You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1469 lines
47KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file libavcodec/huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #if HAVE_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. uint32_t pix_bgr_map[1<<VLC_BITS];
  69. VLC vlc[6]; //Y,U,V,YY,YU,YV
  70. AVFrame picture;
  71. uint8_t *bitstream_buffer;
  72. unsigned int bitstream_buffer_size;
  73. DSPContext dsp;
  74. }HYuvContext;
  75. static const unsigned char classic_shift_luma[] = {
  76. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  77. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  78. 69,68, 0
  79. };
  80. static const unsigned char classic_shift_chroma[] = {
  81. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  82. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  83. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  84. };
  85. static const unsigned char classic_add_luma[256] = {
  86. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  87. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  88. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  89. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  90. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  91. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  92. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  93. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  94. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  95. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  96. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  97. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  98. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  99. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  100. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  101. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  102. };
  103. static const unsigned char classic_add_chroma[256] = {
  104. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  105. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  106. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  107. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  108. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  109. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  110. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  111. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  112. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  113. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  114. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  115. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  116. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  117. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  118. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  119. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  120. };
  121. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  122. int i;
  123. if(w<32){
  124. for(i=0; i<w; i++){
  125. const int temp= src[i];
  126. dst[i]= temp - left;
  127. left= temp;
  128. }
  129. return left;
  130. }else{
  131. for(i=0; i<16; i++){
  132. const int temp= src[i];
  133. dst[i]= temp - left;
  134. left= temp;
  135. }
  136. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  137. return src[w-1];
  138. }
  139. }
  140. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  141. int i;
  142. int r,g,b;
  143. r= *red;
  144. g= *green;
  145. b= *blue;
  146. for(i=0; i<FFMIN(w,4); i++){
  147. const int rt= src[i*4+R];
  148. const int gt= src[i*4+G];
  149. const int bt= src[i*4+B];
  150. dst[i*4+R]= rt - r;
  151. dst[i*4+G]= gt - g;
  152. dst[i*4+B]= bt - b;
  153. r = rt;
  154. g = gt;
  155. b = bt;
  156. }
  157. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  158. *red= src[(w-1)*4+R];
  159. *green= src[(w-1)*4+G];
  160. *blue= src[(w-1)*4+B];
  161. }
  162. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  163. int i, val, repeat;
  164. for(i=0; i<256;){
  165. repeat= get_bits(gb, 3);
  166. val = get_bits(gb, 5);
  167. if(repeat==0)
  168. repeat= get_bits(gb, 8);
  169. //printf("%d %d\n", val, repeat);
  170. if(i+repeat > 256) {
  171. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  172. return -1;
  173. }
  174. while (repeat--)
  175. dst[i++] = val;
  176. }
  177. return 0;
  178. }
  179. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  180. int len, index;
  181. uint32_t bits=0;
  182. for(len=32; len>0; len--){
  183. for(index=0; index<256; index++){
  184. if(len_table[index]==len)
  185. dst[index]= bits++;
  186. }
  187. if(bits & 1){
  188. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  189. return -1;
  190. }
  191. bits >>= 1;
  192. }
  193. return 0;
  194. }
  195. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  196. typedef struct {
  197. uint64_t val;
  198. int name;
  199. } HeapElem;
  200. static void heap_sift(HeapElem *h, int root, int size)
  201. {
  202. while(root*2+1 < size) {
  203. int child = root*2+1;
  204. if(child < size-1 && h[child].val > h[child+1].val)
  205. child++;
  206. if(h[root].val > h[child].val) {
  207. FFSWAP(HeapElem, h[root], h[child]);
  208. root = child;
  209. } else
  210. break;
  211. }
  212. }
  213. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  214. HeapElem h[size];
  215. int up[2*size];
  216. int len[2*size];
  217. int offset, i, next;
  218. for(offset=1; ; offset<<=1){
  219. for(i=0; i<size; i++){
  220. h[i].name = i;
  221. h[i].val = (stats[i] << 8) + offset;
  222. }
  223. for(i=size/2-1; i>=0; i--)
  224. heap_sift(h, i, size);
  225. for(next=size; next<size*2-1; next++){
  226. // merge the two smallest entries, and put it back in the heap
  227. uint64_t min1v = h[0].val;
  228. up[h[0].name] = next;
  229. h[0].val = INT64_MAX;
  230. heap_sift(h, 0, size);
  231. up[h[0].name] = next;
  232. h[0].name = next;
  233. h[0].val += min1v;
  234. heap_sift(h, 0, size);
  235. }
  236. len[2*size-2] = 0;
  237. for(i=2*size-3; i>=size; i--)
  238. len[i] = len[up[i]] + 1;
  239. for(i=0; i<size; i++) {
  240. dst[i] = len[up[i]] + 1;
  241. if(dst[i] >= 32) break;
  242. }
  243. if(i==size) break;
  244. }
  245. }
  246. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  247. static void generate_joint_tables(HYuvContext *s){
  248. uint16_t symbols[1<<VLC_BITS];
  249. uint16_t bits[1<<VLC_BITS];
  250. uint8_t len[1<<VLC_BITS];
  251. if(s->bitstream_bpp < 24){
  252. int p, i, y, u;
  253. for(p=0; p<3; p++){
  254. for(i=y=0; y<256; y++){
  255. int len0 = s->len[0][y];
  256. int limit = VLC_BITS - len0;
  257. if(limit <= 0)
  258. continue;
  259. for(u=0; u<256; u++){
  260. int len1 = s->len[p][u];
  261. if(len1 > limit)
  262. continue;
  263. len[i] = len0 + len1;
  264. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  265. symbols[i] = (y<<8) + u;
  266. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  267. i++;
  268. }
  269. }
  270. free_vlc(&s->vlc[3+p]);
  271. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  272. }
  273. }else{
  274. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  275. int i, b, g, r, code;
  276. int p0 = s->decorrelate;
  277. int p1 = !s->decorrelate;
  278. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  279. // cover all the combinations that fit in 11 bits total, and it doesn't
  280. // matter if we miss a few rare codes.
  281. for(i=0, g=-16; g<16; g++){
  282. int len0 = s->len[p0][g&255];
  283. int limit0 = VLC_BITS - len0;
  284. if(limit0 < 2)
  285. continue;
  286. for(b=-16; b<16; b++){
  287. int len1 = s->len[p1][b&255];
  288. int limit1 = limit0 - len1;
  289. if(limit1 < 1)
  290. continue;
  291. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  292. for(r=-16; r<16; r++){
  293. int len2 = s->len[2][r&255];
  294. if(len2 > limit1)
  295. continue;
  296. len[i] = len0 + len1 + len2;
  297. bits[i] = (code << len2) + s->bits[2][r&255];
  298. if(s->decorrelate){
  299. map[i][G] = g;
  300. map[i][B] = g+b;
  301. map[i][R] = g+r;
  302. }else{
  303. map[i][B] = g;
  304. map[i][G] = b;
  305. map[i][R] = r;
  306. }
  307. i++;
  308. }
  309. }
  310. }
  311. free_vlc(&s->vlc[3]);
  312. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  313. }
  314. }
  315. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  316. GetBitContext gb;
  317. int i;
  318. init_get_bits(&gb, src, length*8);
  319. for(i=0; i<3; i++){
  320. if(read_len_table(s->len[i], &gb)<0)
  321. return -1;
  322. if(generate_bits_table(s->bits[i], s->len[i])<0){
  323. return -1;
  324. }
  325. #if 0
  326. for(j=0; j<256; j++){
  327. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  328. }
  329. #endif
  330. free_vlc(&s->vlc[i]);
  331. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  332. }
  333. generate_joint_tables(s);
  334. return (get_bits_count(&gb)+7)/8;
  335. }
  336. static int read_old_huffman_tables(HYuvContext *s){
  337. #if 1
  338. GetBitContext gb;
  339. int i;
  340. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  341. if(read_len_table(s->len[0], &gb)<0)
  342. return -1;
  343. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  344. if(read_len_table(s->len[1], &gb)<0)
  345. return -1;
  346. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  347. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  348. if(s->bitstream_bpp >= 24){
  349. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  350. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  351. }
  352. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  353. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  354. for(i=0; i<3; i++){
  355. free_vlc(&s->vlc[i]);
  356. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  357. }
  358. generate_joint_tables(s);
  359. return 0;
  360. #else
  361. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  362. return -1;
  363. #endif
  364. }
  365. static av_cold void alloc_temp(HYuvContext *s){
  366. int i;
  367. if(s->bitstream_bpp<24){
  368. for(i=0; i<3; i++){
  369. s->temp[i]= av_malloc(s->width + 16);
  370. }
  371. }else{
  372. s->temp[0]= av_malloc(4*s->width + 16);
  373. }
  374. }
  375. static av_cold int common_init(AVCodecContext *avctx){
  376. HYuvContext *s = avctx->priv_data;
  377. s->avctx= avctx;
  378. s->flags= avctx->flags;
  379. dsputil_init(&s->dsp, avctx);
  380. s->width= avctx->width;
  381. s->height= avctx->height;
  382. assert(s->width>0 && s->height>0);
  383. return 0;
  384. }
  385. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  386. static av_cold int decode_init(AVCodecContext *avctx)
  387. {
  388. HYuvContext *s = avctx->priv_data;
  389. common_init(avctx);
  390. memset(s->vlc, 0, 3*sizeof(VLC));
  391. avctx->coded_frame= &s->picture;
  392. s->interlaced= s->height > 288;
  393. s->bgr32=1;
  394. //if(avctx->extradata)
  395. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  396. if(avctx->extradata_size){
  397. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  398. s->version=1; // do such files exist at all?
  399. else
  400. s->version=2;
  401. }else
  402. s->version=0;
  403. if(s->version==2){
  404. int method, interlace;
  405. method= ((uint8_t*)avctx->extradata)[0];
  406. s->decorrelate= method&64 ? 1 : 0;
  407. s->predictor= method&63;
  408. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  409. if(s->bitstream_bpp==0)
  410. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  411. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  412. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  413. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  414. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  415. return -1;
  416. }else{
  417. switch(avctx->bits_per_coded_sample&7){
  418. case 1:
  419. s->predictor= LEFT;
  420. s->decorrelate= 0;
  421. break;
  422. case 2:
  423. s->predictor= LEFT;
  424. s->decorrelate= 1;
  425. break;
  426. case 3:
  427. s->predictor= PLANE;
  428. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  429. break;
  430. case 4:
  431. s->predictor= MEDIAN;
  432. s->decorrelate= 0;
  433. break;
  434. default:
  435. s->predictor= LEFT; //OLD
  436. s->decorrelate= 0;
  437. break;
  438. }
  439. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  440. s->context= 0;
  441. if(read_old_huffman_tables(s) < 0)
  442. return -1;
  443. }
  444. switch(s->bitstream_bpp){
  445. case 12:
  446. avctx->pix_fmt = PIX_FMT_YUV420P;
  447. break;
  448. case 16:
  449. if(s->yuy2){
  450. avctx->pix_fmt = PIX_FMT_YUYV422;
  451. }else{
  452. avctx->pix_fmt = PIX_FMT_YUV422P;
  453. }
  454. break;
  455. case 24:
  456. case 32:
  457. if(s->bgr32){
  458. avctx->pix_fmt = PIX_FMT_RGB32;
  459. }else{
  460. avctx->pix_fmt = PIX_FMT_BGR24;
  461. }
  462. break;
  463. default:
  464. assert(0);
  465. }
  466. alloc_temp(s);
  467. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  468. return 0;
  469. }
  470. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  471. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  472. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  473. int i;
  474. int index= 0;
  475. for(i=0; i<256;){
  476. int val= len[i];
  477. int repeat=0;
  478. for(; i<256 && len[i]==val && repeat<255; i++)
  479. repeat++;
  480. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  481. if(repeat>7){
  482. buf[index++]= val;
  483. buf[index++]= repeat;
  484. }else{
  485. buf[index++]= val | (repeat<<5);
  486. }
  487. }
  488. return index;
  489. }
  490. static av_cold int encode_init(AVCodecContext *avctx)
  491. {
  492. HYuvContext *s = avctx->priv_data;
  493. int i, j;
  494. common_init(avctx);
  495. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  496. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  497. s->version=2;
  498. avctx->coded_frame= &s->picture;
  499. switch(avctx->pix_fmt){
  500. case PIX_FMT_YUV420P:
  501. s->bitstream_bpp= 12;
  502. break;
  503. case PIX_FMT_YUV422P:
  504. s->bitstream_bpp= 16;
  505. break;
  506. case PIX_FMT_RGB32:
  507. s->bitstream_bpp= 24;
  508. break;
  509. default:
  510. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  511. return -1;
  512. }
  513. avctx->bits_per_coded_sample= s->bitstream_bpp;
  514. s->decorrelate= s->bitstream_bpp >= 24;
  515. s->predictor= avctx->prediction_method;
  516. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  517. if(avctx->context_model==1){
  518. s->context= avctx->context_model;
  519. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  520. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  521. return -1;
  522. }
  523. }else s->context= 0;
  524. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  525. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  526. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  527. return -1;
  528. }
  529. if(avctx->context_model){
  530. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  531. return -1;
  532. }
  533. if(s->interlaced != ( s->height > 288 ))
  534. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  535. }
  536. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  537. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  538. return -1;
  539. }
  540. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  541. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  542. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  543. if(s->context)
  544. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  545. ((uint8_t*)avctx->extradata)[3]= 0;
  546. s->avctx->extradata_size= 4;
  547. if(avctx->stats_in){
  548. char *p= avctx->stats_in;
  549. for(i=0; i<3; i++)
  550. for(j=0; j<256; j++)
  551. s->stats[i][j]= 1;
  552. for(;;){
  553. for(i=0; i<3; i++){
  554. char *next;
  555. for(j=0; j<256; j++){
  556. s->stats[i][j]+= strtol(p, &next, 0);
  557. if(next==p) return -1;
  558. p=next;
  559. }
  560. }
  561. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  562. }
  563. }else{
  564. for(i=0; i<3; i++)
  565. for(j=0; j<256; j++){
  566. int d= FFMIN(j, 256-j);
  567. s->stats[i][j]= 100000000/(d+1);
  568. }
  569. }
  570. for(i=0; i<3; i++){
  571. generate_len_table(s->len[i], s->stats[i], 256);
  572. if(generate_bits_table(s->bits[i], s->len[i])<0){
  573. return -1;
  574. }
  575. s->avctx->extradata_size+=
  576. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  577. }
  578. if(s->context){
  579. for(i=0; i<3; i++){
  580. int pels = s->width*s->height / (i?40:10);
  581. for(j=0; j<256; j++){
  582. int d= FFMIN(j, 256-j);
  583. s->stats[i][j]= pels/(d+1);
  584. }
  585. }
  586. }else{
  587. for(i=0; i<3; i++)
  588. for(j=0; j<256; j++)
  589. s->stats[i][j]= 0;
  590. }
  591. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  592. alloc_temp(s);
  593. s->picture_number=0;
  594. return 0;
  595. }
  596. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  597. /* TODO instead of restarting the read when the code isn't in the first level
  598. * of the joint table, jump into the 2nd level of the individual table. */
  599. #define READ_2PIX(dst0, dst1, plane1){\
  600. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  601. if(code != 0xffff){\
  602. dst0 = code>>8;\
  603. dst1 = code;\
  604. }else{\
  605. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  606. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  607. }\
  608. }
  609. static void decode_422_bitstream(HYuvContext *s, int count){
  610. int i;
  611. count/=2;
  612. if(count >= (get_bits_left(&s->gb))/(31*4)){
  613. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  614. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  615. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  616. }
  617. }else{
  618. for(i=0; i<count; i++){
  619. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  620. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  621. }
  622. }
  623. }
  624. static void decode_gray_bitstream(HYuvContext *s, int count){
  625. int i;
  626. count/=2;
  627. if(count >= (get_bits_left(&s->gb))/(31*2)){
  628. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  629. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  630. }
  631. }else{
  632. for(i=0; i<count; i++){
  633. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  634. }
  635. }
  636. }
  637. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  638. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  639. int i;
  640. const uint8_t *y = s->temp[0] + offset;
  641. const uint8_t *u = s->temp[1] + offset/2;
  642. const uint8_t *v = s->temp[2] + offset/2;
  643. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  644. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  645. return -1;
  646. }
  647. #define LOAD4\
  648. int y0 = y[2*i];\
  649. int y1 = y[2*i+1];\
  650. int u0 = u[i];\
  651. int v0 = v[i];
  652. count/=2;
  653. if(s->flags&CODEC_FLAG_PASS1){
  654. for(i=0; i<count; i++){
  655. LOAD4;
  656. s->stats[0][y0]++;
  657. s->stats[1][u0]++;
  658. s->stats[0][y1]++;
  659. s->stats[2][v0]++;
  660. }
  661. }
  662. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  663. return 0;
  664. if(s->context){
  665. for(i=0; i<count; i++){
  666. LOAD4;
  667. s->stats[0][y0]++;
  668. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  669. s->stats[1][u0]++;
  670. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  671. s->stats[0][y1]++;
  672. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  673. s->stats[2][v0]++;
  674. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  675. }
  676. }else{
  677. for(i=0; i<count; i++){
  678. LOAD4;
  679. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  680. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  681. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  682. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  683. }
  684. }
  685. return 0;
  686. }
  687. static int encode_gray_bitstream(HYuvContext *s, int count){
  688. int i;
  689. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  690. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  691. return -1;
  692. }
  693. #define LOAD2\
  694. int y0 = s->temp[0][2*i];\
  695. int y1 = s->temp[0][2*i+1];
  696. #define STAT2\
  697. s->stats[0][y0]++;\
  698. s->stats[0][y1]++;
  699. #define WRITE2\
  700. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  701. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  702. count/=2;
  703. if(s->flags&CODEC_FLAG_PASS1){
  704. for(i=0; i<count; i++){
  705. LOAD2;
  706. STAT2;
  707. }
  708. }
  709. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  710. return 0;
  711. if(s->context){
  712. for(i=0; i<count; i++){
  713. LOAD2;
  714. STAT2;
  715. WRITE2;
  716. }
  717. }else{
  718. for(i=0; i<count; i++){
  719. LOAD2;
  720. WRITE2;
  721. }
  722. }
  723. return 0;
  724. }
  725. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  726. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  727. int i;
  728. for(i=0; i<count; i++){
  729. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  730. if(code != -1){
  731. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  732. }else if(decorrelate){
  733. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  734. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  735. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  736. }else{
  737. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  738. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  739. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  740. }
  741. if(alpha)
  742. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  743. }
  744. }
  745. static void decode_bgr_bitstream(HYuvContext *s, int count){
  746. if(s->decorrelate){
  747. if(s->bitstream_bpp==24)
  748. decode_bgr_1(s, count, 1, 0);
  749. else
  750. decode_bgr_1(s, count, 1, 1);
  751. }else{
  752. if(s->bitstream_bpp==24)
  753. decode_bgr_1(s, count, 0, 0);
  754. else
  755. decode_bgr_1(s, count, 0, 1);
  756. }
  757. }
  758. static int encode_bgr_bitstream(HYuvContext *s, int count){
  759. int i;
  760. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  761. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  762. return -1;
  763. }
  764. #define LOAD3\
  765. int g= s->temp[0][4*i+G];\
  766. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  767. int r= (s->temp[0][4*i+R] - g) & 0xff;
  768. #define STAT3\
  769. s->stats[0][b]++;\
  770. s->stats[1][g]++;\
  771. s->stats[2][r]++;
  772. #define WRITE3\
  773. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  774. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  775. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  776. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  777. for(i=0; i<count; i++){
  778. LOAD3;
  779. STAT3;
  780. }
  781. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  782. for(i=0; i<count; i++){
  783. LOAD3;
  784. STAT3;
  785. WRITE3;
  786. }
  787. }else{
  788. for(i=0; i<count; i++){
  789. LOAD3;
  790. WRITE3;
  791. }
  792. }
  793. return 0;
  794. }
  795. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  796. static void draw_slice(HYuvContext *s, int y){
  797. int h, cy;
  798. int offset[4];
  799. if(s->avctx->draw_horiz_band==NULL)
  800. return;
  801. h= y - s->last_slice_end;
  802. y -= h;
  803. if(s->bitstream_bpp==12){
  804. cy= y>>1;
  805. }else{
  806. cy= y;
  807. }
  808. offset[0] = s->picture.linesize[0]*y;
  809. offset[1] = s->picture.linesize[1]*cy;
  810. offset[2] = s->picture.linesize[2]*cy;
  811. offset[3] = 0;
  812. emms_c();
  813. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  814. s->last_slice_end= y + h;
  815. }
  816. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  817. const uint8_t *buf = avpkt->data;
  818. int buf_size = avpkt->size;
  819. HYuvContext *s = avctx->priv_data;
  820. const int width= s->width;
  821. const int width2= s->width>>1;
  822. const int height= s->height;
  823. int fake_ystride, fake_ustride, fake_vstride;
  824. AVFrame * const p= &s->picture;
  825. int table_size= 0;
  826. AVFrame *picture = data;
  827. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  828. if (!s->bitstream_buffer)
  829. return AVERROR(ENOMEM);
  830. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  831. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  832. if(p->data[0])
  833. avctx->release_buffer(avctx, p);
  834. p->reference= 0;
  835. if(avctx->get_buffer(avctx, p) < 0){
  836. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  837. return -1;
  838. }
  839. if(s->context){
  840. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  841. if(table_size < 0)
  842. return -1;
  843. }
  844. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  845. return -1;
  846. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  847. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  848. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  849. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  850. s->last_slice_end= 0;
  851. if(s->bitstream_bpp<24){
  852. int y, cy;
  853. int lefty, leftu, leftv;
  854. int lefttopy, lefttopu, lefttopv;
  855. if(s->yuy2){
  856. p->data[0][3]= get_bits(&s->gb, 8);
  857. p->data[0][2]= get_bits(&s->gb, 8);
  858. p->data[0][1]= get_bits(&s->gb, 8);
  859. p->data[0][0]= get_bits(&s->gb, 8);
  860. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  861. return -1;
  862. }else{
  863. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  864. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  865. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  866. p->data[0][0]= get_bits(&s->gb, 8);
  867. switch(s->predictor){
  868. case LEFT:
  869. case PLANE:
  870. decode_422_bitstream(s, width-2);
  871. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  872. if(!(s->flags&CODEC_FLAG_GRAY)){
  873. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  874. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  875. }
  876. for(cy=y=1; y<s->height; y++,cy++){
  877. uint8_t *ydst, *udst, *vdst;
  878. if(s->bitstream_bpp==12){
  879. decode_gray_bitstream(s, width);
  880. ydst= p->data[0] + p->linesize[0]*y;
  881. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  882. if(s->predictor == PLANE){
  883. if(y>s->interlaced)
  884. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  885. }
  886. y++;
  887. if(y>=s->height) break;
  888. }
  889. draw_slice(s, y);
  890. ydst= p->data[0] + p->linesize[0]*y;
  891. udst= p->data[1] + p->linesize[1]*cy;
  892. vdst= p->data[2] + p->linesize[2]*cy;
  893. decode_422_bitstream(s, width);
  894. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  895. if(!(s->flags&CODEC_FLAG_GRAY)){
  896. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  897. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  898. }
  899. if(s->predictor == PLANE){
  900. if(cy>s->interlaced){
  901. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  902. if(!(s->flags&CODEC_FLAG_GRAY)){
  903. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  904. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  905. }
  906. }
  907. }
  908. }
  909. draw_slice(s, height);
  910. break;
  911. case MEDIAN:
  912. /* first line except first 2 pixels is left predicted */
  913. decode_422_bitstream(s, width-2);
  914. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  915. if(!(s->flags&CODEC_FLAG_GRAY)){
  916. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  917. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  918. }
  919. cy=y=1;
  920. /* second line is left predicted for interlaced case */
  921. if(s->interlaced){
  922. decode_422_bitstream(s, width);
  923. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  924. if(!(s->flags&CODEC_FLAG_GRAY)){
  925. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  926. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  927. }
  928. y++; cy++;
  929. }
  930. /* next 4 pixels are left predicted too */
  931. decode_422_bitstream(s, 4);
  932. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  933. if(!(s->flags&CODEC_FLAG_GRAY)){
  934. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  935. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  936. }
  937. /* next line except the first 4 pixels is median predicted */
  938. lefttopy= p->data[0][3];
  939. decode_422_bitstream(s, width-4);
  940. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  941. if(!(s->flags&CODEC_FLAG_GRAY)){
  942. lefttopu= p->data[1][1];
  943. lefttopv= p->data[2][1];
  944. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  945. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  946. }
  947. y++; cy++;
  948. for(; y<height; y++,cy++){
  949. uint8_t *ydst, *udst, *vdst;
  950. if(s->bitstream_bpp==12){
  951. while(2*cy > y){
  952. decode_gray_bitstream(s, width);
  953. ydst= p->data[0] + p->linesize[0]*y;
  954. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  955. y++;
  956. }
  957. if(y>=height) break;
  958. }
  959. draw_slice(s, y);
  960. decode_422_bitstream(s, width);
  961. ydst= p->data[0] + p->linesize[0]*y;
  962. udst= p->data[1] + p->linesize[1]*cy;
  963. vdst= p->data[2] + p->linesize[2]*cy;
  964. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  965. if(!(s->flags&CODEC_FLAG_GRAY)){
  966. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  967. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  968. }
  969. }
  970. draw_slice(s, height);
  971. break;
  972. }
  973. }
  974. }else{
  975. int y;
  976. int leftr, leftg, leftb;
  977. const int last_line= (height-1)*p->linesize[0];
  978. if(s->bitstream_bpp==32){
  979. skip_bits(&s->gb, 8);
  980. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  981. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  982. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  983. }else{
  984. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  985. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  986. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  987. skip_bits(&s->gb, 8);
  988. }
  989. if(s->bgr32){
  990. switch(s->predictor){
  991. case LEFT:
  992. case PLANE:
  993. decode_bgr_bitstream(s, width-1);
  994. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  995. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  996. decode_bgr_bitstream(s, width);
  997. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  998. if(s->predictor == PLANE){
  999. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1000. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1001. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1002. }
  1003. }
  1004. }
  1005. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1006. break;
  1007. default:
  1008. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1009. }
  1010. }else{
  1011. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1012. return -1;
  1013. }
  1014. }
  1015. emms_c();
  1016. *picture= *p;
  1017. *data_size = sizeof(AVFrame);
  1018. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1019. }
  1020. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1021. static int common_end(HYuvContext *s){
  1022. int i;
  1023. for(i=0; i<3; i++){
  1024. av_freep(&s->temp[i]);
  1025. }
  1026. return 0;
  1027. }
  1028. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1029. static av_cold int decode_end(AVCodecContext *avctx)
  1030. {
  1031. HYuvContext *s = avctx->priv_data;
  1032. int i;
  1033. if (s->picture.data[0])
  1034. avctx->release_buffer(avctx, &s->picture);
  1035. common_end(s);
  1036. av_freep(&s->bitstream_buffer);
  1037. for(i=0; i<6; i++){
  1038. free_vlc(&s->vlc[i]);
  1039. }
  1040. return 0;
  1041. }
  1042. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1043. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1044. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1045. HYuvContext *s = avctx->priv_data;
  1046. AVFrame *pict = data;
  1047. const int width= s->width;
  1048. const int width2= s->width>>1;
  1049. const int height= s->height;
  1050. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1051. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1052. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1053. AVFrame * const p= &s->picture;
  1054. int i, j, size=0;
  1055. *p = *pict;
  1056. p->pict_type= FF_I_TYPE;
  1057. p->key_frame= 1;
  1058. if(s->context){
  1059. for(i=0; i<3; i++){
  1060. generate_len_table(s->len[i], s->stats[i], 256);
  1061. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1062. return -1;
  1063. size+= store_table(s, s->len[i], &buf[size]);
  1064. }
  1065. for(i=0; i<3; i++)
  1066. for(j=0; j<256; j++)
  1067. s->stats[i][j] >>= 1;
  1068. }
  1069. init_put_bits(&s->pb, buf+size, buf_size-size);
  1070. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1071. int lefty, leftu, leftv, y, cy;
  1072. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1073. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1074. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1075. put_bits(&s->pb, 8, p->data[0][0]);
  1076. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1077. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1078. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1079. encode_422_bitstream(s, 2, width-2);
  1080. if(s->predictor==MEDIAN){
  1081. int lefttopy, lefttopu, lefttopv;
  1082. cy=y=1;
  1083. if(s->interlaced){
  1084. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1085. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1086. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1087. encode_422_bitstream(s, 0, width);
  1088. y++; cy++;
  1089. }
  1090. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1091. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1092. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1093. encode_422_bitstream(s, 0, 4);
  1094. lefttopy= p->data[0][3];
  1095. lefttopu= p->data[1][1];
  1096. lefttopv= p->data[2][1];
  1097. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1098. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1099. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1100. encode_422_bitstream(s, 0, width-4);
  1101. y++; cy++;
  1102. for(; y<height; y++,cy++){
  1103. uint8_t *ydst, *udst, *vdst;
  1104. if(s->bitstream_bpp==12){
  1105. while(2*cy > y){
  1106. ydst= p->data[0] + p->linesize[0]*y;
  1107. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1108. encode_gray_bitstream(s, width);
  1109. y++;
  1110. }
  1111. if(y>=height) break;
  1112. }
  1113. ydst= p->data[0] + p->linesize[0]*y;
  1114. udst= p->data[1] + p->linesize[1]*cy;
  1115. vdst= p->data[2] + p->linesize[2]*cy;
  1116. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1117. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1118. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1119. encode_422_bitstream(s, 0, width);
  1120. }
  1121. }else{
  1122. for(cy=y=1; y<height; y++,cy++){
  1123. uint8_t *ydst, *udst, *vdst;
  1124. /* encode a luma only line & y++ */
  1125. if(s->bitstream_bpp==12){
  1126. ydst= p->data[0] + p->linesize[0]*y;
  1127. if(s->predictor == PLANE && s->interlaced < y){
  1128. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1129. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1130. }else{
  1131. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1132. }
  1133. encode_gray_bitstream(s, width);
  1134. y++;
  1135. if(y>=height) break;
  1136. }
  1137. ydst= p->data[0] + p->linesize[0]*y;
  1138. udst= p->data[1] + p->linesize[1]*cy;
  1139. vdst= p->data[2] + p->linesize[2]*cy;
  1140. if(s->predictor == PLANE && s->interlaced < cy){
  1141. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1142. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1143. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1144. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1145. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1146. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1147. }else{
  1148. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1149. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1150. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1151. }
  1152. encode_422_bitstream(s, 0, width);
  1153. }
  1154. }
  1155. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1156. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1157. const int stride = -p->linesize[0];
  1158. const int fake_stride = -fake_ystride;
  1159. int y;
  1160. int leftr, leftg, leftb;
  1161. put_bits(&s->pb, 8, leftr= data[R]);
  1162. put_bits(&s->pb, 8, leftg= data[G]);
  1163. put_bits(&s->pb, 8, leftb= data[B]);
  1164. put_bits(&s->pb, 8, 0);
  1165. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1166. encode_bgr_bitstream(s, width-1);
  1167. for(y=1; y<s->height; y++){
  1168. uint8_t *dst = data + y*stride;
  1169. if(s->predictor == PLANE && s->interlaced < y){
  1170. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1171. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1172. }else{
  1173. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1174. }
  1175. encode_bgr_bitstream(s, width);
  1176. }
  1177. }else{
  1178. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1179. }
  1180. emms_c();
  1181. size+= (put_bits_count(&s->pb)+31)/8;
  1182. put_bits(&s->pb, 16, 0);
  1183. put_bits(&s->pb, 15, 0);
  1184. size/= 4;
  1185. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1186. int j;
  1187. char *p= avctx->stats_out;
  1188. char *end= p + 1024*30;
  1189. for(i=0; i<3; i++){
  1190. for(j=0; j<256; j++){
  1191. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1192. p+= strlen(p);
  1193. s->stats[i][j]= 0;
  1194. }
  1195. snprintf(p, end-p, "\n");
  1196. p++;
  1197. }
  1198. } else
  1199. avctx->stats_out[0] = '\0';
  1200. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1201. flush_put_bits(&s->pb);
  1202. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1203. }
  1204. s->picture_number++;
  1205. return size*4;
  1206. }
  1207. static av_cold int encode_end(AVCodecContext *avctx)
  1208. {
  1209. HYuvContext *s = avctx->priv_data;
  1210. common_end(s);
  1211. av_freep(&avctx->extradata);
  1212. av_freep(&avctx->stats_out);
  1213. return 0;
  1214. }
  1215. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1216. #if CONFIG_HUFFYUV_DECODER
  1217. AVCodec huffyuv_decoder = {
  1218. "huffyuv",
  1219. CODEC_TYPE_VIDEO,
  1220. CODEC_ID_HUFFYUV,
  1221. sizeof(HYuvContext),
  1222. decode_init,
  1223. NULL,
  1224. decode_end,
  1225. decode_frame,
  1226. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1227. NULL,
  1228. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1229. };
  1230. #endif
  1231. #if CONFIG_FFVHUFF_DECODER
  1232. AVCodec ffvhuff_decoder = {
  1233. "ffvhuff",
  1234. CODEC_TYPE_VIDEO,
  1235. CODEC_ID_FFVHUFF,
  1236. sizeof(HYuvContext),
  1237. decode_init,
  1238. NULL,
  1239. decode_end,
  1240. decode_frame,
  1241. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1242. NULL,
  1243. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1244. };
  1245. #endif
  1246. #if CONFIG_HUFFYUV_ENCODER
  1247. AVCodec huffyuv_encoder = {
  1248. "huffyuv",
  1249. CODEC_TYPE_VIDEO,
  1250. CODEC_ID_HUFFYUV,
  1251. sizeof(HYuvContext),
  1252. encode_init,
  1253. encode_frame,
  1254. encode_end,
  1255. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1256. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1257. };
  1258. #endif
  1259. #if CONFIG_FFVHUFF_ENCODER
  1260. AVCodec ffvhuff_encoder = {
  1261. "ffvhuff",
  1262. CODEC_TYPE_VIDEO,
  1263. CODEC_ID_FFVHUFF,
  1264. sizeof(HYuvContext),
  1265. encode_init,
  1266. encode_frame,
  1267. encode_end,
  1268. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1269. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1270. };
  1271. #endif