You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1072 lines
38KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #if CONFIG_ZLIB
  42. #include <zlib.h>
  43. #endif
  44. #include "svq1.h"
  45. /**
  46. * @file libavcodec/svq3.c
  47. * svq3 decoder.
  48. */
  49. #define FULLPEL_MODE 1
  50. #define HALFPEL_MODE 2
  51. #define THIRDPEL_MODE 3
  52. #define PREDICT_MODE 4
  53. /* dual scan (from some older h264 draft)
  54. o-->o-->o o
  55. | /|
  56. o o o / o
  57. | / | |/ |
  58. o o o o
  59. /
  60. o-->o-->o-->o
  61. */
  62. static const uint8_t svq3_scan[16] = {
  63. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  64. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  65. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  66. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  67. };
  68. static const uint8_t svq3_pred_0[25][2] = {
  69. { 0, 0 },
  70. { 1, 0 }, { 0, 1 },
  71. { 0, 2 }, { 1, 1 }, { 2, 0 },
  72. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  73. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  74. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  75. { 2, 4 }, { 3, 3 }, { 4, 2 },
  76. { 4, 3 }, { 3, 4 },
  77. { 4, 4 }
  78. };
  79. static const int8_t svq3_pred_1[6][6][5] = {
  80. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  81. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  82. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  83. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  84. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  85. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  86. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  87. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  88. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  89. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  90. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  91. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  92. };
  93. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  94. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  95. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  96. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  97. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  98. };
  99. static const uint32_t svq3_dequant_coeff[32] = {
  100. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  101. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  102. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  103. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  104. };
  105. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp)
  106. {
  107. const int qmul = svq3_dequant_coeff[qp];
  108. #define stride 16
  109. int i;
  110. int temp[16];
  111. static const int x_offset[4] = {0, 1*stride, 4* stride, 5*stride};
  112. static const int y_offset[4] = {0, 2*stride, 8* stride, 10*stride};
  113. for (i = 0; i < 4; i++){
  114. const int offset = y_offset[i];
  115. const int z0 = 13*(block[offset+stride*0] + block[offset+stride*4]);
  116. const int z1 = 13*(block[offset+stride*0] - block[offset+stride*4]);
  117. const int z2 = 7* block[offset+stride*1] - 17*block[offset+stride*5];
  118. const int z3 = 17* block[offset+stride*1] + 7*block[offset+stride*5];
  119. temp[4*i+0] = z0+z3;
  120. temp[4*i+1] = z1+z2;
  121. temp[4*i+2] = z1-z2;
  122. temp[4*i+3] = z0-z3;
  123. }
  124. for (i = 0; i < 4; i++){
  125. const int offset = x_offset[i];
  126. const int z0 = 13*(temp[4*0+i] + temp[4*2+i]);
  127. const int z1 = 13*(temp[4*0+i] - temp[4*2+i]);
  128. const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
  129. const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
  130. block[stride*0 +offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  131. block[stride*2 +offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  132. block[stride*8 +offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  133. block[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  134. }
  135. }
  136. #undef stride
  137. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  138. int dc)
  139. {
  140. const int qmul = svq3_dequant_coeff[qp];
  141. int i;
  142. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  143. if (dc) {
  144. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  145. block[0] = 0;
  146. }
  147. for (i = 0; i < 4; i++) {
  148. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  149. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  150. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  151. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  152. block[0 + 4*i] = z0 + z3;
  153. block[1 + 4*i] = z1 + z2;
  154. block[2 + 4*i] = z1 - z2;
  155. block[3 + 4*i] = z0 - z3;
  156. }
  157. for (i = 0; i < 4; i++) {
  158. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  159. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  160. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  161. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  162. const int rr = (dc + 0x80000);
  163. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  164. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  165. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  166. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  167. }
  168. }
  169. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  170. int index, const int type)
  171. {
  172. static const uint8_t *const scan_patterns[4] =
  173. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  174. int run, level, sign, vlc, limit;
  175. const int intra = (3 * type) >> 2;
  176. const uint8_t *const scan = scan_patterns[type];
  177. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  178. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  179. if (vlc == INVALID_VLC)
  180. return -1;
  181. sign = (vlc & 0x1) - 1;
  182. vlc = (vlc + 1) >> 1;
  183. if (type == 3) {
  184. if (vlc < 3) {
  185. run = 0;
  186. level = vlc;
  187. } else if (vlc < 4) {
  188. run = 1;
  189. level = 1;
  190. } else {
  191. run = (vlc & 0x3);
  192. level = ((vlc + 9) >> 2) - run;
  193. }
  194. } else {
  195. if (vlc < 16) {
  196. run = svq3_dct_tables[intra][vlc].run;
  197. level = svq3_dct_tables[intra][vlc].level;
  198. } else if (intra) {
  199. run = (vlc & 0x7);
  200. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  201. } else {
  202. run = (vlc & 0xF);
  203. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  204. }
  205. }
  206. if ((index += run) >= limit)
  207. return -1;
  208. block[scan[index]] = (level ^ sign) - sign;
  209. }
  210. if (type != 2) {
  211. break;
  212. }
  213. }
  214. return 0;
  215. }
  216. static inline void svq3_mc_dir_part(MpegEncContext *s,
  217. int x, int y, int width, int height,
  218. int mx, int my, int dxy,
  219. int thirdpel, int dir, int avg)
  220. {
  221. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  222. uint8_t *src, *dest;
  223. int i, emu = 0;
  224. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  225. mx += x;
  226. my += y;
  227. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  228. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  229. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  230. emu = 1;
  231. }
  232. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  233. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  234. }
  235. /* form component predictions */
  236. dest = s->current_picture.data[0] + x + y*s->linesize;
  237. src = pic->data[0] + mx + my*s->linesize;
  238. if (emu) {
  239. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  240. mx, my, s->h_edge_pos, s->v_edge_pos);
  241. src = s->edge_emu_buffer;
  242. }
  243. if (thirdpel)
  244. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  245. else
  246. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  247. if (!(s->flags & CODEC_FLAG_GRAY)) {
  248. mx = (mx + (mx < (int) x)) >> 1;
  249. my = (my + (my < (int) y)) >> 1;
  250. width = (width >> 1);
  251. height = (height >> 1);
  252. blocksize++;
  253. for (i = 1; i < 3; i++) {
  254. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  255. src = pic->data[i] + mx + my*s->uvlinesize;
  256. if (emu) {
  257. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  258. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  259. src = s->edge_emu_buffer;
  260. }
  261. if (thirdpel)
  262. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  263. else
  264. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  265. }
  266. }
  267. }
  268. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  269. int avg)
  270. {
  271. int i, j, k, mx, my, dx, dy, x, y;
  272. MpegEncContext *const s = (MpegEncContext *) h;
  273. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  274. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  275. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  276. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  277. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  278. for (i = 0; i < 16; i += part_height) {
  279. for (j = 0; j < 16; j += part_width) {
  280. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  281. int dxy;
  282. x = 16*s->mb_x + j;
  283. y = 16*s->mb_y + i;
  284. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  285. if (mode != PREDICT_MODE) {
  286. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  287. } else {
  288. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  289. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  290. if (dir == 0) {
  291. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  292. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  293. } else {
  294. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  295. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  296. }
  297. }
  298. /* clip motion vector prediction to frame border */
  299. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  300. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  301. /* get (optional) motion vector differential */
  302. if (mode == PREDICT_MODE) {
  303. dx = dy = 0;
  304. } else {
  305. dy = svq3_get_se_golomb(&s->gb);
  306. dx = svq3_get_se_golomb(&s->gb);
  307. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  308. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  309. return -1;
  310. }
  311. }
  312. /* compute motion vector */
  313. if (mode == THIRDPEL_MODE) {
  314. int fx, fy;
  315. mx = ((mx + 1)>>1) + dx;
  316. my = ((my + 1)>>1) + dy;
  317. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  318. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  319. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  320. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  321. mx += mx;
  322. my += my;
  323. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  324. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  325. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  326. dxy = (mx&1) + 2*(my&1);
  327. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  328. mx *= 3;
  329. my *= 3;
  330. } else {
  331. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  332. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  333. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  334. mx *= 6;
  335. my *= 6;
  336. }
  337. /* update mv_cache */
  338. if (mode != PREDICT_MODE) {
  339. int32_t mv = pack16to32(mx,my);
  340. if (part_height == 8 && i < 8) {
  341. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  342. if (part_width == 8 && j < 8) {
  343. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  344. }
  345. }
  346. if (part_width == 8 && j < 8) {
  347. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  348. }
  349. if (part_width == 4 || part_height == 4) {
  350. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  351. }
  352. }
  353. /* write back motion vectors */
  354. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  355. }
  356. }
  357. return 0;
  358. }
  359. static int svq3_decode_mb(H264Context *h, unsigned int mb_type)
  360. {
  361. int i, j, k, m, dir, mode;
  362. int cbp = 0;
  363. uint32_t vlc;
  364. int8_t *top, *left;
  365. MpegEncContext *const s = (MpegEncContext *) h;
  366. const int mb_xy = h->mb_xy;
  367. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  368. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  369. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  370. h->topright_samples_available = 0xFFFF;
  371. if (mb_type == 0) { /* SKIP */
  372. if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  373. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  374. if (s->pict_type == FF_B_TYPE) {
  375. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  376. }
  377. mb_type = MB_TYPE_SKIP;
  378. } else {
  379. mb_type = FFMIN(s->next_picture.mb_type[mb_xy], 6);
  380. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  381. return -1;
  382. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  383. return -1;
  384. mb_type = MB_TYPE_16x16;
  385. }
  386. } else if (mb_type < 8) { /* INTER */
  387. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  388. mode = THIRDPEL_MODE;
  389. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  390. mode = HALFPEL_MODE;
  391. } else {
  392. mode = FULLPEL_MODE;
  393. }
  394. /* fill caches */
  395. /* note ref_cache should contain here:
  396. ????????
  397. ???11111
  398. N??11111
  399. N??11111
  400. N??11111
  401. */
  402. for (m = 0; m < 2; m++) {
  403. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  404. for (i = 0; i < 4; i++) {
  405. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  406. }
  407. } else {
  408. for (i = 0; i < 4; i++) {
  409. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  410. }
  411. }
  412. if (s->mb_y > 0) {
  413. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  414. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  415. if (s->mb_x < (s->mb_width - 1)) {
  416. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  417. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  418. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  419. h->intra4x4_pred_mode[mb_xy - s->mb_stride ][4] == -1) ? PART_NOT_AVAILABLE : 1;
  420. }else
  421. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  422. if (s->mb_x > 0) {
  423. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  424. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  425. }else
  426. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  427. }else
  428. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  429. if (s->pict_type != FF_B_TYPE)
  430. break;
  431. }
  432. /* decode motion vector(s) and form prediction(s) */
  433. if (s->pict_type == FF_P_TYPE) {
  434. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  435. return -1;
  436. } else { /* FF_B_TYPE */
  437. if (mb_type != 2) {
  438. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  439. return -1;
  440. } else {
  441. for (i = 0; i < 4; i++) {
  442. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  443. }
  444. }
  445. if (mb_type != 1) {
  446. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  447. return -1;
  448. } else {
  449. for (i = 0; i < 4; i++) {
  450. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  451. }
  452. }
  453. }
  454. mb_type = MB_TYPE_16x16;
  455. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  456. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  457. if (mb_type == 8) {
  458. if (s->mb_x > 0) {
  459. for (i = 0; i < 4; i++) {
  460. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  461. }
  462. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  463. h->left_samples_available = 0x5F5F;
  464. }
  465. }
  466. if (s->mb_y > 0) {
  467. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  468. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  469. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  470. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  471. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  472. h->top_samples_available = 0x33FF;
  473. }
  474. }
  475. /* decode prediction codes for luma blocks */
  476. for (i = 0; i < 16; i+=2) {
  477. vlc = svq3_get_ue_golomb(&s->gb);
  478. if (vlc >= 25){
  479. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  480. return -1;
  481. }
  482. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  483. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  484. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  485. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  486. if (left[1] == -1 || left[2] == -1){
  487. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  488. return -1;
  489. }
  490. }
  491. } else { /* mb_type == 33, DC_128_PRED block type */
  492. for (i = 0; i < 4; i++) {
  493. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  494. }
  495. }
  496. write_back_intra_pred_mode(h);
  497. if (mb_type == 8) {
  498. check_intra4x4_pred_mode(h);
  499. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  500. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  501. } else {
  502. for (i = 0; i < 4; i++) {
  503. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  504. }
  505. h->top_samples_available = 0x33FF;
  506. h->left_samples_available = 0x5F5F;
  507. }
  508. mb_type = MB_TYPE_INTRA4x4;
  509. } else { /* INTRA16x16 */
  510. dir = i_mb_type_info[mb_type - 8].pred_mode;
  511. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  512. if ((h->intra16x16_pred_mode = check_intra_pred_mode(h, dir)) == -1){
  513. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  514. return -1;
  515. }
  516. cbp = i_mb_type_info[mb_type - 8].cbp;
  517. mb_type = MB_TYPE_INTRA16x16;
  518. }
  519. if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
  520. for (i = 0; i < 4; i++) {
  521. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  522. }
  523. if (s->pict_type == FF_B_TYPE) {
  524. for (i = 0; i < 4; i++) {
  525. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  526. }
  527. }
  528. }
  529. if (!IS_INTRA4x4(mb_type)) {
  530. memset(h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  531. }
  532. if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
  533. memset(h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  534. s->dsp.clear_blocks(h->mb);
  535. }
  536. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
  537. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
  538. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  539. return -1;
  540. }
  541. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  542. }
  543. if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
  544. s->qscale += svq3_get_se_golomb(&s->gb);
  545. if (s->qscale > 31){
  546. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  547. return -1;
  548. }
  549. }
  550. if (IS_INTRA16x16(mb_type)) {
  551. if (svq3_decode_block(&s->gb, h->mb, 0, 0)){
  552. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  553. return -1;
  554. }
  555. }
  556. if (cbp) {
  557. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  558. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  559. for (i = 0; i < 4; i++) {
  560. if ((cbp & (1 << i))) {
  561. for (j = 0; j < 4; j++) {
  562. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  563. h->non_zero_count_cache[ scan8[k] ] = 1;
  564. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  566. return -1;
  567. }
  568. }
  569. }
  570. }
  571. if ((cbp & 0x30)) {
  572. for (i = 0; i < 2; ++i) {
  573. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  574. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  575. return -1;
  576. }
  577. }
  578. if ((cbp & 0x20)) {
  579. for (i = 0; i < 8; i++) {
  580. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  581. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  582. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  583. return -1;
  584. }
  585. }
  586. }
  587. }
  588. }
  589. h->cbp= cbp;
  590. s->current_picture.mb_type[mb_xy] = mb_type;
  591. if (IS_INTRA(mb_type)) {
  592. h->chroma_pred_mode = check_intra_pred_mode(h, DC_PRED8x8);
  593. }
  594. return 0;
  595. }
  596. static int svq3_decode_slice_header(H264Context *h)
  597. {
  598. MpegEncContext *const s = (MpegEncContext *) h;
  599. const int mb_xy = h->mb_xy;
  600. int i, header;
  601. header = get_bits(&s->gb, 8);
  602. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  603. /* TODO: what? */
  604. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  605. return -1;
  606. } else {
  607. int length = (header >> 5) & 3;
  608. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  609. if (h->next_slice_index > s->gb.size_in_bits) {
  610. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  611. return -1;
  612. }
  613. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  614. skip_bits(&s->gb, 8);
  615. if (h->svq3_watermark_key) {
  616. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  617. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
  618. }
  619. if (length > 0) {
  620. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  621. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  622. }
  623. skip_bits_long(&s->gb, 0);
  624. }
  625. if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
  626. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  627. return -1;
  628. }
  629. h->slice_type = golomb_to_pict_type[i];
  630. if ((header & 0x9F) == 2) {
  631. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  632. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  633. } else {
  634. skip_bits1(&s->gb);
  635. s->mb_skip_run = 0;
  636. }
  637. h->slice_num = get_bits(&s->gb, 8);
  638. s->qscale = get_bits(&s->gb, 5);
  639. s->adaptive_quant = get_bits1(&s->gb);
  640. /* unknown fields */
  641. skip_bits1(&s->gb);
  642. if (h->unknown_svq3_flag) {
  643. skip_bits1(&s->gb);
  644. }
  645. skip_bits1(&s->gb);
  646. skip_bits(&s->gb, 2);
  647. while (get_bits1(&s->gb)) {
  648. skip_bits(&s->gb, 8);
  649. }
  650. /* reset intra predictors and invalidate motion vector references */
  651. if (s->mb_x > 0) {
  652. memset(h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  653. memset(h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  654. }
  655. if (s->mb_y > 0) {
  656. memset(h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  657. if (s->mb_x > 0) {
  658. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  659. }
  660. }
  661. return 0;
  662. }
  663. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  664. {
  665. MpegEncContext *const s = avctx->priv_data;
  666. H264Context *const h = avctx->priv_data;
  667. int m;
  668. unsigned char *extradata;
  669. unsigned int size;
  670. if(avctx->thread_count > 1){
  671. av_log(avctx, AV_LOG_ERROR, "SVQ3 does not support multithreaded decoding, patch welcome! (check latest SVN too)\n");
  672. return -1;
  673. }
  674. if (decode_init(avctx) < 0)
  675. return -1;
  676. s->flags = avctx->flags;
  677. s->flags2 = avctx->flags2;
  678. s->unrestricted_mv = 1;
  679. h->is_complex=1;
  680. if (!s->context_initialized) {
  681. s->width = avctx->width;
  682. s->height = avctx->height;
  683. h->halfpel_flag = 1;
  684. h->thirdpel_flag = 1;
  685. h->unknown_svq3_flag = 0;
  686. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  687. if (MPV_common_init(s) < 0)
  688. return -1;
  689. h->b_stride = 4*s->mb_width;
  690. alloc_tables(h);
  691. /* prowl for the "SEQH" marker in the extradata */
  692. extradata = (unsigned char *)avctx->extradata;
  693. for (m = 0; m < avctx->extradata_size; m++) {
  694. if (!memcmp(extradata, "SEQH", 4))
  695. break;
  696. extradata++;
  697. }
  698. /* if a match was found, parse the extra data */
  699. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  700. GetBitContext gb;
  701. int frame_size_code;
  702. size = AV_RB32(&extradata[4]);
  703. init_get_bits(&gb, extradata + 8, size*8);
  704. /* 'frame size code' and optional 'width, height' */
  705. frame_size_code = get_bits(&gb, 3);
  706. switch (frame_size_code) {
  707. case 0: avctx->width = 160; avctx->height = 120; break;
  708. case 1: avctx->width = 128; avctx->height = 96; break;
  709. case 2: avctx->width = 176; avctx->height = 144; break;
  710. case 3: avctx->width = 352; avctx->height = 288; break;
  711. case 4: avctx->width = 704; avctx->height = 576; break;
  712. case 5: avctx->width = 240; avctx->height = 180; break;
  713. case 6: avctx->width = 320; avctx->height = 240; break;
  714. case 7:
  715. avctx->width = get_bits(&gb, 12);
  716. avctx->height = get_bits(&gb, 12);
  717. break;
  718. }
  719. h->halfpel_flag = get_bits1(&gb);
  720. h->thirdpel_flag = get_bits1(&gb);
  721. /* unknown fields */
  722. skip_bits1(&gb);
  723. skip_bits1(&gb);
  724. skip_bits1(&gb);
  725. skip_bits1(&gb);
  726. s->low_delay = get_bits1(&gb);
  727. /* unknown field */
  728. skip_bits1(&gb);
  729. while (get_bits1(&gb)) {
  730. skip_bits(&gb, 8);
  731. }
  732. h->unknown_svq3_flag = get_bits1(&gb);
  733. avctx->has_b_frames = !s->low_delay;
  734. if (h->unknown_svq3_flag) {
  735. #if CONFIG_ZLIB
  736. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  737. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  738. int u1 = svq3_get_ue_golomb(&gb);
  739. int u2 = get_bits(&gb, 8);
  740. int u3 = get_bits(&gb, 2);
  741. int u4 = svq3_get_ue_golomb(&gb);
  742. unsigned buf_len = watermark_width*watermark_height*4;
  743. int offset = (get_bits_count(&gb)+7)>>3;
  744. uint8_t *buf;
  745. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  746. return -1;
  747. buf = av_malloc(buf_len);
  748. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  749. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  750. if (uncompress(buf, (uLong*)&buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  751. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  752. av_free(buf);
  753. return -1;
  754. }
  755. h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  756. h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
  757. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
  758. av_free(buf);
  759. #else
  760. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  761. return -1;
  762. #endif
  763. }
  764. }
  765. }
  766. return 0;
  767. }
  768. static int svq3_decode_frame(AVCodecContext *avctx,
  769. void *data, int *data_size,
  770. AVPacket *avpkt)
  771. {
  772. const uint8_t *buf = avpkt->data;
  773. int buf_size = avpkt->size;
  774. MpegEncContext *const s = avctx->priv_data;
  775. H264Context *const h = avctx->priv_data;
  776. int m, mb_type;
  777. /* special case for last picture */
  778. if (buf_size == 0) {
  779. if (s->next_picture_ptr && !s->low_delay) {
  780. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  781. s->next_picture_ptr = NULL;
  782. *data_size = sizeof(AVFrame);
  783. }
  784. return 0;
  785. }
  786. init_get_bits (&s->gb, buf, 8*buf_size);
  787. s->mb_x = s->mb_y = h->mb_xy = 0;
  788. if (svq3_decode_slice_header(h))
  789. return -1;
  790. s->pict_type = h->slice_type;
  791. s->picture_number = h->slice_num;
  792. if (avctx->debug&FF_DEBUG_PICT_INFO){
  793. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  794. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  795. s->adaptive_quant, s->qscale, h->slice_num);
  796. }
  797. /* for hurry_up == 5 */
  798. s->current_picture.pict_type = s->pict_type;
  799. s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
  800. /* Skip B-frames if we do not have reference frames. */
  801. if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE)
  802. return 0;
  803. /* Skip B-frames if we are in a hurry. */
  804. if (avctx->hurry_up && s->pict_type == FF_B_TYPE)
  805. return 0;
  806. /* Skip everything if we are in a hurry >= 5. */
  807. if (avctx->hurry_up >= 5)
  808. return 0;
  809. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == FF_B_TYPE)
  810. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != FF_I_TYPE)
  811. || avctx->skip_frame >= AVDISCARD_ALL)
  812. return 0;
  813. if (s->next_p_frame_damaged) {
  814. if (s->pict_type == FF_B_TYPE)
  815. return 0;
  816. else
  817. s->next_p_frame_damaged = 0;
  818. }
  819. if (frame_start(h) < 0)
  820. return -1;
  821. if (s->pict_type == FF_B_TYPE) {
  822. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  823. if (h->frame_num_offset < 0) {
  824. h->frame_num_offset += 256;
  825. }
  826. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  827. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  828. return -1;
  829. }
  830. } else {
  831. h->prev_frame_num = h->frame_num;
  832. h->frame_num = h->slice_num;
  833. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  834. if (h->prev_frame_num_offset < 0) {
  835. h->prev_frame_num_offset += 256;
  836. }
  837. }
  838. for (m = 0; m < 2; m++){
  839. int i;
  840. for (i = 0; i < 4; i++){
  841. int j;
  842. for (j = -1; j < 4; j++)
  843. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  844. if (i < 3)
  845. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  846. }
  847. }
  848. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  849. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  850. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  851. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  852. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  853. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  854. s->gb.size_in_bits = 8*buf_size;
  855. if (svq3_decode_slice_header(h))
  856. return -1;
  857. /* TODO: support s->mb_skip_run */
  858. }
  859. mb_type = svq3_get_ue_golomb(&s->gb);
  860. if (s->pict_type == FF_I_TYPE) {
  861. mb_type += 8;
  862. } else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
  863. mb_type += 4;
  864. }
  865. if (mb_type > 33 || svq3_decode_mb(h, mb_type)) {
  866. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  867. return -1;
  868. }
  869. if (mb_type != 0) {
  870. hl_decode_mb (h);
  871. }
  872. if (s->pict_type != FF_B_TYPE && !s->low_delay) {
  873. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  874. (s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  875. }
  876. }
  877. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  878. }
  879. MPV_frame_end(s);
  880. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  881. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  882. } else {
  883. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  884. }
  885. /* Do not output the last pic after seeking. */
  886. if (s->last_picture_ptr || s->low_delay) {
  887. *data_size = sizeof(AVFrame);
  888. }
  889. return buf_size;
  890. }
  891. AVCodec svq3_decoder = {
  892. "svq3",
  893. CODEC_TYPE_VIDEO,
  894. CODEC_ID_SVQ3,
  895. sizeof(H264Context),
  896. svq3_decode_init,
  897. NULL,
  898. decode_end,
  899. svq3_decode_frame,
  900. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  901. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  902. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  903. };