You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

961 lines
32KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/ratecontrol.c
  24. * Rate control for video encoders.
  25. */
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "ratecontrol.h"
  29. #include "mpegvideo.h"
  30. #include "eval.h"
  31. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  32. #include <assert.h>
  33. #ifndef M_E
  34. #define M_E 2.718281828
  35. #endif
  36. static int init_pass2(MpegEncContext *s);
  37. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  38. void ff_write_pass1_stats(MpegEncContext *s){
  39. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  40. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  41. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  42. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  43. }
  44. static inline double qp2bits(RateControlEntry *rce, double qp){
  45. if(qp<=0.0){
  46. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  47. }
  48. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  49. }
  50. static inline double bits2qp(RateControlEntry *rce, double bits){
  51. if(bits<0.9){
  52. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  53. }
  54. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  55. }
  56. int ff_rate_control_init(MpegEncContext *s)
  57. {
  58. RateControlContext *rcc= &s->rc_context;
  59. int i;
  60. const char *error = NULL;
  61. static const char * const const_names[]={
  62. "PI",
  63. "E",
  64. "iTex",
  65. "pTex",
  66. "tex",
  67. "mv",
  68. "fCode",
  69. "iCount",
  70. "mcVar",
  71. "var",
  72. "isI",
  73. "isP",
  74. "isB",
  75. "avgQP",
  76. "qComp",
  77. /* "lastIQP",
  78. "lastPQP",
  79. "lastBQP",
  80. "nextNonBQP",*/
  81. "avgIITex",
  82. "avgPITex",
  83. "avgPPTex",
  84. "avgBPTex",
  85. "avgTex",
  86. NULL
  87. };
  88. static double (* const func1[])(void *, double)={
  89. (void *)bits2qp,
  90. (void *)qp2bits,
  91. NULL
  92. };
  93. static const char * const func1_names[]={
  94. "bits2qp",
  95. "qp2bits",
  96. NULL
  97. };
  98. emms_c();
  99. rcc->rc_eq_eval = ff_parse(s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1, func1_names, NULL, NULL, &error);
  100. if (!rcc->rc_eq_eval) {
  101. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
  102. return -1;
  103. }
  104. for(i=0; i<5; i++){
  105. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  106. rcc->pred[i].count= 1.0;
  107. rcc->pred[i].decay= 0.4;
  108. rcc->i_cplx_sum [i]=
  109. rcc->p_cplx_sum [i]=
  110. rcc->mv_bits_sum[i]=
  111. rcc->qscale_sum [i]=
  112. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  113. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  114. }
  115. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  116. if(s->flags&CODEC_FLAG_PASS2){
  117. int i;
  118. char *p;
  119. /* find number of pics */
  120. p= s->avctx->stats_in;
  121. for(i=-1; p; i++){
  122. p= strchr(p+1, ';');
  123. }
  124. i+= s->max_b_frames;
  125. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  126. return -1;
  127. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  128. rcc->num_entries= i;
  129. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  130. for(i=0; i<rcc->num_entries; i++){
  131. RateControlEntry *rce= &rcc->entry[i];
  132. rce->pict_type= rce->new_pict_type=FF_P_TYPE;
  133. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  134. rce->misc_bits= s->mb_num + 10;
  135. rce->mb_var_sum= s->mb_num*100;
  136. }
  137. /* read stats */
  138. p= s->avctx->stats_in;
  139. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  140. RateControlEntry *rce;
  141. int picture_number;
  142. int e;
  143. char *next;
  144. next= strchr(p, ';');
  145. if(next){
  146. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  147. next++;
  148. }
  149. e= sscanf(p, " in:%d ", &picture_number);
  150. assert(picture_number >= 0);
  151. assert(picture_number < rcc->num_entries);
  152. rce= &rcc->entry[picture_number];
  153. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  154. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  155. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  156. if(e!=14){
  157. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  158. return -1;
  159. }
  160. p= next;
  161. }
  162. if(init_pass2(s) < 0) return -1;
  163. //FIXME maybe move to end
  164. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  165. #if CONFIG_LIBXVID
  166. return ff_xvid_rate_control_init(s);
  167. #else
  168. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  169. return -1;
  170. #endif
  171. }
  172. }
  173. if(!(s->flags&CODEC_FLAG_PASS2)){
  174. rcc->short_term_qsum=0.001;
  175. rcc->short_term_qcount=0.001;
  176. rcc->pass1_rc_eq_output_sum= 0.001;
  177. rcc->pass1_wanted_bits=0.001;
  178. if(s->avctx->qblur > 1.0){
  179. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  180. return -1;
  181. }
  182. /* init stuff with the user specified complexity */
  183. if(s->avctx->rc_initial_cplx){
  184. for(i=0; i<60*30; i++){
  185. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  186. RateControlEntry rce;
  187. if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
  188. else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
  189. else rce.pict_type= FF_P_TYPE;
  190. rce.new_pict_type= rce.pict_type;
  191. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  192. rce.mb_var_sum = s->mb_num;
  193. rce.qscale = FF_QP2LAMBDA * 2;
  194. rce.f_code = 2;
  195. rce.b_code = 1;
  196. rce.misc_bits= 1;
  197. if(s->pict_type== FF_I_TYPE){
  198. rce.i_count = s->mb_num;
  199. rce.i_tex_bits= bits;
  200. rce.p_tex_bits= 0;
  201. rce.mv_bits= 0;
  202. }else{
  203. rce.i_count = 0; //FIXME we do know this approx
  204. rce.i_tex_bits= 0;
  205. rce.p_tex_bits= bits*0.9;
  206. rce.mv_bits= bits*0.1;
  207. }
  208. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  209. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  210. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  211. rcc->frame_count[rce.pict_type] ++;
  212. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  213. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
  214. }
  215. }
  216. }
  217. return 0;
  218. }
  219. void ff_rate_control_uninit(MpegEncContext *s)
  220. {
  221. RateControlContext *rcc= &s->rc_context;
  222. emms_c();
  223. ff_eval_free(rcc->rc_eq_eval);
  224. av_freep(&rcc->entry);
  225. #if CONFIG_LIBXVID
  226. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  227. ff_xvid_rate_control_uninit(s);
  228. #endif
  229. }
  230. int ff_vbv_update(MpegEncContext *s, int frame_size){
  231. RateControlContext *rcc= &s->rc_context;
  232. const double fps= 1/av_q2d(s->avctx->time_base);
  233. const int buffer_size= s->avctx->rc_buffer_size;
  234. const double min_rate= s->avctx->rc_min_rate/fps;
  235. const double max_rate= s->avctx->rc_max_rate/fps;
  236. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  237. if(buffer_size){
  238. int left;
  239. rcc->buffer_index-= frame_size;
  240. if(rcc->buffer_index < 0){
  241. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  242. rcc->buffer_index= 0;
  243. }
  244. left= buffer_size - rcc->buffer_index - 1;
  245. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  246. if(rcc->buffer_index > buffer_size){
  247. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  248. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  249. stuffing=4;
  250. rcc->buffer_index -= 8*stuffing;
  251. if(s->avctx->debug & FF_DEBUG_RC)
  252. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  253. return stuffing;
  254. }
  255. }
  256. return 0;
  257. }
  258. /**
  259. * modifies the bitrate curve from pass1 for one frame
  260. */
  261. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  262. RateControlContext *rcc= &s->rc_context;
  263. AVCodecContext *a= s->avctx;
  264. double q, bits;
  265. const int pict_type= rce->new_pict_type;
  266. const double mb_num= s->mb_num;
  267. int i;
  268. double const_values[]={
  269. M_PI,
  270. M_E,
  271. rce->i_tex_bits*rce->qscale,
  272. rce->p_tex_bits*rce->qscale,
  273. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  274. rce->mv_bits/mb_num,
  275. rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  276. rce->i_count/mb_num,
  277. rce->mc_mb_var_sum/mb_num,
  278. rce->mb_var_sum/mb_num,
  279. rce->pict_type == FF_I_TYPE,
  280. rce->pict_type == FF_P_TYPE,
  281. rce->pict_type == FF_B_TYPE,
  282. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  283. a->qcompress,
  284. /* rcc->last_qscale_for[FF_I_TYPE],
  285. rcc->last_qscale_for[FF_P_TYPE],
  286. rcc->last_qscale_for[FF_B_TYPE],
  287. rcc->next_non_b_qscale,*/
  288. rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
  289. rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
  290. rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
  291. rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
  292. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  293. 0
  294. };
  295. bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce);
  296. if (isnan(bits)) {
  297. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  298. return -1;
  299. }
  300. rcc->pass1_rc_eq_output_sum+= bits;
  301. bits*=rate_factor;
  302. if(bits<0.0) bits=0.0;
  303. bits+= 1.0; //avoid 1/0 issues
  304. /* user override */
  305. for(i=0; i<s->avctx->rc_override_count; i++){
  306. RcOverride *rco= s->avctx->rc_override;
  307. if(rco[i].start_frame > frame_num) continue;
  308. if(rco[i].end_frame < frame_num) continue;
  309. if(rco[i].qscale)
  310. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  311. else
  312. bits*= rco[i].quality_factor;
  313. }
  314. q= bits2qp(rce, bits);
  315. /* I/B difference */
  316. if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
  317. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  318. else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
  319. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  320. if(q<1) q=1;
  321. return q;
  322. }
  323. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  324. RateControlContext *rcc= &s->rc_context;
  325. AVCodecContext *a= s->avctx;
  326. const int pict_type= rce->new_pict_type;
  327. const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
  328. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  329. if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
  330. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  331. else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
  332. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  333. if(q<1) q=1;
  334. /* last qscale / qdiff stuff */
  335. if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
  336. double last_q= rcc->last_qscale_for[pict_type];
  337. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  338. if (q > last_q + maxdiff) q= last_q + maxdiff;
  339. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  340. }
  341. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  342. if(pict_type!=FF_B_TYPE)
  343. rcc->last_non_b_pict_type= pict_type;
  344. return q;
  345. }
  346. /**
  347. * gets the qmin & qmax for pict_type
  348. */
  349. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  350. int qmin= s->avctx->lmin;
  351. int qmax= s->avctx->lmax;
  352. assert(qmin <= qmax);
  353. if(pict_type==FF_B_TYPE){
  354. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  355. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  356. }else if(pict_type==FF_I_TYPE){
  357. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  358. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  359. }
  360. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  361. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  362. if(qmax<qmin) qmax= qmin;
  363. *qmin_ret= qmin;
  364. *qmax_ret= qmax;
  365. }
  366. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  367. RateControlContext *rcc= &s->rc_context;
  368. int qmin, qmax;
  369. const int pict_type= rce->new_pict_type;
  370. const double buffer_size= s->avctx->rc_buffer_size;
  371. const double fps= 1/av_q2d(s->avctx->time_base);
  372. const double min_rate= s->avctx->rc_min_rate / fps;
  373. const double max_rate= s->avctx->rc_max_rate / fps;
  374. get_qminmax(&qmin, &qmax, s, pict_type);
  375. /* modulation */
  376. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
  377. q*= s->avctx->rc_qmod_amp;
  378. //printf("q:%f\n", q);
  379. /* buffer overflow/underflow protection */
  380. if(buffer_size){
  381. double expected_size= rcc->buffer_index;
  382. double q_limit;
  383. if(min_rate){
  384. double d= 2*(buffer_size - expected_size)/buffer_size;
  385. if(d>1.0) d=1.0;
  386. else if(d<0.0001) d=0.0001;
  387. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  388. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  389. if(q > q_limit){
  390. if(s->avctx->debug&FF_DEBUG_RC){
  391. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  392. }
  393. q= q_limit;
  394. }
  395. }
  396. if(max_rate){
  397. double d= 2*expected_size/buffer_size;
  398. if(d>1.0) d=1.0;
  399. else if(d<0.0001) d=0.0001;
  400. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  401. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  402. if(q < q_limit){
  403. if(s->avctx->debug&FF_DEBUG_RC){
  404. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  405. }
  406. q= q_limit;
  407. }
  408. }
  409. }
  410. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  411. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  412. if (q<qmin) q=qmin;
  413. else if(q>qmax) q=qmax;
  414. }else{
  415. double min2= log(qmin);
  416. double max2= log(qmax);
  417. q= log(q);
  418. q= (q - min2)/(max2-min2) - 0.5;
  419. q*= -4.0;
  420. q= 1.0/(1.0 + exp(q));
  421. q= q*(max2-min2) + min2;
  422. q= exp(q);
  423. }
  424. return q;
  425. }
  426. //----------------------------------
  427. // 1 Pass Code
  428. static double predict_size(Predictor *p, double q, double var)
  429. {
  430. return p->coeff*var / (q*p->count);
  431. }
  432. /*
  433. static double predict_qp(Predictor *p, double size, double var)
  434. {
  435. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  436. return p->coeff*var / (size*p->count);
  437. }
  438. */
  439. static void update_predictor(Predictor *p, double q, double var, double size)
  440. {
  441. double new_coeff= size*q / (var + 1);
  442. if(var<10) return;
  443. p->count*= p->decay;
  444. p->coeff*= p->decay;
  445. p->count++;
  446. p->coeff+= new_coeff;
  447. }
  448. static void adaptive_quantization(MpegEncContext *s, double q){
  449. int i;
  450. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  451. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  452. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  453. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  454. const float p_masking = s->avctx->p_masking;
  455. const float border_masking = s->avctx->border_masking;
  456. float bits_sum= 0.0;
  457. float cplx_sum= 0.0;
  458. float cplx_tab[s->mb_num];
  459. float bits_tab[s->mb_num];
  460. const int qmin= s->avctx->mb_lmin;
  461. const int qmax= s->avctx->mb_lmax;
  462. Picture * const pic= &s->current_picture;
  463. const int mb_width = s->mb_width;
  464. const int mb_height = s->mb_height;
  465. for(i=0; i<s->mb_num; i++){
  466. const int mb_xy= s->mb_index2xy[i];
  467. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  468. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  469. const int lumi= pic->mb_mean[mb_xy];
  470. float bits, cplx, factor;
  471. int mb_x = mb_xy % s->mb_stride;
  472. int mb_y = mb_xy / s->mb_stride;
  473. int mb_distance;
  474. float mb_factor = 0.0;
  475. #if 0
  476. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  477. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  478. #endif
  479. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  480. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  481. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  482. cplx= spat_cplx;
  483. factor= 1.0 + p_masking;
  484. }else{
  485. cplx= temp_cplx;
  486. factor= pow(temp_cplx, - temp_cplx_masking);
  487. }
  488. factor*=pow(spat_cplx, - spatial_cplx_masking);
  489. if(lumi>127)
  490. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  491. else
  492. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  493. if(mb_x < mb_width/5){
  494. mb_distance = mb_width/5 - mb_x;
  495. mb_factor = (float)mb_distance / (float)(mb_width/5);
  496. }else if(mb_x > 4*mb_width/5){
  497. mb_distance = mb_x - 4*mb_width/5;
  498. mb_factor = (float)mb_distance / (float)(mb_width/5);
  499. }
  500. if(mb_y < mb_height/5){
  501. mb_distance = mb_height/5 - mb_y;
  502. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  503. }else if(mb_y > 4*mb_height/5){
  504. mb_distance = mb_y - 4*mb_height/5;
  505. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  506. }
  507. factor*= 1.0 - border_masking*mb_factor;
  508. if(factor<0.00001) factor= 0.00001;
  509. bits= cplx*factor;
  510. cplx_sum+= cplx;
  511. bits_sum+= bits;
  512. cplx_tab[i]= cplx;
  513. bits_tab[i]= bits;
  514. }
  515. /* handle qmin/qmax clipping */
  516. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  517. float factor= bits_sum/cplx_sum;
  518. for(i=0; i<s->mb_num; i++){
  519. float newq= q*cplx_tab[i]/bits_tab[i];
  520. newq*= factor;
  521. if (newq > qmax){
  522. bits_sum -= bits_tab[i];
  523. cplx_sum -= cplx_tab[i]*q/qmax;
  524. }
  525. else if(newq < qmin){
  526. bits_sum -= bits_tab[i];
  527. cplx_sum -= cplx_tab[i]*q/qmin;
  528. }
  529. }
  530. if(bits_sum < 0.001) bits_sum= 0.001;
  531. if(cplx_sum < 0.001) cplx_sum= 0.001;
  532. }
  533. for(i=0; i<s->mb_num; i++){
  534. const int mb_xy= s->mb_index2xy[i];
  535. float newq= q*cplx_tab[i]/bits_tab[i];
  536. int intq;
  537. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  538. newq*= bits_sum/cplx_sum;
  539. }
  540. intq= (int)(newq + 0.5);
  541. if (intq > qmax) intq= qmax;
  542. else if(intq < qmin) intq= qmin;
  543. //if(i%s->mb_width==0) printf("\n");
  544. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  545. s->lambda_table[mb_xy]= intq;
  546. }
  547. }
  548. void ff_get_2pass_fcode(MpegEncContext *s){
  549. RateControlContext *rcc= &s->rc_context;
  550. int picture_number= s->picture_number;
  551. RateControlEntry *rce;
  552. rce= &rcc->entry[picture_number];
  553. s->f_code= rce->f_code;
  554. s->b_code= rce->b_code;
  555. }
  556. //FIXME rd or at least approx for dquant
  557. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  558. {
  559. float q;
  560. int qmin, qmax;
  561. float br_compensation;
  562. double diff;
  563. double short_term_q;
  564. double fps;
  565. int picture_number= s->picture_number;
  566. int64_t wanted_bits;
  567. RateControlContext *rcc= &s->rc_context;
  568. AVCodecContext *a= s->avctx;
  569. RateControlEntry local_rce, *rce;
  570. double bits;
  571. double rate_factor;
  572. int var;
  573. const int pict_type= s->pict_type;
  574. Picture * const pic= &s->current_picture;
  575. emms_c();
  576. #if CONFIG_LIBXVID
  577. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  578. return ff_xvid_rate_estimate_qscale(s, dry_run);
  579. #endif
  580. get_qminmax(&qmin, &qmax, s, pict_type);
  581. fps= 1/av_q2d(s->avctx->time_base);
  582. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  583. /* update predictors */
  584. if(picture_number>2 && !dry_run){
  585. const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  586. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  587. }
  588. if(s->flags&CODEC_FLAG_PASS2){
  589. assert(picture_number>=0);
  590. assert(picture_number<rcc->num_entries);
  591. rce= &rcc->entry[picture_number];
  592. wanted_bits= rce->expected_bits;
  593. }else{
  594. Picture *dts_pic;
  595. rce= &local_rce;
  596. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  597. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  598. if(s->pict_type == FF_B_TYPE || s->low_delay)
  599. dts_pic= s->current_picture_ptr;
  600. else
  601. dts_pic= s->last_picture_ptr;
  602. //if(dts_pic)
  603. // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
  604. if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
  605. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  606. else
  607. wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
  608. }
  609. diff= s->total_bits - wanted_bits;
  610. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  611. if(br_compensation<=0.0) br_compensation=0.001;
  612. var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  613. short_term_q = 0; /* avoid warning */
  614. if(s->flags&CODEC_FLAG_PASS2){
  615. if(pict_type!=FF_I_TYPE)
  616. assert(pict_type == rce->new_pict_type);
  617. q= rce->new_qscale / br_compensation;
  618. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  619. }else{
  620. rce->pict_type=
  621. rce->new_pict_type= pict_type;
  622. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  623. rce->mb_var_sum = pic-> mb_var_sum;
  624. rce->qscale = FF_QP2LAMBDA * 2;
  625. rce->f_code = s->f_code;
  626. rce->b_code = s->b_code;
  627. rce->misc_bits= 1;
  628. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  629. if(pict_type== FF_I_TYPE){
  630. rce->i_count = s->mb_num;
  631. rce->i_tex_bits= bits;
  632. rce->p_tex_bits= 0;
  633. rce->mv_bits= 0;
  634. }else{
  635. rce->i_count = 0; //FIXME we do know this approx
  636. rce->i_tex_bits= 0;
  637. rce->p_tex_bits= bits*0.9;
  638. rce->mv_bits= bits*0.1;
  639. }
  640. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  641. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  642. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  643. rcc->frame_count[pict_type] ++;
  644. bits= rce->i_tex_bits + rce->p_tex_bits;
  645. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  646. q= get_qscale(s, rce, rate_factor, picture_number);
  647. if (q < 0)
  648. return -1;
  649. assert(q>0.0);
  650. //printf("%f ", q);
  651. q= get_diff_limited_q(s, rce, q);
  652. //printf("%f ", q);
  653. assert(q>0.0);
  654. if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
  655. rcc->short_term_qsum*=a->qblur;
  656. rcc->short_term_qcount*=a->qblur;
  657. rcc->short_term_qsum+= q;
  658. rcc->short_term_qcount++;
  659. //printf("%f ", q);
  660. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  661. //printf("%f ", q);
  662. }
  663. assert(q>0.0);
  664. q= modify_qscale(s, rce, q, picture_number);
  665. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  666. assert(q>0.0);
  667. }
  668. if(s->avctx->debug&FF_DEBUG_RC){
  669. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  670. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  671. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  672. );
  673. }
  674. if (q<qmin) q=qmin;
  675. else if(q>qmax) q=qmax;
  676. if(s->adaptive_quant)
  677. adaptive_quantization(s, q);
  678. else
  679. q= (int)(q + 0.5);
  680. if(!dry_run){
  681. rcc->last_qscale= q;
  682. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  683. rcc->last_mb_var_sum= pic->mb_var_sum;
  684. }
  685. #if 0
  686. {
  687. static int mvsum=0, texsum=0;
  688. mvsum += s->mv_bits;
  689. texsum += s->i_tex_bits + s->p_tex_bits;
  690. printf("%d %d//\n\n", mvsum, texsum);
  691. }
  692. #endif
  693. return q;
  694. }
  695. //----------------------------------------------
  696. // 2-Pass code
  697. static int init_pass2(MpegEncContext *s)
  698. {
  699. RateControlContext *rcc= &s->rc_context;
  700. AVCodecContext *a= s->avctx;
  701. int i, toobig;
  702. double fps= 1/av_q2d(s->avctx->time_base);
  703. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  704. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  705. uint64_t all_const_bits;
  706. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  707. double rate_factor=0;
  708. double step;
  709. //int last_i_frame=-10000000;
  710. const int filter_size= (int)(a->qblur*4) | 1;
  711. double expected_bits;
  712. double *qscale, *blurred_qscale, qscale_sum;
  713. /* find complexity & const_bits & decide the pict_types */
  714. for(i=0; i<rcc->num_entries; i++){
  715. RateControlEntry *rce= &rcc->entry[i];
  716. rce->new_pict_type= rce->pict_type;
  717. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  718. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  719. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  720. rcc->frame_count[rce->pict_type] ++;
  721. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  722. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  723. }
  724. all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
  725. if(all_available_bits < all_const_bits){
  726. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  727. return -1;
  728. }
  729. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  730. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  731. toobig = 0;
  732. for(step=256*256; step>0.0000001; step*=0.5){
  733. expected_bits=0;
  734. rate_factor+= step;
  735. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  736. /* find qscale */
  737. for(i=0; i<rcc->num_entries; i++){
  738. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  739. }
  740. assert(filter_size%2==1);
  741. /* fixed I/B QP relative to P mode */
  742. for(i=rcc->num_entries-1; i>=0; i--){
  743. RateControlEntry *rce= &rcc->entry[i];
  744. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  745. }
  746. /* smooth curve */
  747. for(i=0; i<rcc->num_entries; i++){
  748. RateControlEntry *rce= &rcc->entry[i];
  749. const int pict_type= rce->new_pict_type;
  750. int j;
  751. double q=0.0, sum=0.0;
  752. for(j=0; j<filter_size; j++){
  753. int index= i+j-filter_size/2;
  754. double d= index-i;
  755. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  756. if(index < 0 || index >= rcc->num_entries) continue;
  757. if(pict_type != rcc->entry[index].new_pict_type) continue;
  758. q+= qscale[index] * coeff;
  759. sum+= coeff;
  760. }
  761. blurred_qscale[i]= q/sum;
  762. }
  763. /* find expected bits */
  764. for(i=0; i<rcc->num_entries; i++){
  765. RateControlEntry *rce= &rcc->entry[i];
  766. double bits;
  767. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  768. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  769. //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
  770. bits += 8*ff_vbv_update(s, bits);
  771. rce->expected_bits= expected_bits;
  772. expected_bits += bits;
  773. }
  774. /*
  775. av_log(s->avctx, AV_LOG_INFO,
  776. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  777. expected_bits, (int)all_available_bits, rate_factor);
  778. */
  779. if(expected_bits > all_available_bits) {
  780. rate_factor-= step;
  781. ++toobig;
  782. }
  783. }
  784. av_free(qscale);
  785. av_free(blurred_qscale);
  786. /* check bitrate calculations and print info */
  787. qscale_sum = 0.0;
  788. for(i=0; i<rcc->num_entries; i++){
  789. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  790. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  791. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  792. }
  793. assert(toobig <= 40);
  794. av_log(s->avctx, AV_LOG_DEBUG,
  795. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  796. s->bit_rate,
  797. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  798. av_log(s->avctx, AV_LOG_DEBUG,
  799. "[lavc rc] estimated target average qp: %.3f\n",
  800. (float)qscale_sum / rcc->num_entries);
  801. if (toobig == 0) {
  802. av_log(s->avctx, AV_LOG_INFO,
  803. "[lavc rc] Using all of requested bitrate is not "
  804. "necessary for this video with these parameters.\n");
  805. } else if (toobig == 40) {
  806. av_log(s->avctx, AV_LOG_ERROR,
  807. "[lavc rc] Error: bitrate too low for this video "
  808. "with these parameters.\n");
  809. return -1;
  810. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  811. av_log(s->avctx, AV_LOG_ERROR,
  812. "[lavc rc] Error: 2pass curve failed to converge\n");
  813. return -1;
  814. }
  815. return 0;
  816. }