You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

133 lines
4.1KB

  1. /*
  2. * (I)RDFT transforms
  3. * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <math.h>
  22. #include "dsputil.h"
  23. /**
  24. * @file libavcodec/rdft.c
  25. * (Inverse) Real Discrete Fourier Transforms.
  26. */
  27. /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
  28. #if !CONFIG_HARDCODED_TABLES
  29. SINTABLE(16);
  30. SINTABLE(32);
  31. SINTABLE(64);
  32. SINTABLE(128);
  33. SINTABLE(256);
  34. SINTABLE(512);
  35. SINTABLE(1024);
  36. SINTABLE(2048);
  37. SINTABLE(4096);
  38. SINTABLE(8192);
  39. SINTABLE(16384);
  40. SINTABLE(32768);
  41. SINTABLE(65536);
  42. #endif
  43. SINTABLE_CONST FFTSample * const ff_sin_tabs[] = {
  44. NULL, NULL, NULL, NULL,
  45. ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
  46. ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
  47. };
  48. av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
  49. {
  50. int n = 1 << nbits;
  51. int i;
  52. const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n;
  53. s->nbits = nbits;
  54. s->inverse = trans == IRDFT || trans == IRIDFT;
  55. s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1;
  56. if (nbits < 4 || nbits > 16)
  57. return -1;
  58. if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0)
  59. return -1;
  60. ff_init_ff_cos_tabs(nbits);
  61. s->tcos = ff_cos_tabs[nbits];
  62. s->tsin = ff_sin_tabs[nbits]+(trans == RDFT || trans == IRIDFT)*(n>>2);
  63. #if !CONFIG_HARDCODED_TABLES
  64. for (i = 0; i < (n>>2); i++) {
  65. s->tsin[i] = sin(i*theta);
  66. }
  67. #endif
  68. return 0;
  69. }
  70. /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
  71. * the two real FFTs into one complex FFT. Unmangle the results.
  72. * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
  73. */
  74. void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
  75. {
  76. int i, i1, i2;
  77. FFTComplex ev, od;
  78. const int n = 1 << s->nbits;
  79. const float k1 = 0.5;
  80. const float k2 = 0.5 - s->inverse;
  81. const FFTSample *tcos = s->tcos;
  82. const FFTSample *tsin = s->tsin;
  83. if (!s->inverse) {
  84. ff_fft_permute(&s->fft, (FFTComplex*)data);
  85. ff_fft_calc(&s->fft, (FFTComplex*)data);
  86. }
  87. /* i=0 is a special case because of packing, the DC term is real, so we
  88. are going to throw the N/2 term (also real) in with it. */
  89. ev.re = data[0];
  90. data[0] = ev.re+data[1];
  91. data[1] = ev.re-data[1];
  92. for (i = 1; i < (n>>2); i++) {
  93. i1 = 2*i;
  94. i2 = n-i1;
  95. /* Separate even and odd FFTs */
  96. ev.re = k1*(data[i1 ]+data[i2 ]);
  97. od.im = -k2*(data[i1 ]-data[i2 ]);
  98. ev.im = k1*(data[i1+1]-data[i2+1]);
  99. od.re = k2*(data[i1+1]+data[i2+1]);
  100. /* Apply twiddle factors to the odd FFT and add to the even FFT */
  101. data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
  102. data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
  103. data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
  104. data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
  105. }
  106. data[2*i+1]=s->sign_convention*data[2*i+1];
  107. if (s->inverse) {
  108. data[0] *= k1;
  109. data[1] *= k1;
  110. ff_fft_permute(&s->fft, (FFTComplex*)data);
  111. ff_fft_calc(&s->fft, (FFTComplex*)data);
  112. }
  113. }
  114. void ff_rdft_calc(RDFTContext *s, FFTSample *data)
  115. {
  116. ff_rdft_calc_c(s, data);
  117. }
  118. av_cold void ff_rdft_end(RDFTContext *s)
  119. {
  120. ff_fft_end(&s->fft);
  121. }