You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2563 lines
77KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  39. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  40. /****************/
  41. #define HEADER_SIZE 4
  42. #include "mpegaudiodata.h"
  43. #include "mpegaudiodectab.h"
  44. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  45. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  46. /* vlc structure for decoding layer 3 huffman tables */
  47. static VLC huff_vlc[16];
  48. static VLC_TYPE huff_vlc_tables[
  49. 0+128+128+128+130+128+154+166+
  50. 142+204+190+170+542+460+662+414
  51. ][2];
  52. static const int huff_vlc_tables_sizes[16] = {
  53. 0, 128, 128, 128, 130, 128, 154, 166,
  54. 142, 204, 190, 170, 542, 460, 662, 414
  55. };
  56. static VLC huff_quad_vlc[2];
  57. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  58. static const int huff_quad_vlc_tables_sizes[2] = {
  59. 128, 16
  60. };
  61. /* computed from band_size_long */
  62. static uint16_t band_index_long[9][23];
  63. #include "mpegaudio_tablegen.h"
  64. /* intensity stereo coef table */
  65. static int32_t is_table[2][16];
  66. static int32_t is_table_lsf[2][2][16];
  67. static int32_t csa_table[8][4];
  68. static float csa_table_float[8][4];
  69. static int32_t mdct_win[8][36];
  70. /* lower 2 bits: modulo 3, higher bits: shift */
  71. static uint16_t scale_factor_modshift[64];
  72. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  73. static int32_t scale_factor_mult[15][3];
  74. /* mult table for layer 2 group quantization */
  75. #define SCALE_GEN(v) \
  76. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  77. static const int32_t scale_factor_mult2[3][3] = {
  78. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  79. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  80. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  81. };
  82. DECLARE_ALIGNED_16(MPA_INT, ff_mpa_synth_window[512]);
  83. /**
  84. * Convert region offsets to region sizes and truncate
  85. * size to big_values.
  86. */
  87. void ff_region_offset2size(GranuleDef *g){
  88. int i, k, j=0;
  89. g->region_size[2] = (576 / 2);
  90. for(i=0;i<3;i++) {
  91. k = FFMIN(g->region_size[i], g->big_values);
  92. g->region_size[i] = k - j;
  93. j = k;
  94. }
  95. }
  96. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  97. if (g->block_type == 2)
  98. g->region_size[0] = (36 / 2);
  99. else {
  100. if (s->sample_rate_index <= 2)
  101. g->region_size[0] = (36 / 2);
  102. else if (s->sample_rate_index != 8)
  103. g->region_size[0] = (54 / 2);
  104. else
  105. g->region_size[0] = (108 / 2);
  106. }
  107. g->region_size[1] = (576 / 2);
  108. }
  109. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  110. int l;
  111. g->region_size[0] =
  112. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  113. /* should not overflow */
  114. l = FFMIN(ra1 + ra2 + 2, 22);
  115. g->region_size[1] =
  116. band_index_long[s->sample_rate_index][l] >> 1;
  117. }
  118. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  119. if (g->block_type == 2) {
  120. if (g->switch_point) {
  121. /* if switched mode, we handle the 36 first samples as
  122. long blocks. For 8000Hz, we handle the 48 first
  123. exponents as long blocks (XXX: check this!) */
  124. if (s->sample_rate_index <= 2)
  125. g->long_end = 8;
  126. else if (s->sample_rate_index != 8)
  127. g->long_end = 6;
  128. else
  129. g->long_end = 4; /* 8000 Hz */
  130. g->short_start = 2 + (s->sample_rate_index != 8);
  131. } else {
  132. g->long_end = 0;
  133. g->short_start = 0;
  134. }
  135. } else {
  136. g->short_start = 13;
  137. g->long_end = 22;
  138. }
  139. }
  140. /* layer 1 unscaling */
  141. /* n = number of bits of the mantissa minus 1 */
  142. static inline int l1_unscale(int n, int mant, int scale_factor)
  143. {
  144. int shift, mod;
  145. int64_t val;
  146. shift = scale_factor_modshift[scale_factor];
  147. mod = shift & 3;
  148. shift >>= 2;
  149. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  150. shift += n;
  151. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  152. return (int)((val + (1LL << (shift - 1))) >> shift);
  153. }
  154. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  155. {
  156. int shift, mod, val;
  157. shift = scale_factor_modshift[scale_factor];
  158. mod = shift & 3;
  159. shift >>= 2;
  160. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  161. /* NOTE: at this point, 0 <= shift <= 21 */
  162. if (shift > 0)
  163. val = (val + (1 << (shift - 1))) >> shift;
  164. return val;
  165. }
  166. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  167. static inline int l3_unscale(int value, int exponent)
  168. {
  169. unsigned int m;
  170. int e;
  171. e = table_4_3_exp [4*value + (exponent&3)];
  172. m = table_4_3_value[4*value + (exponent&3)];
  173. e -= (exponent >> 2);
  174. assert(e>=1);
  175. if (e > 31)
  176. return 0;
  177. m = (m + (1 << (e-1))) >> e;
  178. return m;
  179. }
  180. /* all integer n^(4/3) computation code */
  181. #define DEV_ORDER 13
  182. #define POW_FRAC_BITS 24
  183. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  184. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  185. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  186. static int dev_4_3_coefs[DEV_ORDER];
  187. #if 0 /* unused */
  188. static int pow_mult3[3] = {
  189. POW_FIX(1.0),
  190. POW_FIX(1.25992104989487316476),
  191. POW_FIX(1.58740105196819947474),
  192. };
  193. #endif
  194. static av_cold void int_pow_init(void)
  195. {
  196. int i, a;
  197. a = POW_FIX(1.0);
  198. for(i=0;i<DEV_ORDER;i++) {
  199. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  200. dev_4_3_coefs[i] = a;
  201. }
  202. }
  203. #if 0 /* unused, remove? */
  204. /* return the mantissa and the binary exponent */
  205. static int int_pow(int i, int *exp_ptr)
  206. {
  207. int e, er, eq, j;
  208. int a, a1;
  209. /* renormalize */
  210. a = i;
  211. e = POW_FRAC_BITS;
  212. while (a < (1 << (POW_FRAC_BITS - 1))) {
  213. a = a << 1;
  214. e--;
  215. }
  216. a -= (1 << POW_FRAC_BITS);
  217. a1 = 0;
  218. for(j = DEV_ORDER - 1; j >= 0; j--)
  219. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  220. a = (1 << POW_FRAC_BITS) + a1;
  221. /* exponent compute (exact) */
  222. e = e * 4;
  223. er = e % 3;
  224. eq = e / 3;
  225. a = POW_MULL(a, pow_mult3[er]);
  226. while (a >= 2 * POW_FRAC_ONE) {
  227. a = a >> 1;
  228. eq++;
  229. }
  230. /* convert to float */
  231. while (a < POW_FRAC_ONE) {
  232. a = a << 1;
  233. eq--;
  234. }
  235. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  236. #if POW_FRAC_BITS > FRAC_BITS
  237. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  238. /* correct overflow */
  239. if (a >= 2 * (1 << FRAC_BITS)) {
  240. a = a >> 1;
  241. eq++;
  242. }
  243. #endif
  244. *exp_ptr = eq;
  245. return a;
  246. }
  247. #endif
  248. static av_cold int decode_init(AVCodecContext * avctx)
  249. {
  250. MPADecodeContext *s = avctx->priv_data;
  251. static int init=0;
  252. int i, j, k;
  253. s->avctx = avctx;
  254. avctx->sample_fmt= OUT_FMT;
  255. s->error_recognition= avctx->error_recognition;
  256. if(avctx->antialias_algo != FF_AA_FLOAT)
  257. s->compute_antialias= compute_antialias_integer;
  258. else
  259. s->compute_antialias= compute_antialias_float;
  260. if (!init && !avctx->parse_only) {
  261. int offset;
  262. /* scale factors table for layer 1/2 */
  263. for(i=0;i<64;i++) {
  264. int shift, mod;
  265. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  266. shift = (i / 3);
  267. mod = i % 3;
  268. scale_factor_modshift[i] = mod | (shift << 2);
  269. }
  270. /* scale factor multiply for layer 1 */
  271. for(i=0;i<15;i++) {
  272. int n, norm;
  273. n = i + 2;
  274. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  275. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  276. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  277. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  278. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  279. i, norm,
  280. scale_factor_mult[i][0],
  281. scale_factor_mult[i][1],
  282. scale_factor_mult[i][2]);
  283. }
  284. ff_mpa_synth_init(ff_mpa_synth_window);
  285. /* huffman decode tables */
  286. offset = 0;
  287. for(i=1;i<16;i++) {
  288. const HuffTable *h = &mpa_huff_tables[i];
  289. int xsize, x, y;
  290. uint8_t tmp_bits [512];
  291. uint16_t tmp_codes[512];
  292. memset(tmp_bits , 0, sizeof(tmp_bits ));
  293. memset(tmp_codes, 0, sizeof(tmp_codes));
  294. xsize = h->xsize;
  295. j = 0;
  296. for(x=0;x<xsize;x++) {
  297. for(y=0;y<xsize;y++){
  298. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  299. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  300. }
  301. }
  302. /* XXX: fail test */
  303. huff_vlc[i].table = huff_vlc_tables+offset;
  304. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  305. init_vlc(&huff_vlc[i], 7, 512,
  306. tmp_bits, 1, 1, tmp_codes, 2, 2,
  307. INIT_VLC_USE_NEW_STATIC);
  308. offset += huff_vlc_tables_sizes[i];
  309. }
  310. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  311. offset = 0;
  312. for(i=0;i<2;i++) {
  313. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  314. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  315. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  316. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  317. INIT_VLC_USE_NEW_STATIC);
  318. offset += huff_quad_vlc_tables_sizes[i];
  319. }
  320. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  321. for(i=0;i<9;i++) {
  322. k = 0;
  323. for(j=0;j<22;j++) {
  324. band_index_long[i][j] = k;
  325. k += band_size_long[i][j];
  326. }
  327. band_index_long[i][22] = k;
  328. }
  329. /* compute n ^ (4/3) and store it in mantissa/exp format */
  330. int_pow_init();
  331. mpegaudio_tableinit();
  332. for(i=0;i<7;i++) {
  333. float f;
  334. int v;
  335. if (i != 6) {
  336. f = tan((double)i * M_PI / 12.0);
  337. v = FIXR(f / (1.0 + f));
  338. } else {
  339. v = FIXR(1.0);
  340. }
  341. is_table[0][i] = v;
  342. is_table[1][6 - i] = v;
  343. }
  344. /* invalid values */
  345. for(i=7;i<16;i++)
  346. is_table[0][i] = is_table[1][i] = 0.0;
  347. for(i=0;i<16;i++) {
  348. double f;
  349. int e, k;
  350. for(j=0;j<2;j++) {
  351. e = -(j + 1) * ((i + 1) >> 1);
  352. f = pow(2.0, e / 4.0);
  353. k = i & 1;
  354. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  355. is_table_lsf[j][k][i] = FIXR(1.0);
  356. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  357. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  358. }
  359. }
  360. for(i=0;i<8;i++) {
  361. float ci, cs, ca;
  362. ci = ci_table[i];
  363. cs = 1.0 / sqrt(1.0 + ci * ci);
  364. ca = cs * ci;
  365. csa_table[i][0] = FIXHR(cs/4);
  366. csa_table[i][1] = FIXHR(ca/4);
  367. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  368. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  369. csa_table_float[i][0] = cs;
  370. csa_table_float[i][1] = ca;
  371. csa_table_float[i][2] = ca + cs;
  372. csa_table_float[i][3] = ca - cs;
  373. }
  374. /* compute mdct windows */
  375. for(i=0;i<36;i++) {
  376. for(j=0; j<4; j++){
  377. double d;
  378. if(j==2 && i%3 != 1)
  379. continue;
  380. d= sin(M_PI * (i + 0.5) / 36.0);
  381. if(j==1){
  382. if (i>=30) d= 0;
  383. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  384. else if(i>=18) d= 1;
  385. }else if(j==3){
  386. if (i< 6) d= 0;
  387. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  388. else if(i< 18) d= 1;
  389. }
  390. //merge last stage of imdct into the window coefficients
  391. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  392. if(j==2)
  393. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  394. else
  395. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  396. }
  397. }
  398. /* NOTE: we do frequency inversion adter the MDCT by changing
  399. the sign of the right window coefs */
  400. for(j=0;j<4;j++) {
  401. for(i=0;i<36;i+=2) {
  402. mdct_win[j + 4][i] = mdct_win[j][i];
  403. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  404. }
  405. }
  406. init = 1;
  407. }
  408. if (avctx->codec_id == CODEC_ID_MP3ADU)
  409. s->adu_mode = 1;
  410. return 0;
  411. }
  412. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  413. /* cos(i*pi/64) */
  414. #define COS0_0 FIXHR(0.50060299823519630134/2)
  415. #define COS0_1 FIXHR(0.50547095989754365998/2)
  416. #define COS0_2 FIXHR(0.51544730992262454697/2)
  417. #define COS0_3 FIXHR(0.53104259108978417447/2)
  418. #define COS0_4 FIXHR(0.55310389603444452782/2)
  419. #define COS0_5 FIXHR(0.58293496820613387367/2)
  420. #define COS0_6 FIXHR(0.62250412303566481615/2)
  421. #define COS0_7 FIXHR(0.67480834145500574602/2)
  422. #define COS0_8 FIXHR(0.74453627100229844977/2)
  423. #define COS0_9 FIXHR(0.83934964541552703873/2)
  424. #define COS0_10 FIXHR(0.97256823786196069369/2)
  425. #define COS0_11 FIXHR(1.16943993343288495515/4)
  426. #define COS0_12 FIXHR(1.48416461631416627724/4)
  427. #define COS0_13 FIXHR(2.05778100995341155085/8)
  428. #define COS0_14 FIXHR(3.40760841846871878570/8)
  429. #define COS0_15 FIXHR(10.19000812354805681150/32)
  430. #define COS1_0 FIXHR(0.50241928618815570551/2)
  431. #define COS1_1 FIXHR(0.52249861493968888062/2)
  432. #define COS1_2 FIXHR(0.56694403481635770368/2)
  433. #define COS1_3 FIXHR(0.64682178335999012954/2)
  434. #define COS1_4 FIXHR(0.78815462345125022473/2)
  435. #define COS1_5 FIXHR(1.06067768599034747134/4)
  436. #define COS1_6 FIXHR(1.72244709823833392782/4)
  437. #define COS1_7 FIXHR(5.10114861868916385802/16)
  438. #define COS2_0 FIXHR(0.50979557910415916894/2)
  439. #define COS2_1 FIXHR(0.60134488693504528054/2)
  440. #define COS2_2 FIXHR(0.89997622313641570463/2)
  441. #define COS2_3 FIXHR(2.56291544774150617881/8)
  442. #define COS3_0 FIXHR(0.54119610014619698439/2)
  443. #define COS3_1 FIXHR(1.30656296487637652785/4)
  444. #define COS4_0 FIXHR(0.70710678118654752439/2)
  445. /* butterfly operator */
  446. #define BF(a, b, c, s)\
  447. {\
  448. tmp0 = tab[a] + tab[b];\
  449. tmp1 = tab[a] - tab[b];\
  450. tab[a] = tmp0;\
  451. tab[b] = MULH(tmp1<<(s), c);\
  452. }
  453. #define BF1(a, b, c, d)\
  454. {\
  455. BF(a, b, COS4_0, 1);\
  456. BF(c, d,-COS4_0, 1);\
  457. tab[c] += tab[d];\
  458. }
  459. #define BF2(a, b, c, d)\
  460. {\
  461. BF(a, b, COS4_0, 1);\
  462. BF(c, d,-COS4_0, 1);\
  463. tab[c] += tab[d];\
  464. tab[a] += tab[c];\
  465. tab[c] += tab[b];\
  466. tab[b] += tab[d];\
  467. }
  468. #define ADD(a, b) tab[a] += tab[b]
  469. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  470. static void dct32(int32_t *out, int32_t *tab)
  471. {
  472. int tmp0, tmp1;
  473. /* pass 1 */
  474. BF( 0, 31, COS0_0 , 1);
  475. BF(15, 16, COS0_15, 5);
  476. /* pass 2 */
  477. BF( 0, 15, COS1_0 , 1);
  478. BF(16, 31,-COS1_0 , 1);
  479. /* pass 1 */
  480. BF( 7, 24, COS0_7 , 1);
  481. BF( 8, 23, COS0_8 , 1);
  482. /* pass 2 */
  483. BF( 7, 8, COS1_7 , 4);
  484. BF(23, 24,-COS1_7 , 4);
  485. /* pass 3 */
  486. BF( 0, 7, COS2_0 , 1);
  487. BF( 8, 15,-COS2_0 , 1);
  488. BF(16, 23, COS2_0 , 1);
  489. BF(24, 31,-COS2_0 , 1);
  490. /* pass 1 */
  491. BF( 3, 28, COS0_3 , 1);
  492. BF(12, 19, COS0_12, 2);
  493. /* pass 2 */
  494. BF( 3, 12, COS1_3 , 1);
  495. BF(19, 28,-COS1_3 , 1);
  496. /* pass 1 */
  497. BF( 4, 27, COS0_4 , 1);
  498. BF(11, 20, COS0_11, 2);
  499. /* pass 2 */
  500. BF( 4, 11, COS1_4 , 1);
  501. BF(20, 27,-COS1_4 , 1);
  502. /* pass 3 */
  503. BF( 3, 4, COS2_3 , 3);
  504. BF(11, 12,-COS2_3 , 3);
  505. BF(19, 20, COS2_3 , 3);
  506. BF(27, 28,-COS2_3 , 3);
  507. /* pass 4 */
  508. BF( 0, 3, COS3_0 , 1);
  509. BF( 4, 7,-COS3_0 , 1);
  510. BF( 8, 11, COS3_0 , 1);
  511. BF(12, 15,-COS3_0 , 1);
  512. BF(16, 19, COS3_0 , 1);
  513. BF(20, 23,-COS3_0 , 1);
  514. BF(24, 27, COS3_0 , 1);
  515. BF(28, 31,-COS3_0 , 1);
  516. /* pass 1 */
  517. BF( 1, 30, COS0_1 , 1);
  518. BF(14, 17, COS0_14, 3);
  519. /* pass 2 */
  520. BF( 1, 14, COS1_1 , 1);
  521. BF(17, 30,-COS1_1 , 1);
  522. /* pass 1 */
  523. BF( 6, 25, COS0_6 , 1);
  524. BF( 9, 22, COS0_9 , 1);
  525. /* pass 2 */
  526. BF( 6, 9, COS1_6 , 2);
  527. BF(22, 25,-COS1_6 , 2);
  528. /* pass 3 */
  529. BF( 1, 6, COS2_1 , 1);
  530. BF( 9, 14,-COS2_1 , 1);
  531. BF(17, 22, COS2_1 , 1);
  532. BF(25, 30,-COS2_1 , 1);
  533. /* pass 1 */
  534. BF( 2, 29, COS0_2 , 1);
  535. BF(13, 18, COS0_13, 3);
  536. /* pass 2 */
  537. BF( 2, 13, COS1_2 , 1);
  538. BF(18, 29,-COS1_2 , 1);
  539. /* pass 1 */
  540. BF( 5, 26, COS0_5 , 1);
  541. BF(10, 21, COS0_10, 1);
  542. /* pass 2 */
  543. BF( 5, 10, COS1_5 , 2);
  544. BF(21, 26,-COS1_5 , 2);
  545. /* pass 3 */
  546. BF( 2, 5, COS2_2 , 1);
  547. BF(10, 13,-COS2_2 , 1);
  548. BF(18, 21, COS2_2 , 1);
  549. BF(26, 29,-COS2_2 , 1);
  550. /* pass 4 */
  551. BF( 1, 2, COS3_1 , 2);
  552. BF( 5, 6,-COS3_1 , 2);
  553. BF( 9, 10, COS3_1 , 2);
  554. BF(13, 14,-COS3_1 , 2);
  555. BF(17, 18, COS3_1 , 2);
  556. BF(21, 22,-COS3_1 , 2);
  557. BF(25, 26, COS3_1 , 2);
  558. BF(29, 30,-COS3_1 , 2);
  559. /* pass 5 */
  560. BF1( 0, 1, 2, 3);
  561. BF2( 4, 5, 6, 7);
  562. BF1( 8, 9, 10, 11);
  563. BF2(12, 13, 14, 15);
  564. BF1(16, 17, 18, 19);
  565. BF2(20, 21, 22, 23);
  566. BF1(24, 25, 26, 27);
  567. BF2(28, 29, 30, 31);
  568. /* pass 6 */
  569. ADD( 8, 12);
  570. ADD(12, 10);
  571. ADD(10, 14);
  572. ADD(14, 9);
  573. ADD( 9, 13);
  574. ADD(13, 11);
  575. ADD(11, 15);
  576. out[ 0] = tab[0];
  577. out[16] = tab[1];
  578. out[ 8] = tab[2];
  579. out[24] = tab[3];
  580. out[ 4] = tab[4];
  581. out[20] = tab[5];
  582. out[12] = tab[6];
  583. out[28] = tab[7];
  584. out[ 2] = tab[8];
  585. out[18] = tab[9];
  586. out[10] = tab[10];
  587. out[26] = tab[11];
  588. out[ 6] = tab[12];
  589. out[22] = tab[13];
  590. out[14] = tab[14];
  591. out[30] = tab[15];
  592. ADD(24, 28);
  593. ADD(28, 26);
  594. ADD(26, 30);
  595. ADD(30, 25);
  596. ADD(25, 29);
  597. ADD(29, 27);
  598. ADD(27, 31);
  599. out[ 1] = tab[16] + tab[24];
  600. out[17] = tab[17] + tab[25];
  601. out[ 9] = tab[18] + tab[26];
  602. out[25] = tab[19] + tab[27];
  603. out[ 5] = tab[20] + tab[28];
  604. out[21] = tab[21] + tab[29];
  605. out[13] = tab[22] + tab[30];
  606. out[29] = tab[23] + tab[31];
  607. out[ 3] = tab[24] + tab[20];
  608. out[19] = tab[25] + tab[21];
  609. out[11] = tab[26] + tab[22];
  610. out[27] = tab[27] + tab[23];
  611. out[ 7] = tab[28] + tab[18];
  612. out[23] = tab[29] + tab[19];
  613. out[15] = tab[30] + tab[17];
  614. out[31] = tab[31];
  615. }
  616. #if FRAC_BITS <= 15
  617. static inline int round_sample(int *sum)
  618. {
  619. int sum1;
  620. sum1 = (*sum) >> OUT_SHIFT;
  621. *sum &= (1<<OUT_SHIFT)-1;
  622. return av_clip(sum1, OUT_MIN, OUT_MAX);
  623. }
  624. /* signed 16x16 -> 32 multiply add accumulate */
  625. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  626. /* signed 16x16 -> 32 multiply */
  627. #define MULS(ra, rb) MUL16(ra, rb)
  628. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  629. #else
  630. static inline int round_sample(int64_t *sum)
  631. {
  632. int sum1;
  633. sum1 = (int)((*sum) >> OUT_SHIFT);
  634. *sum &= (1<<OUT_SHIFT)-1;
  635. return av_clip(sum1, OUT_MIN, OUT_MAX);
  636. }
  637. # define MULS(ra, rb) MUL64(ra, rb)
  638. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  639. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  640. #endif
  641. #define SUM8(op, sum, w, p) \
  642. { \
  643. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  644. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  645. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  646. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  647. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  648. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  649. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  650. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  651. }
  652. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  653. { \
  654. int tmp;\
  655. tmp = p[0 * 64];\
  656. op1(sum1, (w1)[0 * 64], tmp);\
  657. op2(sum2, (w2)[0 * 64], tmp);\
  658. tmp = p[1 * 64];\
  659. op1(sum1, (w1)[1 * 64], tmp);\
  660. op2(sum2, (w2)[1 * 64], tmp);\
  661. tmp = p[2 * 64];\
  662. op1(sum1, (w1)[2 * 64], tmp);\
  663. op2(sum2, (w2)[2 * 64], tmp);\
  664. tmp = p[3 * 64];\
  665. op1(sum1, (w1)[3 * 64], tmp);\
  666. op2(sum2, (w2)[3 * 64], tmp);\
  667. tmp = p[4 * 64];\
  668. op1(sum1, (w1)[4 * 64], tmp);\
  669. op2(sum2, (w2)[4 * 64], tmp);\
  670. tmp = p[5 * 64];\
  671. op1(sum1, (w1)[5 * 64], tmp);\
  672. op2(sum2, (w2)[5 * 64], tmp);\
  673. tmp = p[6 * 64];\
  674. op1(sum1, (w1)[6 * 64], tmp);\
  675. op2(sum2, (w2)[6 * 64], tmp);\
  676. tmp = p[7 * 64];\
  677. op1(sum1, (w1)[7 * 64], tmp);\
  678. op2(sum2, (w2)[7 * 64], tmp);\
  679. }
  680. void av_cold ff_mpa_synth_init(MPA_INT *window)
  681. {
  682. int i;
  683. /* max = 18760, max sum over all 16 coefs : 44736 */
  684. for(i=0;i<257;i++) {
  685. int v;
  686. v = ff_mpa_enwindow[i];
  687. #if WFRAC_BITS < 16
  688. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  689. #endif
  690. window[i] = v;
  691. if ((i & 63) != 0)
  692. v = -v;
  693. if (i != 0)
  694. window[512 - i] = v;
  695. }
  696. }
  697. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  698. 32 samples. */
  699. /* XXX: optimize by avoiding ring buffer usage */
  700. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  701. MPA_INT *window, int *dither_state,
  702. OUT_INT *samples, int incr,
  703. int32_t sb_samples[SBLIMIT])
  704. {
  705. register MPA_INT *synth_buf;
  706. register const MPA_INT *w, *w2, *p;
  707. int j, offset;
  708. OUT_INT *samples2;
  709. #if FRAC_BITS <= 15
  710. int32_t tmp[32];
  711. int sum, sum2;
  712. #else
  713. int64_t sum, sum2;
  714. #endif
  715. offset = *synth_buf_offset;
  716. synth_buf = synth_buf_ptr + offset;
  717. #if FRAC_BITS <= 15
  718. dct32(tmp, sb_samples);
  719. for(j=0;j<32;j++) {
  720. /* NOTE: can cause a loss in precision if very high amplitude
  721. sound */
  722. synth_buf[j] = av_clip_int16(tmp[j]);
  723. }
  724. #else
  725. dct32(synth_buf, sb_samples);
  726. #endif
  727. /* copy to avoid wrap */
  728. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  729. samples2 = samples + 31 * incr;
  730. w = window;
  731. w2 = window + 31;
  732. sum = *dither_state;
  733. p = synth_buf + 16;
  734. SUM8(MACS, sum, w, p);
  735. p = synth_buf + 48;
  736. SUM8(MLSS, sum, w + 32, p);
  737. *samples = round_sample(&sum);
  738. samples += incr;
  739. w++;
  740. /* we calculate two samples at the same time to avoid one memory
  741. access per two sample */
  742. for(j=1;j<16;j++) {
  743. sum2 = 0;
  744. p = synth_buf + 16 + j;
  745. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  746. p = synth_buf + 48 - j;
  747. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  748. *samples = round_sample(&sum);
  749. samples += incr;
  750. sum += sum2;
  751. *samples2 = round_sample(&sum);
  752. samples2 -= incr;
  753. w++;
  754. w2--;
  755. }
  756. p = synth_buf + 32;
  757. SUM8(MLSS, sum, w + 32, p);
  758. *samples = round_sample(&sum);
  759. *dither_state= sum;
  760. offset = (offset - 32) & 511;
  761. *synth_buf_offset = offset;
  762. }
  763. #define C3 FIXHR(0.86602540378443864676/2)
  764. /* 0.5 / cos(pi*(2*i+1)/36) */
  765. static const int icos36[9] = {
  766. FIXR(0.50190991877167369479),
  767. FIXR(0.51763809020504152469), //0
  768. FIXR(0.55168895948124587824),
  769. FIXR(0.61038729438072803416),
  770. FIXR(0.70710678118654752439), //1
  771. FIXR(0.87172339781054900991),
  772. FIXR(1.18310079157624925896),
  773. FIXR(1.93185165257813657349), //2
  774. FIXR(5.73685662283492756461),
  775. };
  776. /* 0.5 / cos(pi*(2*i+1)/36) */
  777. static const int icos36h[9] = {
  778. FIXHR(0.50190991877167369479/2),
  779. FIXHR(0.51763809020504152469/2), //0
  780. FIXHR(0.55168895948124587824/2),
  781. FIXHR(0.61038729438072803416/2),
  782. FIXHR(0.70710678118654752439/2), //1
  783. FIXHR(0.87172339781054900991/2),
  784. FIXHR(1.18310079157624925896/4),
  785. FIXHR(1.93185165257813657349/4), //2
  786. // FIXHR(5.73685662283492756461),
  787. };
  788. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  789. cases. */
  790. static void imdct12(int *out, int *in)
  791. {
  792. int in0, in1, in2, in3, in4, in5, t1, t2;
  793. in0= in[0*3];
  794. in1= in[1*3] + in[0*3];
  795. in2= in[2*3] + in[1*3];
  796. in3= in[3*3] + in[2*3];
  797. in4= in[4*3] + in[3*3];
  798. in5= in[5*3] + in[4*3];
  799. in5 += in3;
  800. in3 += in1;
  801. in2= MULH(2*in2, C3);
  802. in3= MULH(4*in3, C3);
  803. t1 = in0 - in4;
  804. t2 = MULH(2*(in1 - in5), icos36h[4]);
  805. out[ 7]=
  806. out[10]= t1 + t2;
  807. out[ 1]=
  808. out[ 4]= t1 - t2;
  809. in0 += in4>>1;
  810. in4 = in0 + in2;
  811. in5 += 2*in1;
  812. in1 = MULH(in5 + in3, icos36h[1]);
  813. out[ 8]=
  814. out[ 9]= in4 + in1;
  815. out[ 2]=
  816. out[ 3]= in4 - in1;
  817. in0 -= in2;
  818. in5 = MULH(2*(in5 - in3), icos36h[7]);
  819. out[ 0]=
  820. out[ 5]= in0 - in5;
  821. out[ 6]=
  822. out[11]= in0 + in5;
  823. }
  824. /* cos(pi*i/18) */
  825. #define C1 FIXHR(0.98480775301220805936/2)
  826. #define C2 FIXHR(0.93969262078590838405/2)
  827. #define C3 FIXHR(0.86602540378443864676/2)
  828. #define C4 FIXHR(0.76604444311897803520/2)
  829. #define C5 FIXHR(0.64278760968653932632/2)
  830. #define C6 FIXHR(0.5/2)
  831. #define C7 FIXHR(0.34202014332566873304/2)
  832. #define C8 FIXHR(0.17364817766693034885/2)
  833. /* using Lee like decomposition followed by hand coded 9 points DCT */
  834. static void imdct36(int *out, int *buf, int *in, int *win)
  835. {
  836. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  837. int tmp[18], *tmp1, *in1;
  838. for(i=17;i>=1;i--)
  839. in[i] += in[i-1];
  840. for(i=17;i>=3;i-=2)
  841. in[i] += in[i-2];
  842. for(j=0;j<2;j++) {
  843. tmp1 = tmp + j;
  844. in1 = in + j;
  845. #if 0
  846. //more accurate but slower
  847. int64_t t0, t1, t2, t3;
  848. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  849. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  850. t1 = in1[2*0] - in1[2*6];
  851. tmp1[ 6] = t1 - (t2>>1);
  852. tmp1[16] = t1 + t2;
  853. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  854. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  855. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  856. tmp1[10] = (t3 - t0 - t2) >> 32;
  857. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  858. tmp1[14] = (t3 + t2 - t1) >> 32;
  859. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  860. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  861. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  862. t0 = MUL64(2*in1[2*3], C3);
  863. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  864. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  865. tmp1[12] = (t2 + t1 - t0) >> 32;
  866. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  867. #else
  868. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  869. t3 = in1[2*0] + (in1[2*6]>>1);
  870. t1 = in1[2*0] - in1[2*6];
  871. tmp1[ 6] = t1 - (t2>>1);
  872. tmp1[16] = t1 + t2;
  873. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  874. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  875. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  876. tmp1[10] = t3 - t0 - t2;
  877. tmp1[ 2] = t3 + t0 + t1;
  878. tmp1[14] = t3 + t2 - t1;
  879. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  880. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  881. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  882. t0 = MULH(2*in1[2*3], C3);
  883. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  884. tmp1[ 0] = t2 + t3 + t0;
  885. tmp1[12] = t2 + t1 - t0;
  886. tmp1[ 8] = t3 - t1 - t0;
  887. #endif
  888. }
  889. i = 0;
  890. for(j=0;j<4;j++) {
  891. t0 = tmp[i];
  892. t1 = tmp[i + 2];
  893. s0 = t1 + t0;
  894. s2 = t1 - t0;
  895. t2 = tmp[i + 1];
  896. t3 = tmp[i + 3];
  897. s1 = MULH(2*(t3 + t2), icos36h[j]);
  898. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  899. t0 = s0 + s1;
  900. t1 = s0 - s1;
  901. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  902. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  903. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  904. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  905. t0 = s2 + s3;
  906. t1 = s2 - s3;
  907. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  908. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  909. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  910. buf[ + j] = MULH(t0, win[18 + j]);
  911. i += 4;
  912. }
  913. s0 = tmp[16];
  914. s1 = MULH(2*tmp[17], icos36h[4]);
  915. t0 = s0 + s1;
  916. t1 = s0 - s1;
  917. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  918. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  919. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  920. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  921. }
  922. /* return the number of decoded frames */
  923. static int mp_decode_layer1(MPADecodeContext *s)
  924. {
  925. int bound, i, v, n, ch, j, mant;
  926. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  927. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  928. if (s->mode == MPA_JSTEREO)
  929. bound = (s->mode_ext + 1) * 4;
  930. else
  931. bound = SBLIMIT;
  932. /* allocation bits */
  933. for(i=0;i<bound;i++) {
  934. for(ch=0;ch<s->nb_channels;ch++) {
  935. allocation[ch][i] = get_bits(&s->gb, 4);
  936. }
  937. }
  938. for(i=bound;i<SBLIMIT;i++) {
  939. allocation[0][i] = get_bits(&s->gb, 4);
  940. }
  941. /* scale factors */
  942. for(i=0;i<bound;i++) {
  943. for(ch=0;ch<s->nb_channels;ch++) {
  944. if (allocation[ch][i])
  945. scale_factors[ch][i] = get_bits(&s->gb, 6);
  946. }
  947. }
  948. for(i=bound;i<SBLIMIT;i++) {
  949. if (allocation[0][i]) {
  950. scale_factors[0][i] = get_bits(&s->gb, 6);
  951. scale_factors[1][i] = get_bits(&s->gb, 6);
  952. }
  953. }
  954. /* compute samples */
  955. for(j=0;j<12;j++) {
  956. for(i=0;i<bound;i++) {
  957. for(ch=0;ch<s->nb_channels;ch++) {
  958. n = allocation[ch][i];
  959. if (n) {
  960. mant = get_bits(&s->gb, n + 1);
  961. v = l1_unscale(n, mant, scale_factors[ch][i]);
  962. } else {
  963. v = 0;
  964. }
  965. s->sb_samples[ch][j][i] = v;
  966. }
  967. }
  968. for(i=bound;i<SBLIMIT;i++) {
  969. n = allocation[0][i];
  970. if (n) {
  971. mant = get_bits(&s->gb, n + 1);
  972. v = l1_unscale(n, mant, scale_factors[0][i]);
  973. s->sb_samples[0][j][i] = v;
  974. v = l1_unscale(n, mant, scale_factors[1][i]);
  975. s->sb_samples[1][j][i] = v;
  976. } else {
  977. s->sb_samples[0][j][i] = 0;
  978. s->sb_samples[1][j][i] = 0;
  979. }
  980. }
  981. }
  982. return 12;
  983. }
  984. static int mp_decode_layer2(MPADecodeContext *s)
  985. {
  986. int sblimit; /* number of used subbands */
  987. const unsigned char *alloc_table;
  988. int table, bit_alloc_bits, i, j, ch, bound, v;
  989. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  990. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  991. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  992. int scale, qindex, bits, steps, k, l, m, b;
  993. /* select decoding table */
  994. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  995. s->sample_rate, s->lsf);
  996. sblimit = ff_mpa_sblimit_table[table];
  997. alloc_table = ff_mpa_alloc_tables[table];
  998. if (s->mode == MPA_JSTEREO)
  999. bound = (s->mode_ext + 1) * 4;
  1000. else
  1001. bound = sblimit;
  1002. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1003. /* sanity check */
  1004. if( bound > sblimit ) bound = sblimit;
  1005. /* parse bit allocation */
  1006. j = 0;
  1007. for(i=0;i<bound;i++) {
  1008. bit_alloc_bits = alloc_table[j];
  1009. for(ch=0;ch<s->nb_channels;ch++) {
  1010. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1011. }
  1012. j += 1 << bit_alloc_bits;
  1013. }
  1014. for(i=bound;i<sblimit;i++) {
  1015. bit_alloc_bits = alloc_table[j];
  1016. v = get_bits(&s->gb, bit_alloc_bits);
  1017. bit_alloc[0][i] = v;
  1018. bit_alloc[1][i] = v;
  1019. j += 1 << bit_alloc_bits;
  1020. }
  1021. /* scale codes */
  1022. for(i=0;i<sblimit;i++) {
  1023. for(ch=0;ch<s->nb_channels;ch++) {
  1024. if (bit_alloc[ch][i])
  1025. scale_code[ch][i] = get_bits(&s->gb, 2);
  1026. }
  1027. }
  1028. /* scale factors */
  1029. for(i=0;i<sblimit;i++) {
  1030. for(ch=0;ch<s->nb_channels;ch++) {
  1031. if (bit_alloc[ch][i]) {
  1032. sf = scale_factors[ch][i];
  1033. switch(scale_code[ch][i]) {
  1034. default:
  1035. case 0:
  1036. sf[0] = get_bits(&s->gb, 6);
  1037. sf[1] = get_bits(&s->gb, 6);
  1038. sf[2] = get_bits(&s->gb, 6);
  1039. break;
  1040. case 2:
  1041. sf[0] = get_bits(&s->gb, 6);
  1042. sf[1] = sf[0];
  1043. sf[2] = sf[0];
  1044. break;
  1045. case 1:
  1046. sf[0] = get_bits(&s->gb, 6);
  1047. sf[2] = get_bits(&s->gb, 6);
  1048. sf[1] = sf[0];
  1049. break;
  1050. case 3:
  1051. sf[0] = get_bits(&s->gb, 6);
  1052. sf[2] = get_bits(&s->gb, 6);
  1053. sf[1] = sf[2];
  1054. break;
  1055. }
  1056. }
  1057. }
  1058. }
  1059. /* samples */
  1060. for(k=0;k<3;k++) {
  1061. for(l=0;l<12;l+=3) {
  1062. j = 0;
  1063. for(i=0;i<bound;i++) {
  1064. bit_alloc_bits = alloc_table[j];
  1065. for(ch=0;ch<s->nb_channels;ch++) {
  1066. b = bit_alloc[ch][i];
  1067. if (b) {
  1068. scale = scale_factors[ch][i][k];
  1069. qindex = alloc_table[j+b];
  1070. bits = ff_mpa_quant_bits[qindex];
  1071. if (bits < 0) {
  1072. /* 3 values at the same time */
  1073. v = get_bits(&s->gb, -bits);
  1074. steps = ff_mpa_quant_steps[qindex];
  1075. s->sb_samples[ch][k * 12 + l + 0][i] =
  1076. l2_unscale_group(steps, v % steps, scale);
  1077. v = v / steps;
  1078. s->sb_samples[ch][k * 12 + l + 1][i] =
  1079. l2_unscale_group(steps, v % steps, scale);
  1080. v = v / steps;
  1081. s->sb_samples[ch][k * 12 + l + 2][i] =
  1082. l2_unscale_group(steps, v, scale);
  1083. } else {
  1084. for(m=0;m<3;m++) {
  1085. v = get_bits(&s->gb, bits);
  1086. v = l1_unscale(bits - 1, v, scale);
  1087. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1088. }
  1089. }
  1090. } else {
  1091. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1092. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1093. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1094. }
  1095. }
  1096. /* next subband in alloc table */
  1097. j += 1 << bit_alloc_bits;
  1098. }
  1099. /* XXX: find a way to avoid this duplication of code */
  1100. for(i=bound;i<sblimit;i++) {
  1101. bit_alloc_bits = alloc_table[j];
  1102. b = bit_alloc[0][i];
  1103. if (b) {
  1104. int mant, scale0, scale1;
  1105. scale0 = scale_factors[0][i][k];
  1106. scale1 = scale_factors[1][i][k];
  1107. qindex = alloc_table[j+b];
  1108. bits = ff_mpa_quant_bits[qindex];
  1109. if (bits < 0) {
  1110. /* 3 values at the same time */
  1111. v = get_bits(&s->gb, -bits);
  1112. steps = ff_mpa_quant_steps[qindex];
  1113. mant = v % steps;
  1114. v = v / steps;
  1115. s->sb_samples[0][k * 12 + l + 0][i] =
  1116. l2_unscale_group(steps, mant, scale0);
  1117. s->sb_samples[1][k * 12 + l + 0][i] =
  1118. l2_unscale_group(steps, mant, scale1);
  1119. mant = v % steps;
  1120. v = v / steps;
  1121. s->sb_samples[0][k * 12 + l + 1][i] =
  1122. l2_unscale_group(steps, mant, scale0);
  1123. s->sb_samples[1][k * 12 + l + 1][i] =
  1124. l2_unscale_group(steps, mant, scale1);
  1125. s->sb_samples[0][k * 12 + l + 2][i] =
  1126. l2_unscale_group(steps, v, scale0);
  1127. s->sb_samples[1][k * 12 + l + 2][i] =
  1128. l2_unscale_group(steps, v, scale1);
  1129. } else {
  1130. for(m=0;m<3;m++) {
  1131. mant = get_bits(&s->gb, bits);
  1132. s->sb_samples[0][k * 12 + l + m][i] =
  1133. l1_unscale(bits - 1, mant, scale0);
  1134. s->sb_samples[1][k * 12 + l + m][i] =
  1135. l1_unscale(bits - 1, mant, scale1);
  1136. }
  1137. }
  1138. } else {
  1139. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1140. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1141. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1142. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1143. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1144. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1145. }
  1146. /* next subband in alloc table */
  1147. j += 1 << bit_alloc_bits;
  1148. }
  1149. /* fill remaining samples to zero */
  1150. for(i=sblimit;i<SBLIMIT;i++) {
  1151. for(ch=0;ch<s->nb_channels;ch++) {
  1152. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1153. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1154. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1155. }
  1156. }
  1157. }
  1158. }
  1159. return 3 * 12;
  1160. }
  1161. static inline void lsf_sf_expand(int *slen,
  1162. int sf, int n1, int n2, int n3)
  1163. {
  1164. if (n3) {
  1165. slen[3] = sf % n3;
  1166. sf /= n3;
  1167. } else {
  1168. slen[3] = 0;
  1169. }
  1170. if (n2) {
  1171. slen[2] = sf % n2;
  1172. sf /= n2;
  1173. } else {
  1174. slen[2] = 0;
  1175. }
  1176. slen[1] = sf % n1;
  1177. sf /= n1;
  1178. slen[0] = sf;
  1179. }
  1180. static void exponents_from_scale_factors(MPADecodeContext *s,
  1181. GranuleDef *g,
  1182. int16_t *exponents)
  1183. {
  1184. const uint8_t *bstab, *pretab;
  1185. int len, i, j, k, l, v0, shift, gain, gains[3];
  1186. int16_t *exp_ptr;
  1187. exp_ptr = exponents;
  1188. gain = g->global_gain - 210;
  1189. shift = g->scalefac_scale + 1;
  1190. bstab = band_size_long[s->sample_rate_index];
  1191. pretab = mpa_pretab[g->preflag];
  1192. for(i=0;i<g->long_end;i++) {
  1193. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1194. len = bstab[i];
  1195. for(j=len;j>0;j--)
  1196. *exp_ptr++ = v0;
  1197. }
  1198. if (g->short_start < 13) {
  1199. bstab = band_size_short[s->sample_rate_index];
  1200. gains[0] = gain - (g->subblock_gain[0] << 3);
  1201. gains[1] = gain - (g->subblock_gain[1] << 3);
  1202. gains[2] = gain - (g->subblock_gain[2] << 3);
  1203. k = g->long_end;
  1204. for(i=g->short_start;i<13;i++) {
  1205. len = bstab[i];
  1206. for(l=0;l<3;l++) {
  1207. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1208. for(j=len;j>0;j--)
  1209. *exp_ptr++ = v0;
  1210. }
  1211. }
  1212. }
  1213. }
  1214. /* handle n = 0 too */
  1215. static inline int get_bitsz(GetBitContext *s, int n)
  1216. {
  1217. if (n == 0)
  1218. return 0;
  1219. else
  1220. return get_bits(s, n);
  1221. }
  1222. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1223. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1224. s->gb= s->in_gb;
  1225. s->in_gb.buffer=NULL;
  1226. assert((get_bits_count(&s->gb) & 7) == 0);
  1227. skip_bits_long(&s->gb, *pos - *end_pos);
  1228. *end_pos2=
  1229. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1230. *pos= get_bits_count(&s->gb);
  1231. }
  1232. }
  1233. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1234. int16_t *exponents, int end_pos2)
  1235. {
  1236. int s_index;
  1237. int i;
  1238. int last_pos, bits_left;
  1239. VLC *vlc;
  1240. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1241. /* low frequencies (called big values) */
  1242. s_index = 0;
  1243. for(i=0;i<3;i++) {
  1244. int j, k, l, linbits;
  1245. j = g->region_size[i];
  1246. if (j == 0)
  1247. continue;
  1248. /* select vlc table */
  1249. k = g->table_select[i];
  1250. l = mpa_huff_data[k][0];
  1251. linbits = mpa_huff_data[k][1];
  1252. vlc = &huff_vlc[l];
  1253. if(!l){
  1254. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1255. s_index += 2*j;
  1256. continue;
  1257. }
  1258. /* read huffcode and compute each couple */
  1259. for(;j>0;j--) {
  1260. int exponent, x, y, v;
  1261. int pos= get_bits_count(&s->gb);
  1262. if (pos >= end_pos){
  1263. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1264. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1265. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1266. if(pos >= end_pos)
  1267. break;
  1268. }
  1269. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1270. if(!y){
  1271. g->sb_hybrid[s_index ] =
  1272. g->sb_hybrid[s_index+1] = 0;
  1273. s_index += 2;
  1274. continue;
  1275. }
  1276. exponent= exponents[s_index];
  1277. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1278. i, g->region_size[i] - j, x, y, exponent);
  1279. if(y&16){
  1280. x = y >> 5;
  1281. y = y & 0x0f;
  1282. if (x < 15){
  1283. v = expval_table[ exponent ][ x ];
  1284. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1285. }else{
  1286. x += get_bitsz(&s->gb, linbits);
  1287. v = l3_unscale(x, exponent);
  1288. }
  1289. if (get_bits1(&s->gb))
  1290. v = -v;
  1291. g->sb_hybrid[s_index] = v;
  1292. if (y < 15){
  1293. v = expval_table[ exponent ][ y ];
  1294. }else{
  1295. y += get_bitsz(&s->gb, linbits);
  1296. v = l3_unscale(y, exponent);
  1297. }
  1298. if (get_bits1(&s->gb))
  1299. v = -v;
  1300. g->sb_hybrid[s_index+1] = v;
  1301. }else{
  1302. x = y >> 5;
  1303. y = y & 0x0f;
  1304. x += y;
  1305. if (x < 15){
  1306. v = expval_table[ exponent ][ x ];
  1307. }else{
  1308. x += get_bitsz(&s->gb, linbits);
  1309. v = l3_unscale(x, exponent);
  1310. }
  1311. if (get_bits1(&s->gb))
  1312. v = -v;
  1313. g->sb_hybrid[s_index+!!y] = v;
  1314. g->sb_hybrid[s_index+ !y] = 0;
  1315. }
  1316. s_index+=2;
  1317. }
  1318. }
  1319. /* high frequencies */
  1320. vlc = &huff_quad_vlc[g->count1table_select];
  1321. last_pos=0;
  1322. while (s_index <= 572) {
  1323. int pos, code;
  1324. pos = get_bits_count(&s->gb);
  1325. if (pos >= end_pos) {
  1326. if (pos > end_pos2 && last_pos){
  1327. /* some encoders generate an incorrect size for this
  1328. part. We must go back into the data */
  1329. s_index -= 4;
  1330. skip_bits_long(&s->gb, last_pos - pos);
  1331. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1332. if(s->error_recognition >= FF_ER_COMPLIANT)
  1333. s_index=0;
  1334. break;
  1335. }
  1336. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1337. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1338. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1339. if(pos >= end_pos)
  1340. break;
  1341. }
  1342. last_pos= pos;
  1343. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1344. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1345. g->sb_hybrid[s_index+0]=
  1346. g->sb_hybrid[s_index+1]=
  1347. g->sb_hybrid[s_index+2]=
  1348. g->sb_hybrid[s_index+3]= 0;
  1349. while(code){
  1350. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1351. int v;
  1352. int pos= s_index+idxtab[code];
  1353. code ^= 8>>idxtab[code];
  1354. v = exp_table[ exponents[pos] ];
  1355. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1356. if(get_bits1(&s->gb))
  1357. v = -v;
  1358. g->sb_hybrid[pos] = v;
  1359. }
  1360. s_index+=4;
  1361. }
  1362. /* skip extension bits */
  1363. bits_left = end_pos2 - get_bits_count(&s->gb);
  1364. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1365. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1366. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1367. s_index=0;
  1368. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1369. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1370. s_index=0;
  1371. }
  1372. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1373. skip_bits_long(&s->gb, bits_left);
  1374. i= get_bits_count(&s->gb);
  1375. switch_buffer(s, &i, &end_pos, &end_pos2);
  1376. return 0;
  1377. }
  1378. /* Reorder short blocks from bitstream order to interleaved order. It
  1379. would be faster to do it in parsing, but the code would be far more
  1380. complicated */
  1381. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1382. {
  1383. int i, j, len;
  1384. int32_t *ptr, *dst, *ptr1;
  1385. int32_t tmp[576];
  1386. if (g->block_type != 2)
  1387. return;
  1388. if (g->switch_point) {
  1389. if (s->sample_rate_index != 8) {
  1390. ptr = g->sb_hybrid + 36;
  1391. } else {
  1392. ptr = g->sb_hybrid + 48;
  1393. }
  1394. } else {
  1395. ptr = g->sb_hybrid;
  1396. }
  1397. for(i=g->short_start;i<13;i++) {
  1398. len = band_size_short[s->sample_rate_index][i];
  1399. ptr1 = ptr;
  1400. dst = tmp;
  1401. for(j=len;j>0;j--) {
  1402. *dst++ = ptr[0*len];
  1403. *dst++ = ptr[1*len];
  1404. *dst++ = ptr[2*len];
  1405. ptr++;
  1406. }
  1407. ptr+=2*len;
  1408. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1409. }
  1410. }
  1411. #define ISQRT2 FIXR(0.70710678118654752440)
  1412. static void compute_stereo(MPADecodeContext *s,
  1413. GranuleDef *g0, GranuleDef *g1)
  1414. {
  1415. int i, j, k, l;
  1416. int32_t v1, v2;
  1417. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1418. int32_t (*is_tab)[16];
  1419. int32_t *tab0, *tab1;
  1420. int non_zero_found_short[3];
  1421. /* intensity stereo */
  1422. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1423. if (!s->lsf) {
  1424. is_tab = is_table;
  1425. sf_max = 7;
  1426. } else {
  1427. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1428. sf_max = 16;
  1429. }
  1430. tab0 = g0->sb_hybrid + 576;
  1431. tab1 = g1->sb_hybrid + 576;
  1432. non_zero_found_short[0] = 0;
  1433. non_zero_found_short[1] = 0;
  1434. non_zero_found_short[2] = 0;
  1435. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1436. for(i = 12;i >= g1->short_start;i--) {
  1437. /* for last band, use previous scale factor */
  1438. if (i != 11)
  1439. k -= 3;
  1440. len = band_size_short[s->sample_rate_index][i];
  1441. for(l=2;l>=0;l--) {
  1442. tab0 -= len;
  1443. tab1 -= len;
  1444. if (!non_zero_found_short[l]) {
  1445. /* test if non zero band. if so, stop doing i-stereo */
  1446. for(j=0;j<len;j++) {
  1447. if (tab1[j] != 0) {
  1448. non_zero_found_short[l] = 1;
  1449. goto found1;
  1450. }
  1451. }
  1452. sf = g1->scale_factors[k + l];
  1453. if (sf >= sf_max)
  1454. goto found1;
  1455. v1 = is_tab[0][sf];
  1456. v2 = is_tab[1][sf];
  1457. for(j=0;j<len;j++) {
  1458. tmp0 = tab0[j];
  1459. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1460. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1461. }
  1462. } else {
  1463. found1:
  1464. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1465. /* lower part of the spectrum : do ms stereo
  1466. if enabled */
  1467. for(j=0;j<len;j++) {
  1468. tmp0 = tab0[j];
  1469. tmp1 = tab1[j];
  1470. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1471. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1472. }
  1473. }
  1474. }
  1475. }
  1476. }
  1477. non_zero_found = non_zero_found_short[0] |
  1478. non_zero_found_short[1] |
  1479. non_zero_found_short[2];
  1480. for(i = g1->long_end - 1;i >= 0;i--) {
  1481. len = band_size_long[s->sample_rate_index][i];
  1482. tab0 -= len;
  1483. tab1 -= len;
  1484. /* test if non zero band. if so, stop doing i-stereo */
  1485. if (!non_zero_found) {
  1486. for(j=0;j<len;j++) {
  1487. if (tab1[j] != 0) {
  1488. non_zero_found = 1;
  1489. goto found2;
  1490. }
  1491. }
  1492. /* for last band, use previous scale factor */
  1493. k = (i == 21) ? 20 : i;
  1494. sf = g1->scale_factors[k];
  1495. if (sf >= sf_max)
  1496. goto found2;
  1497. v1 = is_tab[0][sf];
  1498. v2 = is_tab[1][sf];
  1499. for(j=0;j<len;j++) {
  1500. tmp0 = tab0[j];
  1501. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1502. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1503. }
  1504. } else {
  1505. found2:
  1506. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1507. /* lower part of the spectrum : do ms stereo
  1508. if enabled */
  1509. for(j=0;j<len;j++) {
  1510. tmp0 = tab0[j];
  1511. tmp1 = tab1[j];
  1512. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1513. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1514. }
  1515. }
  1516. }
  1517. }
  1518. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1519. /* ms stereo ONLY */
  1520. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1521. global gain */
  1522. tab0 = g0->sb_hybrid;
  1523. tab1 = g1->sb_hybrid;
  1524. for(i=0;i<576;i++) {
  1525. tmp0 = tab0[i];
  1526. tmp1 = tab1[i];
  1527. tab0[i] = tmp0 + tmp1;
  1528. tab1[i] = tmp0 - tmp1;
  1529. }
  1530. }
  1531. }
  1532. static void compute_antialias_integer(MPADecodeContext *s,
  1533. GranuleDef *g)
  1534. {
  1535. int32_t *ptr, *csa;
  1536. int n, i;
  1537. /* we antialias only "long" bands */
  1538. if (g->block_type == 2) {
  1539. if (!g->switch_point)
  1540. return;
  1541. /* XXX: check this for 8000Hz case */
  1542. n = 1;
  1543. } else {
  1544. n = SBLIMIT - 1;
  1545. }
  1546. ptr = g->sb_hybrid + 18;
  1547. for(i = n;i > 0;i--) {
  1548. int tmp0, tmp1, tmp2;
  1549. csa = &csa_table[0][0];
  1550. #define INT_AA(j) \
  1551. tmp0 = ptr[-1-j];\
  1552. tmp1 = ptr[ j];\
  1553. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1554. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1555. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1556. INT_AA(0)
  1557. INT_AA(1)
  1558. INT_AA(2)
  1559. INT_AA(3)
  1560. INT_AA(4)
  1561. INT_AA(5)
  1562. INT_AA(6)
  1563. INT_AA(7)
  1564. ptr += 18;
  1565. }
  1566. }
  1567. static void compute_antialias_float(MPADecodeContext *s,
  1568. GranuleDef *g)
  1569. {
  1570. int32_t *ptr;
  1571. int n, i;
  1572. /* we antialias only "long" bands */
  1573. if (g->block_type == 2) {
  1574. if (!g->switch_point)
  1575. return;
  1576. /* XXX: check this for 8000Hz case */
  1577. n = 1;
  1578. } else {
  1579. n = SBLIMIT - 1;
  1580. }
  1581. ptr = g->sb_hybrid + 18;
  1582. for(i = n;i > 0;i--) {
  1583. float tmp0, tmp1;
  1584. float *csa = &csa_table_float[0][0];
  1585. #define FLOAT_AA(j)\
  1586. tmp0= ptr[-1-j];\
  1587. tmp1= ptr[ j];\
  1588. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1589. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1590. FLOAT_AA(0)
  1591. FLOAT_AA(1)
  1592. FLOAT_AA(2)
  1593. FLOAT_AA(3)
  1594. FLOAT_AA(4)
  1595. FLOAT_AA(5)
  1596. FLOAT_AA(6)
  1597. FLOAT_AA(7)
  1598. ptr += 18;
  1599. }
  1600. }
  1601. static void compute_imdct(MPADecodeContext *s,
  1602. GranuleDef *g,
  1603. int32_t *sb_samples,
  1604. int32_t *mdct_buf)
  1605. {
  1606. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1607. int32_t out2[12];
  1608. int i, j, mdct_long_end, v, sblimit;
  1609. /* find last non zero block */
  1610. ptr = g->sb_hybrid + 576;
  1611. ptr1 = g->sb_hybrid + 2 * 18;
  1612. while (ptr >= ptr1) {
  1613. ptr -= 6;
  1614. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1615. if (v != 0)
  1616. break;
  1617. }
  1618. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1619. if (g->block_type == 2) {
  1620. /* XXX: check for 8000 Hz */
  1621. if (g->switch_point)
  1622. mdct_long_end = 2;
  1623. else
  1624. mdct_long_end = 0;
  1625. } else {
  1626. mdct_long_end = sblimit;
  1627. }
  1628. buf = mdct_buf;
  1629. ptr = g->sb_hybrid;
  1630. for(j=0;j<mdct_long_end;j++) {
  1631. /* apply window & overlap with previous buffer */
  1632. out_ptr = sb_samples + j;
  1633. /* select window */
  1634. if (g->switch_point && j < 2)
  1635. win1 = mdct_win[0];
  1636. else
  1637. win1 = mdct_win[g->block_type];
  1638. /* select frequency inversion */
  1639. win = win1 + ((4 * 36) & -(j & 1));
  1640. imdct36(out_ptr, buf, ptr, win);
  1641. out_ptr += 18*SBLIMIT;
  1642. ptr += 18;
  1643. buf += 18;
  1644. }
  1645. for(j=mdct_long_end;j<sblimit;j++) {
  1646. /* select frequency inversion */
  1647. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1648. out_ptr = sb_samples + j;
  1649. for(i=0; i<6; i++){
  1650. *out_ptr = buf[i];
  1651. out_ptr += SBLIMIT;
  1652. }
  1653. imdct12(out2, ptr + 0);
  1654. for(i=0;i<6;i++) {
  1655. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1656. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1657. out_ptr += SBLIMIT;
  1658. }
  1659. imdct12(out2, ptr + 1);
  1660. for(i=0;i<6;i++) {
  1661. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1662. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1663. out_ptr += SBLIMIT;
  1664. }
  1665. imdct12(out2, ptr + 2);
  1666. for(i=0;i<6;i++) {
  1667. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1668. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1669. buf[i + 6*2] = 0;
  1670. }
  1671. ptr += 18;
  1672. buf += 18;
  1673. }
  1674. /* zero bands */
  1675. for(j=sblimit;j<SBLIMIT;j++) {
  1676. /* overlap */
  1677. out_ptr = sb_samples + j;
  1678. for(i=0;i<18;i++) {
  1679. *out_ptr = buf[i];
  1680. buf[i] = 0;
  1681. out_ptr += SBLIMIT;
  1682. }
  1683. buf += 18;
  1684. }
  1685. }
  1686. /* main layer3 decoding function */
  1687. static int mp_decode_layer3(MPADecodeContext *s)
  1688. {
  1689. int nb_granules, main_data_begin, private_bits;
  1690. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1691. GranuleDef *g;
  1692. int16_t exponents[576];
  1693. /* read side info */
  1694. if (s->lsf) {
  1695. main_data_begin = get_bits(&s->gb, 8);
  1696. private_bits = get_bits(&s->gb, s->nb_channels);
  1697. nb_granules = 1;
  1698. } else {
  1699. main_data_begin = get_bits(&s->gb, 9);
  1700. if (s->nb_channels == 2)
  1701. private_bits = get_bits(&s->gb, 3);
  1702. else
  1703. private_bits = get_bits(&s->gb, 5);
  1704. nb_granules = 2;
  1705. for(ch=0;ch<s->nb_channels;ch++) {
  1706. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1707. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1708. }
  1709. }
  1710. for(gr=0;gr<nb_granules;gr++) {
  1711. for(ch=0;ch<s->nb_channels;ch++) {
  1712. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1713. g = &s->granules[ch][gr];
  1714. g->part2_3_length = get_bits(&s->gb, 12);
  1715. g->big_values = get_bits(&s->gb, 9);
  1716. if(g->big_values > 288){
  1717. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1718. return -1;
  1719. }
  1720. g->global_gain = get_bits(&s->gb, 8);
  1721. /* if MS stereo only is selected, we precompute the
  1722. 1/sqrt(2) renormalization factor */
  1723. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1724. MODE_EXT_MS_STEREO)
  1725. g->global_gain -= 2;
  1726. if (s->lsf)
  1727. g->scalefac_compress = get_bits(&s->gb, 9);
  1728. else
  1729. g->scalefac_compress = get_bits(&s->gb, 4);
  1730. blocksplit_flag = get_bits1(&s->gb);
  1731. if (blocksplit_flag) {
  1732. g->block_type = get_bits(&s->gb, 2);
  1733. if (g->block_type == 0){
  1734. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1735. return -1;
  1736. }
  1737. g->switch_point = get_bits1(&s->gb);
  1738. for(i=0;i<2;i++)
  1739. g->table_select[i] = get_bits(&s->gb, 5);
  1740. for(i=0;i<3;i++)
  1741. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1742. ff_init_short_region(s, g);
  1743. } else {
  1744. int region_address1, region_address2;
  1745. g->block_type = 0;
  1746. g->switch_point = 0;
  1747. for(i=0;i<3;i++)
  1748. g->table_select[i] = get_bits(&s->gb, 5);
  1749. /* compute huffman coded region sizes */
  1750. region_address1 = get_bits(&s->gb, 4);
  1751. region_address2 = get_bits(&s->gb, 3);
  1752. dprintf(s->avctx, "region1=%d region2=%d\n",
  1753. region_address1, region_address2);
  1754. ff_init_long_region(s, g, region_address1, region_address2);
  1755. }
  1756. ff_region_offset2size(g);
  1757. ff_compute_band_indexes(s, g);
  1758. g->preflag = 0;
  1759. if (!s->lsf)
  1760. g->preflag = get_bits1(&s->gb);
  1761. g->scalefac_scale = get_bits1(&s->gb);
  1762. g->count1table_select = get_bits1(&s->gb);
  1763. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1764. g->block_type, g->switch_point);
  1765. }
  1766. }
  1767. if (!s->adu_mode) {
  1768. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1769. assert((get_bits_count(&s->gb) & 7) == 0);
  1770. /* now we get bits from the main_data_begin offset */
  1771. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1772. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1773. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1774. s->in_gb= s->gb;
  1775. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1776. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1777. }
  1778. for(gr=0;gr<nb_granules;gr++) {
  1779. for(ch=0;ch<s->nb_channels;ch++) {
  1780. g = &s->granules[ch][gr];
  1781. if(get_bits_count(&s->gb)<0){
  1782. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1783. main_data_begin, s->last_buf_size, gr);
  1784. skip_bits_long(&s->gb, g->part2_3_length);
  1785. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1786. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1787. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1788. s->gb= s->in_gb;
  1789. s->in_gb.buffer=NULL;
  1790. }
  1791. continue;
  1792. }
  1793. bits_pos = get_bits_count(&s->gb);
  1794. if (!s->lsf) {
  1795. uint8_t *sc;
  1796. int slen, slen1, slen2;
  1797. /* MPEG1 scale factors */
  1798. slen1 = slen_table[0][g->scalefac_compress];
  1799. slen2 = slen_table[1][g->scalefac_compress];
  1800. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1801. if (g->block_type == 2) {
  1802. n = g->switch_point ? 17 : 18;
  1803. j = 0;
  1804. if(slen1){
  1805. for(i=0;i<n;i++)
  1806. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1807. }else{
  1808. for(i=0;i<n;i++)
  1809. g->scale_factors[j++] = 0;
  1810. }
  1811. if(slen2){
  1812. for(i=0;i<18;i++)
  1813. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1814. for(i=0;i<3;i++)
  1815. g->scale_factors[j++] = 0;
  1816. }else{
  1817. for(i=0;i<21;i++)
  1818. g->scale_factors[j++] = 0;
  1819. }
  1820. } else {
  1821. sc = s->granules[ch][0].scale_factors;
  1822. j = 0;
  1823. for(k=0;k<4;k++) {
  1824. n = (k == 0 ? 6 : 5);
  1825. if ((g->scfsi & (0x8 >> k)) == 0) {
  1826. slen = (k < 2) ? slen1 : slen2;
  1827. if(slen){
  1828. for(i=0;i<n;i++)
  1829. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1830. }else{
  1831. for(i=0;i<n;i++)
  1832. g->scale_factors[j++] = 0;
  1833. }
  1834. } else {
  1835. /* simply copy from last granule */
  1836. for(i=0;i<n;i++) {
  1837. g->scale_factors[j] = sc[j];
  1838. j++;
  1839. }
  1840. }
  1841. }
  1842. g->scale_factors[j++] = 0;
  1843. }
  1844. } else {
  1845. int tindex, tindex2, slen[4], sl, sf;
  1846. /* LSF scale factors */
  1847. if (g->block_type == 2) {
  1848. tindex = g->switch_point ? 2 : 1;
  1849. } else {
  1850. tindex = 0;
  1851. }
  1852. sf = g->scalefac_compress;
  1853. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1854. /* intensity stereo case */
  1855. sf >>= 1;
  1856. if (sf < 180) {
  1857. lsf_sf_expand(slen, sf, 6, 6, 0);
  1858. tindex2 = 3;
  1859. } else if (sf < 244) {
  1860. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1861. tindex2 = 4;
  1862. } else {
  1863. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1864. tindex2 = 5;
  1865. }
  1866. } else {
  1867. /* normal case */
  1868. if (sf < 400) {
  1869. lsf_sf_expand(slen, sf, 5, 4, 4);
  1870. tindex2 = 0;
  1871. } else if (sf < 500) {
  1872. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1873. tindex2 = 1;
  1874. } else {
  1875. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1876. tindex2 = 2;
  1877. g->preflag = 1;
  1878. }
  1879. }
  1880. j = 0;
  1881. for(k=0;k<4;k++) {
  1882. n = lsf_nsf_table[tindex2][tindex][k];
  1883. sl = slen[k];
  1884. if(sl){
  1885. for(i=0;i<n;i++)
  1886. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1887. }else{
  1888. for(i=0;i<n;i++)
  1889. g->scale_factors[j++] = 0;
  1890. }
  1891. }
  1892. /* XXX: should compute exact size */
  1893. for(;j<40;j++)
  1894. g->scale_factors[j] = 0;
  1895. }
  1896. exponents_from_scale_factors(s, g, exponents);
  1897. /* read Huffman coded residue */
  1898. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1899. } /* ch */
  1900. if (s->nb_channels == 2)
  1901. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1902. for(ch=0;ch<s->nb_channels;ch++) {
  1903. g = &s->granules[ch][gr];
  1904. reorder_block(s, g);
  1905. s->compute_antialias(s, g);
  1906. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1907. }
  1908. } /* gr */
  1909. if(get_bits_count(&s->gb)<0)
  1910. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1911. return nb_granules * 18;
  1912. }
  1913. static int mp_decode_frame(MPADecodeContext *s,
  1914. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1915. {
  1916. int i, nb_frames, ch;
  1917. OUT_INT *samples_ptr;
  1918. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1919. /* skip error protection field */
  1920. if (s->error_protection)
  1921. skip_bits(&s->gb, 16);
  1922. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1923. switch(s->layer) {
  1924. case 1:
  1925. s->avctx->frame_size = 384;
  1926. nb_frames = mp_decode_layer1(s);
  1927. break;
  1928. case 2:
  1929. s->avctx->frame_size = 1152;
  1930. nb_frames = mp_decode_layer2(s);
  1931. break;
  1932. case 3:
  1933. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1934. default:
  1935. nb_frames = mp_decode_layer3(s);
  1936. s->last_buf_size=0;
  1937. if(s->in_gb.buffer){
  1938. align_get_bits(&s->gb);
  1939. i= get_bits_left(&s->gb)>>3;
  1940. if(i >= 0 && i <= BACKSTEP_SIZE){
  1941. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1942. s->last_buf_size=i;
  1943. }else
  1944. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1945. s->gb= s->in_gb;
  1946. s->in_gb.buffer= NULL;
  1947. }
  1948. align_get_bits(&s->gb);
  1949. assert((get_bits_count(&s->gb) & 7) == 0);
  1950. i= get_bits_left(&s->gb)>>3;
  1951. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1952. if(i<0)
  1953. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1954. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1955. }
  1956. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1957. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1958. s->last_buf_size += i;
  1959. break;
  1960. }
  1961. /* apply the synthesis filter */
  1962. for(ch=0;ch<s->nb_channels;ch++) {
  1963. samples_ptr = samples + ch;
  1964. for(i=0;i<nb_frames;i++) {
  1965. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1966. ff_mpa_synth_window, &s->dither_state,
  1967. samples_ptr, s->nb_channels,
  1968. s->sb_samples[ch][i]);
  1969. samples_ptr += 32 * s->nb_channels;
  1970. }
  1971. }
  1972. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1973. }
  1974. static int decode_frame(AVCodecContext * avctx,
  1975. void *data, int *data_size,
  1976. AVPacket *avpkt)
  1977. {
  1978. const uint8_t *buf = avpkt->data;
  1979. int buf_size = avpkt->size;
  1980. MPADecodeContext *s = avctx->priv_data;
  1981. uint32_t header;
  1982. int out_size;
  1983. OUT_INT *out_samples = data;
  1984. if(buf_size < HEADER_SIZE)
  1985. return -1;
  1986. header = AV_RB32(buf);
  1987. if(ff_mpa_check_header(header) < 0){
  1988. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1989. return -1;
  1990. }
  1991. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1992. /* free format: prepare to compute frame size */
  1993. s->frame_size = -1;
  1994. return -1;
  1995. }
  1996. /* update codec info */
  1997. avctx->channels = s->nb_channels;
  1998. avctx->bit_rate = s->bit_rate;
  1999. avctx->sub_id = s->layer;
  2000. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  2001. return -1;
  2002. *data_size = 0;
  2003. if(s->frame_size<=0 || s->frame_size > buf_size){
  2004. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2005. return -1;
  2006. }else if(s->frame_size < buf_size){
  2007. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2008. buf_size= s->frame_size;
  2009. }
  2010. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2011. if(out_size>=0){
  2012. *data_size = out_size;
  2013. avctx->sample_rate = s->sample_rate;
  2014. //FIXME maybe move the other codec info stuff from above here too
  2015. }else
  2016. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2017. s->frame_size = 0;
  2018. return buf_size;
  2019. }
  2020. static void flush(AVCodecContext *avctx){
  2021. MPADecodeContext *s = avctx->priv_data;
  2022. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2023. s->last_buf_size= 0;
  2024. }
  2025. #if CONFIG_MP3ADU_DECODER
  2026. static int decode_frame_adu(AVCodecContext * avctx,
  2027. void *data, int *data_size,
  2028. AVPacket *avpkt)
  2029. {
  2030. const uint8_t *buf = avpkt->data;
  2031. int buf_size = avpkt->size;
  2032. MPADecodeContext *s = avctx->priv_data;
  2033. uint32_t header;
  2034. int len, out_size;
  2035. OUT_INT *out_samples = data;
  2036. len = buf_size;
  2037. // Discard too short frames
  2038. if (buf_size < HEADER_SIZE) {
  2039. *data_size = 0;
  2040. return buf_size;
  2041. }
  2042. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2043. len = MPA_MAX_CODED_FRAME_SIZE;
  2044. // Get header and restore sync word
  2045. header = AV_RB32(buf) | 0xffe00000;
  2046. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2047. *data_size = 0;
  2048. return buf_size;
  2049. }
  2050. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2051. /* update codec info */
  2052. avctx->sample_rate = s->sample_rate;
  2053. avctx->channels = s->nb_channels;
  2054. avctx->bit_rate = s->bit_rate;
  2055. avctx->sub_id = s->layer;
  2056. s->frame_size = len;
  2057. if (avctx->parse_only) {
  2058. out_size = buf_size;
  2059. } else {
  2060. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2061. }
  2062. *data_size = out_size;
  2063. return buf_size;
  2064. }
  2065. #endif /* CONFIG_MP3ADU_DECODER */
  2066. #if CONFIG_MP3ON4_DECODER
  2067. /**
  2068. * Context for MP3On4 decoder
  2069. */
  2070. typedef struct MP3On4DecodeContext {
  2071. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2072. int syncword; ///< syncword patch
  2073. const uint8_t *coff; ///< channels offsets in output buffer
  2074. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2075. } MP3On4DecodeContext;
  2076. #include "mpeg4audio.h"
  2077. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2078. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2079. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2080. static const uint8_t chan_offset[8][5] = {
  2081. {0},
  2082. {0}, // C
  2083. {0}, // FLR
  2084. {2,0}, // C FLR
  2085. {2,0,3}, // C FLR BS
  2086. {4,0,2}, // C FLR BLRS
  2087. {4,0,2,5}, // C FLR BLRS LFE
  2088. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2089. };
  2090. static int decode_init_mp3on4(AVCodecContext * avctx)
  2091. {
  2092. MP3On4DecodeContext *s = avctx->priv_data;
  2093. MPEG4AudioConfig cfg;
  2094. int i;
  2095. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2096. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2097. return -1;
  2098. }
  2099. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2100. if (!cfg.chan_config || cfg.chan_config > 7) {
  2101. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2102. return -1;
  2103. }
  2104. s->frames = mp3Frames[cfg.chan_config];
  2105. s->coff = chan_offset[cfg.chan_config];
  2106. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2107. if (cfg.sample_rate < 16000)
  2108. s->syncword = 0xffe00000;
  2109. else
  2110. s->syncword = 0xfff00000;
  2111. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2112. * We replace avctx->priv_data with the context of the first decoder so that
  2113. * decode_init() does not have to be changed.
  2114. * Other decoders will be initialized here copying data from the first context
  2115. */
  2116. // Allocate zeroed memory for the first decoder context
  2117. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2118. // Put decoder context in place to make init_decode() happy
  2119. avctx->priv_data = s->mp3decctx[0];
  2120. decode_init(avctx);
  2121. // Restore mp3on4 context pointer
  2122. avctx->priv_data = s;
  2123. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2124. /* Create a separate codec/context for each frame (first is already ok).
  2125. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2126. */
  2127. for (i = 1; i < s->frames; i++) {
  2128. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2129. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2130. s->mp3decctx[i]->adu_mode = 1;
  2131. s->mp3decctx[i]->avctx = avctx;
  2132. }
  2133. return 0;
  2134. }
  2135. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2136. {
  2137. MP3On4DecodeContext *s = avctx->priv_data;
  2138. int i;
  2139. for (i = 0; i < s->frames; i++)
  2140. if (s->mp3decctx[i])
  2141. av_free(s->mp3decctx[i]);
  2142. return 0;
  2143. }
  2144. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2145. void *data, int *data_size,
  2146. AVPacket *avpkt)
  2147. {
  2148. const uint8_t *buf = avpkt->data;
  2149. int buf_size = avpkt->size;
  2150. MP3On4DecodeContext *s = avctx->priv_data;
  2151. MPADecodeContext *m;
  2152. int fsize, len = buf_size, out_size = 0;
  2153. uint32_t header;
  2154. OUT_INT *out_samples = data;
  2155. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2156. OUT_INT *outptr, *bp;
  2157. int fr, j, n;
  2158. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  2159. return -1;
  2160. *data_size = 0;
  2161. // Discard too short frames
  2162. if (buf_size < HEADER_SIZE)
  2163. return -1;
  2164. // If only one decoder interleave is not needed
  2165. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2166. avctx->bit_rate = 0;
  2167. for (fr = 0; fr < s->frames; fr++) {
  2168. fsize = AV_RB16(buf) >> 4;
  2169. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2170. m = s->mp3decctx[fr];
  2171. assert (m != NULL);
  2172. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2173. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2174. break;
  2175. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2176. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2177. buf += fsize;
  2178. len -= fsize;
  2179. if(s->frames > 1) {
  2180. n = m->avctx->frame_size*m->nb_channels;
  2181. /* interleave output data */
  2182. bp = out_samples + s->coff[fr];
  2183. if(m->nb_channels == 1) {
  2184. for(j = 0; j < n; j++) {
  2185. *bp = decoded_buf[j];
  2186. bp += avctx->channels;
  2187. }
  2188. } else {
  2189. for(j = 0; j < n; j++) {
  2190. bp[0] = decoded_buf[j++];
  2191. bp[1] = decoded_buf[j];
  2192. bp += avctx->channels;
  2193. }
  2194. }
  2195. }
  2196. avctx->bit_rate += m->bit_rate;
  2197. }
  2198. /* update codec info */
  2199. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2200. *data_size = out_size;
  2201. return buf_size;
  2202. }
  2203. #endif /* CONFIG_MP3ON4_DECODER */
  2204. #if CONFIG_MP1_DECODER
  2205. AVCodec mp1_decoder =
  2206. {
  2207. "mp1",
  2208. CODEC_TYPE_AUDIO,
  2209. CODEC_ID_MP1,
  2210. sizeof(MPADecodeContext),
  2211. decode_init,
  2212. NULL,
  2213. NULL,
  2214. decode_frame,
  2215. CODEC_CAP_PARSE_ONLY,
  2216. .flush= flush,
  2217. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2218. };
  2219. #endif
  2220. #if CONFIG_MP2_DECODER
  2221. AVCodec mp2_decoder =
  2222. {
  2223. "mp2",
  2224. CODEC_TYPE_AUDIO,
  2225. CODEC_ID_MP2,
  2226. sizeof(MPADecodeContext),
  2227. decode_init,
  2228. NULL,
  2229. NULL,
  2230. decode_frame,
  2231. CODEC_CAP_PARSE_ONLY,
  2232. .flush= flush,
  2233. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2234. };
  2235. #endif
  2236. #if CONFIG_MP3_DECODER
  2237. AVCodec mp3_decoder =
  2238. {
  2239. "mp3",
  2240. CODEC_TYPE_AUDIO,
  2241. CODEC_ID_MP3,
  2242. sizeof(MPADecodeContext),
  2243. decode_init,
  2244. NULL,
  2245. NULL,
  2246. decode_frame,
  2247. CODEC_CAP_PARSE_ONLY,
  2248. .flush= flush,
  2249. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2250. };
  2251. #endif
  2252. #if CONFIG_MP3ADU_DECODER
  2253. AVCodec mp3adu_decoder =
  2254. {
  2255. "mp3adu",
  2256. CODEC_TYPE_AUDIO,
  2257. CODEC_ID_MP3ADU,
  2258. sizeof(MPADecodeContext),
  2259. decode_init,
  2260. NULL,
  2261. NULL,
  2262. decode_frame_adu,
  2263. CODEC_CAP_PARSE_ONLY,
  2264. .flush= flush,
  2265. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2266. };
  2267. #endif
  2268. #if CONFIG_MP3ON4_DECODER
  2269. AVCodec mp3on4_decoder =
  2270. {
  2271. "mp3on4",
  2272. CODEC_TYPE_AUDIO,
  2273. CODEC_ID_MP3ON4,
  2274. sizeof(MP3On4DecodeContext),
  2275. decode_init_mp3on4,
  2276. NULL,
  2277. decode_close_mp3on4,
  2278. decode_frame_mp3on4,
  2279. .flush= flush,
  2280. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2281. };
  2282. #endif