You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

805 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudio.c
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "put_bits.h"
  27. #undef CONFIG_MPEGAUDIO_HP
  28. #define CONFIG_MPEGAUDIO_HP 0
  29. #include "mpegaudio.h"
  30. /* currently, cannot change these constants (need to modify
  31. quantization stage) */
  32. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  33. #define SAMPLES_BUF_SIZE 4096
  34. typedef struct MpegAudioContext {
  35. PutBitContext pb;
  36. int nb_channels;
  37. int freq, bit_rate;
  38. int lsf; /* 1 if mpeg2 low bitrate selected */
  39. int bitrate_index; /* bit rate */
  40. int freq_index;
  41. int frame_size; /* frame size, in bits, without padding */
  42. int64_t nb_samples; /* total number of samples encoded */
  43. /* padding computation */
  44. int frame_frac, frame_frac_incr, do_padding;
  45. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  46. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  47. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  48. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  49. /* code to group 3 scale factors */
  50. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  51. int sblimit; /* number of used subbands */
  52. const unsigned char *alloc_table;
  53. } MpegAudioContext;
  54. /* define it to use floats in quantization (I don't like floats !) */
  55. #define USE_FLOATS
  56. #include "mpegaudiodata.h"
  57. #include "mpegaudiotab.h"
  58. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  59. {
  60. MpegAudioContext *s = avctx->priv_data;
  61. int freq = avctx->sample_rate;
  62. int bitrate = avctx->bit_rate;
  63. int channels = avctx->channels;
  64. int i, v, table;
  65. float a;
  66. if (channels <= 0 || channels > 2){
  67. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  68. return -1;
  69. }
  70. bitrate = bitrate / 1000;
  71. s->nb_channels = channels;
  72. s->freq = freq;
  73. s->bit_rate = bitrate * 1000;
  74. avctx->frame_size = MPA_FRAME_SIZE;
  75. /* encoding freq */
  76. s->lsf = 0;
  77. for(i=0;i<3;i++) {
  78. if (ff_mpa_freq_tab[i] == freq)
  79. break;
  80. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  81. s->lsf = 1;
  82. break;
  83. }
  84. }
  85. if (i == 3){
  86. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  87. return -1;
  88. }
  89. s->freq_index = i;
  90. /* encoding bitrate & frequency */
  91. for(i=0;i<15;i++) {
  92. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  93. break;
  94. }
  95. if (i == 15){
  96. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  97. return -1;
  98. }
  99. s->bitrate_index = i;
  100. /* compute total header size & pad bit */
  101. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  102. s->frame_size = ((int)a) * 8;
  103. /* frame fractional size to compute padding */
  104. s->frame_frac = 0;
  105. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  106. /* select the right allocation table */
  107. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  108. /* number of used subbands */
  109. s->sblimit = ff_mpa_sblimit_table[table];
  110. s->alloc_table = ff_mpa_alloc_tables[table];
  111. dprintf(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  112. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  113. for(i=0;i<s->nb_channels;i++)
  114. s->samples_offset[i] = 0;
  115. for(i=0;i<257;i++) {
  116. int v;
  117. v = ff_mpa_enwindow[i];
  118. #if WFRAC_BITS != 16
  119. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  120. #endif
  121. filter_bank[i] = v;
  122. if ((i & 63) != 0)
  123. v = -v;
  124. if (i != 0)
  125. filter_bank[512 - i] = v;
  126. }
  127. for(i=0;i<64;i++) {
  128. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  129. if (v <= 0)
  130. v = 1;
  131. scale_factor_table[i] = v;
  132. #ifdef USE_FLOATS
  133. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  134. #else
  135. #define P 15
  136. scale_factor_shift[i] = 21 - P - (i / 3);
  137. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  138. #endif
  139. }
  140. for(i=0;i<128;i++) {
  141. v = i - 64;
  142. if (v <= -3)
  143. v = 0;
  144. else if (v < 0)
  145. v = 1;
  146. else if (v == 0)
  147. v = 2;
  148. else if (v < 3)
  149. v = 3;
  150. else
  151. v = 4;
  152. scale_diff_table[i] = v;
  153. }
  154. for(i=0;i<17;i++) {
  155. v = ff_mpa_quant_bits[i];
  156. if (v < 0)
  157. v = -v;
  158. else
  159. v = v * 3;
  160. total_quant_bits[i] = 12 * v;
  161. }
  162. avctx->coded_frame= avcodec_alloc_frame();
  163. avctx->coded_frame->key_frame= 1;
  164. return 0;
  165. }
  166. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  167. static void idct32(int *out, int *tab)
  168. {
  169. int i, j;
  170. int *t, *t1, xr;
  171. const int *xp = costab32;
  172. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  173. t = tab + 30;
  174. t1 = tab + 2;
  175. do {
  176. t[0] += t[-4];
  177. t[1] += t[1 - 4];
  178. t -= 4;
  179. } while (t != t1);
  180. t = tab + 28;
  181. t1 = tab + 4;
  182. do {
  183. t[0] += t[-8];
  184. t[1] += t[1-8];
  185. t[2] += t[2-8];
  186. t[3] += t[3-8];
  187. t -= 8;
  188. } while (t != t1);
  189. t = tab;
  190. t1 = tab + 32;
  191. do {
  192. t[ 3] = -t[ 3];
  193. t[ 6] = -t[ 6];
  194. t[11] = -t[11];
  195. t[12] = -t[12];
  196. t[13] = -t[13];
  197. t[15] = -t[15];
  198. t += 16;
  199. } while (t != t1);
  200. t = tab;
  201. t1 = tab + 8;
  202. do {
  203. int x1, x2, x3, x4;
  204. x3 = MUL(t[16], FIX(SQRT2*0.5));
  205. x4 = t[0] - x3;
  206. x3 = t[0] + x3;
  207. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  208. x1 = MUL((t[8] - x2), xp[0]);
  209. x2 = MUL((t[8] + x2), xp[1]);
  210. t[ 0] = x3 + x1;
  211. t[ 8] = x4 - x2;
  212. t[16] = x4 + x2;
  213. t[24] = x3 - x1;
  214. t++;
  215. } while (t != t1);
  216. xp += 2;
  217. t = tab;
  218. t1 = tab + 4;
  219. do {
  220. xr = MUL(t[28],xp[0]);
  221. t[28] = (t[0] - xr);
  222. t[0] = (t[0] + xr);
  223. xr = MUL(t[4],xp[1]);
  224. t[ 4] = (t[24] - xr);
  225. t[24] = (t[24] + xr);
  226. xr = MUL(t[20],xp[2]);
  227. t[20] = (t[8] - xr);
  228. t[ 8] = (t[8] + xr);
  229. xr = MUL(t[12],xp[3]);
  230. t[12] = (t[16] - xr);
  231. t[16] = (t[16] + xr);
  232. t++;
  233. } while (t != t1);
  234. xp += 4;
  235. for (i = 0; i < 4; i++) {
  236. xr = MUL(tab[30-i*4],xp[0]);
  237. tab[30-i*4] = (tab[i*4] - xr);
  238. tab[ i*4] = (tab[i*4] + xr);
  239. xr = MUL(tab[ 2+i*4],xp[1]);
  240. tab[ 2+i*4] = (tab[28-i*4] - xr);
  241. tab[28-i*4] = (tab[28-i*4] + xr);
  242. xr = MUL(tab[31-i*4],xp[0]);
  243. tab[31-i*4] = (tab[1+i*4] - xr);
  244. tab[ 1+i*4] = (tab[1+i*4] + xr);
  245. xr = MUL(tab[ 3+i*4],xp[1]);
  246. tab[ 3+i*4] = (tab[29-i*4] - xr);
  247. tab[29-i*4] = (tab[29-i*4] + xr);
  248. xp += 2;
  249. }
  250. t = tab + 30;
  251. t1 = tab + 1;
  252. do {
  253. xr = MUL(t1[0], *xp);
  254. t1[0] = (t[0] - xr);
  255. t[0] = (t[0] + xr);
  256. t -= 2;
  257. t1 += 2;
  258. xp++;
  259. } while (t >= tab);
  260. for(i=0;i<32;i++) {
  261. out[i] = tab[bitinv32[i]];
  262. }
  263. }
  264. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  265. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  266. {
  267. short *p, *q;
  268. int sum, offset, i, j;
  269. int tmp[64];
  270. int tmp1[32];
  271. int *out;
  272. // print_pow1(samples, 1152);
  273. offset = s->samples_offset[ch];
  274. out = &s->sb_samples[ch][0][0][0];
  275. for(j=0;j<36;j++) {
  276. /* 32 samples at once */
  277. for(i=0;i<32;i++) {
  278. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  279. samples += incr;
  280. }
  281. /* filter */
  282. p = s->samples_buf[ch] + offset;
  283. q = filter_bank;
  284. /* maxsum = 23169 */
  285. for(i=0;i<64;i++) {
  286. sum = p[0*64] * q[0*64];
  287. sum += p[1*64] * q[1*64];
  288. sum += p[2*64] * q[2*64];
  289. sum += p[3*64] * q[3*64];
  290. sum += p[4*64] * q[4*64];
  291. sum += p[5*64] * q[5*64];
  292. sum += p[6*64] * q[6*64];
  293. sum += p[7*64] * q[7*64];
  294. tmp[i] = sum;
  295. p++;
  296. q++;
  297. }
  298. tmp1[0] = tmp[16] >> WSHIFT;
  299. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  300. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  301. idct32(out, tmp1);
  302. /* advance of 32 samples */
  303. offset -= 32;
  304. out += 32;
  305. /* handle the wrap around */
  306. if (offset < 0) {
  307. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  308. s->samples_buf[ch], (512 - 32) * 2);
  309. offset = SAMPLES_BUF_SIZE - 512;
  310. }
  311. }
  312. s->samples_offset[ch] = offset;
  313. // print_pow(s->sb_samples, 1152);
  314. }
  315. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  316. unsigned char scale_factors[SBLIMIT][3],
  317. int sb_samples[3][12][SBLIMIT],
  318. int sblimit)
  319. {
  320. int *p, vmax, v, n, i, j, k, code;
  321. int index, d1, d2;
  322. unsigned char *sf = &scale_factors[0][0];
  323. for(j=0;j<sblimit;j++) {
  324. for(i=0;i<3;i++) {
  325. /* find the max absolute value */
  326. p = &sb_samples[i][0][j];
  327. vmax = abs(*p);
  328. for(k=1;k<12;k++) {
  329. p += SBLIMIT;
  330. v = abs(*p);
  331. if (v > vmax)
  332. vmax = v;
  333. }
  334. /* compute the scale factor index using log 2 computations */
  335. if (vmax > 1) {
  336. n = av_log2(vmax);
  337. /* n is the position of the MSB of vmax. now
  338. use at most 2 compares to find the index */
  339. index = (21 - n) * 3 - 3;
  340. if (index >= 0) {
  341. while (vmax <= scale_factor_table[index+1])
  342. index++;
  343. } else {
  344. index = 0; /* very unlikely case of overflow */
  345. }
  346. } else {
  347. index = 62; /* value 63 is not allowed */
  348. }
  349. #if 0
  350. printf("%2d:%d in=%x %x %d\n",
  351. j, i, vmax, scale_factor_table[index], index);
  352. #endif
  353. /* store the scale factor */
  354. assert(index >=0 && index <= 63);
  355. sf[i] = index;
  356. }
  357. /* compute the transmission factor : look if the scale factors
  358. are close enough to each other */
  359. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  360. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  361. /* handle the 25 cases */
  362. switch(d1 * 5 + d2) {
  363. case 0*5+0:
  364. case 0*5+4:
  365. case 3*5+4:
  366. case 4*5+0:
  367. case 4*5+4:
  368. code = 0;
  369. break;
  370. case 0*5+1:
  371. case 0*5+2:
  372. case 4*5+1:
  373. case 4*5+2:
  374. code = 3;
  375. sf[2] = sf[1];
  376. break;
  377. case 0*5+3:
  378. case 4*5+3:
  379. code = 3;
  380. sf[1] = sf[2];
  381. break;
  382. case 1*5+0:
  383. case 1*5+4:
  384. case 2*5+4:
  385. code = 1;
  386. sf[1] = sf[0];
  387. break;
  388. case 1*5+1:
  389. case 1*5+2:
  390. case 2*5+0:
  391. case 2*5+1:
  392. case 2*5+2:
  393. code = 2;
  394. sf[1] = sf[2] = sf[0];
  395. break;
  396. case 2*5+3:
  397. case 3*5+3:
  398. code = 2;
  399. sf[0] = sf[1] = sf[2];
  400. break;
  401. case 3*5+0:
  402. case 3*5+1:
  403. case 3*5+2:
  404. code = 2;
  405. sf[0] = sf[2] = sf[1];
  406. break;
  407. case 1*5+3:
  408. code = 2;
  409. if (sf[0] > sf[2])
  410. sf[0] = sf[2];
  411. sf[1] = sf[2] = sf[0];
  412. break;
  413. default:
  414. assert(0); //cannot happen
  415. code = 0; /* kill warning */
  416. }
  417. #if 0
  418. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  419. sf[0], sf[1], sf[2], d1, d2, code);
  420. #endif
  421. scale_code[j] = code;
  422. sf += 3;
  423. }
  424. }
  425. /* The most important function : psycho acoustic module. In this
  426. encoder there is basically none, so this is the worst you can do,
  427. but also this is the simpler. */
  428. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  429. {
  430. int i;
  431. for(i=0;i<s->sblimit;i++) {
  432. smr[i] = (int)(fixed_smr[i] * 10);
  433. }
  434. }
  435. #define SB_NOTALLOCATED 0
  436. #define SB_ALLOCATED 1
  437. #define SB_NOMORE 2
  438. /* Try to maximize the smr while using a number of bits inferior to
  439. the frame size. I tried to make the code simpler, faster and
  440. smaller than other encoders :-) */
  441. static void compute_bit_allocation(MpegAudioContext *s,
  442. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  443. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  444. int *padding)
  445. {
  446. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  447. int incr;
  448. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  449. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  450. const unsigned char *alloc;
  451. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  452. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  453. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  454. /* compute frame size and padding */
  455. max_frame_size = s->frame_size;
  456. s->frame_frac += s->frame_frac_incr;
  457. if (s->frame_frac >= 65536) {
  458. s->frame_frac -= 65536;
  459. s->do_padding = 1;
  460. max_frame_size += 8;
  461. } else {
  462. s->do_padding = 0;
  463. }
  464. /* compute the header + bit alloc size */
  465. current_frame_size = 32;
  466. alloc = s->alloc_table;
  467. for(i=0;i<s->sblimit;i++) {
  468. incr = alloc[0];
  469. current_frame_size += incr * s->nb_channels;
  470. alloc += 1 << incr;
  471. }
  472. for(;;) {
  473. /* look for the subband with the largest signal to mask ratio */
  474. max_sb = -1;
  475. max_ch = -1;
  476. max_smr = INT_MIN;
  477. for(ch=0;ch<s->nb_channels;ch++) {
  478. for(i=0;i<s->sblimit;i++) {
  479. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  480. max_smr = smr[ch][i];
  481. max_sb = i;
  482. max_ch = ch;
  483. }
  484. }
  485. }
  486. #if 0
  487. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  488. current_frame_size, max_frame_size, max_sb,
  489. bit_alloc[max_sb]);
  490. #endif
  491. if (max_sb < 0)
  492. break;
  493. /* find alloc table entry (XXX: not optimal, should use
  494. pointer table) */
  495. alloc = s->alloc_table;
  496. for(i=0;i<max_sb;i++) {
  497. alloc += 1 << alloc[0];
  498. }
  499. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  500. /* nothing was coded for this band: add the necessary bits */
  501. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  502. incr += total_quant_bits[alloc[1]];
  503. } else {
  504. /* increments bit allocation */
  505. b = bit_alloc[max_ch][max_sb];
  506. incr = total_quant_bits[alloc[b + 1]] -
  507. total_quant_bits[alloc[b]];
  508. }
  509. if (current_frame_size + incr <= max_frame_size) {
  510. /* can increase size */
  511. b = ++bit_alloc[max_ch][max_sb];
  512. current_frame_size += incr;
  513. /* decrease smr by the resolution we added */
  514. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  515. /* max allocation size reached ? */
  516. if (b == ((1 << alloc[0]) - 1))
  517. subband_status[max_ch][max_sb] = SB_NOMORE;
  518. else
  519. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  520. } else {
  521. /* cannot increase the size of this subband */
  522. subband_status[max_ch][max_sb] = SB_NOMORE;
  523. }
  524. }
  525. *padding = max_frame_size - current_frame_size;
  526. assert(*padding >= 0);
  527. #if 0
  528. for(i=0;i<s->sblimit;i++) {
  529. printf("%d ", bit_alloc[i]);
  530. }
  531. printf("\n");
  532. #endif
  533. }
  534. /*
  535. * Output the mpeg audio layer 2 frame. Note how the code is small
  536. * compared to other encoders :-)
  537. */
  538. static void encode_frame(MpegAudioContext *s,
  539. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  540. int padding)
  541. {
  542. int i, j, k, l, bit_alloc_bits, b, ch;
  543. unsigned char *sf;
  544. int q[3];
  545. PutBitContext *p = &s->pb;
  546. /* header */
  547. put_bits(p, 12, 0xfff);
  548. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  549. put_bits(p, 2, 4-2); /* layer 2 */
  550. put_bits(p, 1, 1); /* no error protection */
  551. put_bits(p, 4, s->bitrate_index);
  552. put_bits(p, 2, s->freq_index);
  553. put_bits(p, 1, s->do_padding); /* use padding */
  554. put_bits(p, 1, 0); /* private_bit */
  555. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  556. put_bits(p, 2, 0); /* mode_ext */
  557. put_bits(p, 1, 0); /* no copyright */
  558. put_bits(p, 1, 1); /* original */
  559. put_bits(p, 2, 0); /* no emphasis */
  560. /* bit allocation */
  561. j = 0;
  562. for(i=0;i<s->sblimit;i++) {
  563. bit_alloc_bits = s->alloc_table[j];
  564. for(ch=0;ch<s->nb_channels;ch++) {
  565. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  566. }
  567. j += 1 << bit_alloc_bits;
  568. }
  569. /* scale codes */
  570. for(i=0;i<s->sblimit;i++) {
  571. for(ch=0;ch<s->nb_channels;ch++) {
  572. if (bit_alloc[ch][i])
  573. put_bits(p, 2, s->scale_code[ch][i]);
  574. }
  575. }
  576. /* scale factors */
  577. for(i=0;i<s->sblimit;i++) {
  578. for(ch=0;ch<s->nb_channels;ch++) {
  579. if (bit_alloc[ch][i]) {
  580. sf = &s->scale_factors[ch][i][0];
  581. switch(s->scale_code[ch][i]) {
  582. case 0:
  583. put_bits(p, 6, sf[0]);
  584. put_bits(p, 6, sf[1]);
  585. put_bits(p, 6, sf[2]);
  586. break;
  587. case 3:
  588. case 1:
  589. put_bits(p, 6, sf[0]);
  590. put_bits(p, 6, sf[2]);
  591. break;
  592. case 2:
  593. put_bits(p, 6, sf[0]);
  594. break;
  595. }
  596. }
  597. }
  598. }
  599. /* quantization & write sub band samples */
  600. for(k=0;k<3;k++) {
  601. for(l=0;l<12;l+=3) {
  602. j = 0;
  603. for(i=0;i<s->sblimit;i++) {
  604. bit_alloc_bits = s->alloc_table[j];
  605. for(ch=0;ch<s->nb_channels;ch++) {
  606. b = bit_alloc[ch][i];
  607. if (b) {
  608. int qindex, steps, m, sample, bits;
  609. /* we encode 3 sub band samples of the same sub band at a time */
  610. qindex = s->alloc_table[j+b];
  611. steps = ff_mpa_quant_steps[qindex];
  612. for(m=0;m<3;m++) {
  613. sample = s->sb_samples[ch][k][l + m][i];
  614. /* divide by scale factor */
  615. #ifdef USE_FLOATS
  616. {
  617. float a;
  618. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  619. q[m] = (int)((a + 1.0) * steps * 0.5);
  620. }
  621. #else
  622. {
  623. int q1, e, shift, mult;
  624. e = s->scale_factors[ch][i][k];
  625. shift = scale_factor_shift[e];
  626. mult = scale_factor_mult[e];
  627. /* normalize to P bits */
  628. if (shift < 0)
  629. q1 = sample << (-shift);
  630. else
  631. q1 = sample >> shift;
  632. q1 = (q1 * mult) >> P;
  633. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  634. }
  635. #endif
  636. if (q[m] >= steps)
  637. q[m] = steps - 1;
  638. assert(q[m] >= 0 && q[m] < steps);
  639. }
  640. bits = ff_mpa_quant_bits[qindex];
  641. if (bits < 0) {
  642. /* group the 3 values to save bits */
  643. put_bits(p, -bits,
  644. q[0] + steps * (q[1] + steps * q[2]));
  645. #if 0
  646. printf("%d: gr1 %d\n",
  647. i, q[0] + steps * (q[1] + steps * q[2]));
  648. #endif
  649. } else {
  650. #if 0
  651. printf("%d: gr3 %d %d %d\n",
  652. i, q[0], q[1], q[2]);
  653. #endif
  654. put_bits(p, bits, q[0]);
  655. put_bits(p, bits, q[1]);
  656. put_bits(p, bits, q[2]);
  657. }
  658. }
  659. }
  660. /* next subband in alloc table */
  661. j += 1 << bit_alloc_bits;
  662. }
  663. }
  664. }
  665. /* padding */
  666. for(i=0;i<padding;i++)
  667. put_bits(p, 1, 0);
  668. /* flush */
  669. flush_put_bits(p);
  670. }
  671. static int MPA_encode_frame(AVCodecContext *avctx,
  672. unsigned char *frame, int buf_size, void *data)
  673. {
  674. MpegAudioContext *s = avctx->priv_data;
  675. short *samples = data;
  676. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  677. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  678. int padding, i;
  679. for(i=0;i<s->nb_channels;i++) {
  680. filter(s, i, samples + i, s->nb_channels);
  681. }
  682. for(i=0;i<s->nb_channels;i++) {
  683. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  684. s->sb_samples[i], s->sblimit);
  685. }
  686. for(i=0;i<s->nb_channels;i++) {
  687. psycho_acoustic_model(s, smr[i]);
  688. }
  689. compute_bit_allocation(s, smr, bit_alloc, &padding);
  690. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  691. encode_frame(s, bit_alloc, padding);
  692. s->nb_samples += MPA_FRAME_SIZE;
  693. return put_bits_ptr(&s->pb) - s->pb.buf;
  694. }
  695. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  696. {
  697. av_freep(&avctx->coded_frame);
  698. return 0;
  699. }
  700. AVCodec mp2_encoder = {
  701. "mp2",
  702. CODEC_TYPE_AUDIO,
  703. CODEC_ID_MP2,
  704. sizeof(MpegAudioContext),
  705. MPA_encode_init,
  706. MPA_encode_frame,
  707. MPA_encode_close,
  708. NULL,
  709. .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  710. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  711. };
  712. #undef FIX