You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
6.5KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file libavcodec/mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. av_cold void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. DECLARE_ALIGNED(16, float, ff_sine_32 [ 32]);
  47. DECLARE_ALIGNED(16, float, ff_sine_64 [ 64]);
  48. DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
  49. DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
  50. DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
  51. DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
  52. DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
  53. DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
  54. float * const ff_sine_windows[] = {
  55. NULL, NULL, NULL, NULL, NULL, // unused
  56. ff_sine_32 , ff_sine_64 ,
  57. ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
  58. };
  59. // Generate a sine window.
  60. av_cold void ff_sine_window_init(float *window, int n) {
  61. int i;
  62. for(i = 0; i < n; i++)
  63. window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
  64. }
  65. /**
  66. * init MDCT or IMDCT computation.
  67. */
  68. av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
  69. {
  70. int n, n4, i;
  71. double alpha, theta;
  72. int tstep;
  73. memset(s, 0, sizeof(*s));
  74. n = 1 << nbits;
  75. s->mdct_bits = nbits;
  76. s->mdct_size = n;
  77. n4 = n >> 2;
  78. s->permutation = FF_MDCT_PERM_NONE;
  79. if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
  80. goto fail;
  81. s->tcos = av_malloc(n/2 * sizeof(FFTSample));
  82. if (!s->tcos)
  83. goto fail;
  84. switch (s->permutation) {
  85. case FF_MDCT_PERM_NONE:
  86. s->tsin = s->tcos + n4;
  87. tstep = 1;
  88. break;
  89. case FF_MDCT_PERM_INTERLEAVE:
  90. s->tsin = s->tcos + 1;
  91. tstep = 2;
  92. break;
  93. default:
  94. goto fail;
  95. }
  96. theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
  97. scale = sqrt(fabs(scale));
  98. for(i=0;i<n4;i++) {
  99. alpha = 2 * M_PI * (i + theta) / n;
  100. s->tcos[i*tstep] = -cos(alpha) * scale;
  101. s->tsin[i*tstep] = -sin(alpha) * scale;
  102. }
  103. return 0;
  104. fail:
  105. ff_mdct_end(s);
  106. return -1;
  107. }
  108. /* complex multiplication: p = a * b */
  109. #define CMUL(pre, pim, are, aim, bre, bim) \
  110. {\
  111. FFTSample _are = (are);\
  112. FFTSample _aim = (aim);\
  113. FFTSample _bre = (bre);\
  114. FFTSample _bim = (bim);\
  115. (pre) = _are * _bre - _aim * _bim;\
  116. (pim) = _are * _bim + _aim * _bre;\
  117. }
  118. /**
  119. * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  120. * thus excluding the parts that can be derived by symmetry
  121. * @param output N/2 samples
  122. * @param input N/2 samples
  123. */
  124. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  125. {
  126. int k, n8, n4, n2, n, j;
  127. const uint16_t *revtab = s->revtab;
  128. const FFTSample *tcos = s->tcos;
  129. const FFTSample *tsin = s->tsin;
  130. const FFTSample *in1, *in2;
  131. FFTComplex *z = (FFTComplex *)output;
  132. n = 1 << s->mdct_bits;
  133. n2 = n >> 1;
  134. n4 = n >> 2;
  135. n8 = n >> 3;
  136. /* pre rotation */
  137. in1 = input;
  138. in2 = input + n2 - 1;
  139. for(k = 0; k < n4; k++) {
  140. j=revtab[k];
  141. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  142. in1 += 2;
  143. in2 -= 2;
  144. }
  145. ff_fft_calc(s, z);
  146. /* post rotation + reordering */
  147. for(k = 0; k < n8; k++) {
  148. FFTSample r0, i0, r1, i1;
  149. CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
  150. CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
  151. z[n8-k-1].re = r0;
  152. z[n8-k-1].im = i0;
  153. z[n8+k ].re = r1;
  154. z[n8+k ].im = i1;
  155. }
  156. }
  157. /**
  158. * Compute inverse MDCT of size N = 2^nbits
  159. * @param output N samples
  160. * @param input N/2 samples
  161. */
  162. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
  163. {
  164. int k;
  165. int n = 1 << s->mdct_bits;
  166. int n2 = n >> 1;
  167. int n4 = n >> 2;
  168. ff_imdct_half_c(s, output+n4, input);
  169. for(k = 0; k < n4; k++) {
  170. output[k] = -output[n2-k-1];
  171. output[n-k-1] = output[n2+k];
  172. }
  173. }
  174. /**
  175. * Compute MDCT of size N = 2^nbits
  176. * @param input N samples
  177. * @param out N/2 samples
  178. */
  179. void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
  180. {
  181. int i, j, n, n8, n4, n2, n3;
  182. FFTSample re, im;
  183. const uint16_t *revtab = s->revtab;
  184. const FFTSample *tcos = s->tcos;
  185. const FFTSample *tsin = s->tsin;
  186. FFTComplex *x = (FFTComplex *)out;
  187. n = 1 << s->mdct_bits;
  188. n2 = n >> 1;
  189. n4 = n >> 2;
  190. n8 = n >> 3;
  191. n3 = 3 * n4;
  192. /* pre rotation */
  193. for(i=0;i<n8;i++) {
  194. re = -input[2*i+3*n4] - input[n3-1-2*i];
  195. im = -input[n4+2*i] + input[n4-1-2*i];
  196. j = revtab[i];
  197. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  198. re = input[2*i] - input[n2-1-2*i];
  199. im = -(input[n2+2*i] + input[n-1-2*i]);
  200. j = revtab[n8 + i];
  201. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  202. }
  203. ff_fft_calc(s, x);
  204. /* post rotation */
  205. for(i=0;i<n8;i++) {
  206. FFTSample r0, i0, r1, i1;
  207. CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
  208. CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
  209. x[n8-i-1].re = r0;
  210. x[n8-i-1].im = i0;
  211. x[n8+i ].re = r1;
  212. x[n8+i ].im = i1;
  213. }
  214. }
  215. av_cold void ff_mdct_end(FFTContext *s)
  216. {
  217. av_freep(&s->tcos);
  218. ff_fft_end(s);
  219. }