2839. // return -1;
  2840. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2841. // return -1;
  2842. }
  2843. ff_intrax8_common_init(&v->x8,s);
  2844. return 0;
  2845. }
  2846. /** Decode a VC1/WMV3 frame
  2847. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2848. */
  2849. static int vc1_decode_frame(AVCodecContext *avctx,
  2850. void *data, int *data_size,
  2851. AVPacket *avpkt)
  2852. {
  2853. const uint8_t *buf = avpkt->data;
  2854. int buf_size = avpkt->size;
  2855. VC1Context *v = avctx->priv_data;
  2856. MpegEncContext *s = &v->s;
  2857. AVFrame *pict = data;
  2858. uint8_t *buf2 = NULL;
  2859. const uint8_t *buf_start = buf;
  2860. /* no supplementary picture */
  2861. if (buf_size == 0) {
  2862. /* special case for last picture */
  2863. if (s->low_delay==0 && s->next_picture_ptr) {
  2864. *pict= *(AVFrame*)s->next_picture_ptr;
  2865. s->next_picture_ptr= NULL;
  2866. *data_size = sizeof(AVFrame);
  2867. }
  2868. return 0;
  2869. }
  2870. /* We need to set current_picture_ptr before reading the header,
  2871. * otherwise we cannot store anything in there. */
  2872. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2873. int i= ff_find_unused_picture(s, 0);
  2874. s->current_picture_ptr= &s->picture[i];
  2875. }
  2876. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2877. if (v->profile < PROFILE_ADVANCED)
  2878. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2879. else
  2880. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2881. }
  2882. //for advanced profile we may need to parse and unescape data
  2883. if (avctx->codec_id == CODEC_ID_VC1) {
  2884. int buf_size2 = 0;
  2885. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2886. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2887. const uint8_t *start, *end, *next;
  2888. int size;
  2889. next = buf;
  2890. for(start = buf, end = buf + buf_size; next < end; start = next){
  2891. next = find_next_marker(start + 4, end);
  2892. size = next - start - 4;
  2893. if(size <= 0) continue;
  2894. switch(AV_RB32(start)){
  2895. case VC1_CODE_FRAME:
  2896. if (avctx->hwaccel ||
  2897. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2898. buf_start = start;
  2899. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2900. break;
  2901. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2902. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2903. init_get_bits(&s->gb, buf2, buf_size2*8);
  2904. vc1_decode_entry_point(avctx, v, &s->gb);
  2905. break;
  2906. case VC1_CODE_SLICE:
  2907. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2908. av_free(buf2);
  2909. return -1;
  2910. }
  2911. }
  2912. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2913. const uint8_t *divider;
  2914. divider = find_next_marker(buf, buf + buf_size);
  2915. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2916. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2917. av_free(buf2);
  2918. return -1;
  2919. }
  2920. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2921. // TODO
  2922. if(!v->warn_interlaced++)
  2923. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  2924. av_free(buf2);return -1;
  2925. }else{
  2926. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2927. }
  2928. init_get_bits(&s->gb, buf2, buf_size2*8);
  2929. } else
  2930. init_get_bits(&s->gb, buf, buf_size*8);
  2931. // do parse frame header
  2932. if(v->profile < PROFILE_ADVANCED) {
  2933. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2934. av_free(buf2);
  2935. return -1;
  2936. }
  2937. } else {
  2938. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2939. av_free(buf2);
  2940. return -1;
  2941. }
  2942. }
  2943. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  2944. av_free(buf2);
  2945. return -1;
  2946. }
  2947. // for hurry_up==5
  2948. s->current_picture.pict_type= s->pict_type;
  2949. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2950. /* skip B-frames if we don't have reference frames */
  2951. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2952. av_free(buf2);
  2953. return -1;//buf_size;
  2954. }
  2955. /* skip b frames if we are in a hurry */
  2956. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2957. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2958. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  2959. || avctx->skip_frame >= AVDISCARD_ALL) {
  2960. av_free(buf2);
  2961. return buf_size;
  2962. }
  2963. /* skip everything if we are in a hurry>=5 */
  2964. if(avctx->hurry_up>=5) {
  2965. av_free(buf2);
  2966. return -1;//buf_size;
  2967. }
  2968. if(s->next_p_frame_damaged){
  2969. if(s->pict_type==FF_B_TYPE)
  2970. return buf_size;
  2971. else
  2972. s->next_p_frame_damaged=0;
  2973. }
  2974. if(MPV_frame_start(s, avctx) < 0) {
  2975. av_free(buf2);
  2976. return -1;
  2977. }
  2978. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  2979. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  2980. if ((CONFIG_VC1_VDPAU_DECODER)
  2981. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2982. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  2983. else if (avctx->hwaccel) {
  2984. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  2985. return -1;
  2986. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  2987. return -1;
  2988. if (avctx->hwaccel->end_frame(avctx) < 0)
  2989. return -1;
  2990. } else {
  2991. ff_er_frame_start(s);
  2992. v->bits = buf_size * 8;
  2993. vc1_decode_blocks(v);
  2994. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2995. // if(get_bits_count(&s->gb) > buf_size * 8)
  2996. // return -1;
  2997. ff_er_frame_end(s);
  2998. }
  2999. MPV_frame_end(s);
  3000. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3001. assert(s->current_picture.pict_type == s->pict_type);
  3002. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3003. *pict= *(AVFrame*)s->current_picture_ptr;
  3004. } else if (s->last_picture_ptr != NULL) {
  3005. *pict= *(AVFrame*)s->last_picture_ptr;
  3006. }
  3007. if(s->last_picture_ptr || s->low_delay){
  3008. *data_size = sizeof(AVFrame);
  3009. ff_print_debug_info(s, pict);
  3010. }
  3011. av_free(buf2);
  3012. return buf_size;
  3013. }
  3014. /** Close a VC1/WMV3 decoder
  3015. * @warning Initial try at using MpegEncContext stuff
  3016. */
  3017. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3018. {
  3019. VC1Context *v = avctx->priv_data;
  3020. av_freep(&v->hrd_rate);
  3021. av_freep(&v->hrd_buffer);
  3022. MPV_common_end(&v->s);
  3023. av_freep(&v->mv_type_mb_plane);
  3024. av_freep(&v->direct_mb_plane);
  3025. av_freep(&v->acpred_plane);
  3026. av_freep(&v->over_flags_plane);
  3027. av_freep(&v->mb_type_base);
  3028. av_freep(&v->cbp_base);
  3029. ff_intrax8_common_end(&v->x8);
  3030. return 0;
  3031. }
  3032. AVCodec vc1_decoder = {
  3033. "vc1",
  3034. CODEC_TYPE_VIDEO,
  3035. CODEC_ID_VC1,
  3036. sizeof(VC1Context),
  3037. vc1_decode_init,
  3038. NULL,
  3039. vc1_decode_end,
  3040. vc1_decode_frame,
  3041. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3042. NULL,
  3043. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3044. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3045. };
  3046. #if CONFIG_WMV3_DECODER
  3047. AVCodec wmv3_decoder = {
  3048. "wmv3",
  3049. CODEC_TYPE_VIDEO,
  3050. CODEC_ID_WMV3,
  3051. sizeof(VC1Context),
  3052. vc1_decode_init,
  3053. NULL,
  3054. vc1_decode_end,
  3055. vc1_decode_frame,
  3056. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3057. NULL,
  3058. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3059. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3060. };
  3061. #endif
  3062. #if CONFIG_WMV3_VDPAU_DECODER
  3063. AVCodec wmv3_vdpau_decoder = {
  3064. "wmv3_vdpau",
  3065. CODEC_TYPE_VIDEO,
  3066. CODEC_ID_WMV3,
  3067. sizeof(VC1Context),
  3068. vc1_decode_init,
  3069. NULL,
  3070. vc1_decode_end,
  3071. vc1_decode_frame,
  3072. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3073. NULL,
  3074. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3075. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3076. };
  3077. #endif
  3078. #if CONFIG_VC1_VDPAU_DECODER
  3079. AVCodec vc1_vdpau_decoder = {
  3080. "vc1_vdpau",
  3081. CODEC_TYPE_VIDEO,
  3082. CODEC_ID_VC1,
  3083. sizeof(VC1Context),
  3084. vc1_decode_init,
  3085. NULL,
  3086. vc1_decode_end,
  3087. vc1_decode_frame,
  3088. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3089. NULL,
  3090. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3091. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3092. };
  3093. #endif