You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

364 lines
9.1KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "dsputil.h"
  28. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  29. #if !CONFIG_HARDCODED_TABLES
  30. COSTABLE(16);
  31. COSTABLE(32);
  32. COSTABLE(64);
  33. COSTABLE(128);
  34. COSTABLE(256);
  35. COSTABLE(512);
  36. COSTABLE(1024);
  37. COSTABLE(2048);
  38. COSTABLE(4096);
  39. COSTABLE(8192);
  40. COSTABLE(16384);
  41. COSTABLE(32768);
  42. COSTABLE(65536);
  43. #endif
  44. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  45. NULL, NULL, NULL, NULL,
  46. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  47. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  48. };
  49. static int split_radix_permutation(int i, int n, int inverse)
  50. {
  51. int m;
  52. if(n <= 2) return i&1;
  53. m = n >> 1;
  54. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  55. m >>= 1;
  56. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  57. else return split_radix_permutation(i, m, inverse)*4 - 1;
  58. }
  59. av_cold void ff_init_ff_cos_tabs(int index)
  60. {
  61. #if !CONFIG_HARDCODED_TABLES
  62. int i;
  63. int m = 1<<index;
  64. double freq = 2*M_PI/m;
  65. FFTSample *tab = ff_cos_tabs[index];
  66. for(i=0; i<=m/4; i++)
  67. tab[i] = cos(i*freq);
  68. for(i=1; i<m/4; i++)
  69. tab[m/2-i] = tab[i];
  70. #endif
  71. }
  72. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  73. {
  74. int i, j, m, n;
  75. float alpha, c1, s1, s2;
  76. int av_unused has_vectors;
  77. if (nbits < 2 || nbits > 16)
  78. goto fail;
  79. s->nbits = nbits;
  80. n = 1 << nbits;
  81. s->tmp_buf = NULL;
  82. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  83. if (!s->exptab)
  84. goto fail;
  85. s->revtab = av_malloc(n * sizeof(uint16_t));
  86. if (!s->revtab)
  87. goto fail;
  88. s->inverse = inverse;
  89. s2 = inverse ? 1.0 : -1.0;
  90. s->fft_permute = ff_fft_permute_c;
  91. s->fft_calc = ff_fft_calc_c;
  92. s->imdct_calc = ff_imdct_calc_c;
  93. s->imdct_half = ff_imdct_half_c;
  94. s->mdct_calc = ff_mdct_calc_c;
  95. s->exptab1 = NULL;
  96. s->split_radix = 1;
  97. if (ARCH_ARM) ff_fft_init_arm(s);
  98. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  99. if (HAVE_MMX) ff_fft_init_mmx(s);
  100. if (s->split_radix) {
  101. for(j=4; j<=nbits; j++) {
  102. ff_init_ff_cos_tabs(j);
  103. }
  104. for(i=0; i<n; i++)
  105. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  106. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  107. } else {
  108. int np, nblocks, np2, l;
  109. FFTComplex *q;
  110. for(i=0; i<(n/2); i++) {
  111. alpha = 2 * M_PI * (float)i / (float)n;
  112. c1 = cos(alpha);
  113. s1 = sin(alpha) * s2;
  114. s->exptab[i].re = c1;
  115. s->exptab[i].im = s1;
  116. }
  117. np = 1 << nbits;
  118. nblocks = np >> 3;
  119. np2 = np >> 1;
  120. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  121. if (!s->exptab1)
  122. goto fail;
  123. q = s->exptab1;
  124. do {
  125. for(l = 0; l < np2; l += 2 * nblocks) {
  126. *q++ = s->exptab[l];
  127. *q++ = s->exptab[l + nblocks];
  128. q->re = -s->exptab[l].im;
  129. q->im = s->exptab[l].re;
  130. q++;
  131. q->re = -s->exptab[l + nblocks].im;
  132. q->im = s->exptab[l + nblocks].re;
  133. q++;
  134. }
  135. nblocks = nblocks >> 1;
  136. } while (nblocks != 0);
  137. av_freep(&s->exptab);
  138. /* compute bit reverse table */
  139. for(i=0;i<n;i++) {
  140. m=0;
  141. for(j=0;j<nbits;j++) {
  142. m |= ((i >> j) & 1) << (nbits-j-1);
  143. }
  144. s->revtab[i]=m;
  145. }
  146. }
  147. return 0;
  148. fail:
  149. av_freep(&s->revtab);
  150. av_freep(&s->exptab);
  151. av_freep(&s->exptab1);
  152. av_freep(&s->tmp_buf);
  153. return -1;
  154. }
  155. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  156. {
  157. int j, k, np;
  158. FFTComplex tmp;
  159. const uint16_t *revtab = s->revtab;
  160. np = 1 << s->nbits;
  161. if (s->tmp_buf) {
  162. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  163. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  164. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  165. return;
  166. }
  167. /* reverse */
  168. for(j=0;j<np;j++) {
  169. k = revtab[j];
  170. if (k < j) {
  171. tmp = z[k];
  172. z[k] = z[j];
  173. z[j] = tmp;
  174. }
  175. }
  176. }
  177. av_cold void ff_fft_end(FFTContext *s)
  178. {
  179. av_freep(&s->revtab);
  180. av_freep(&s->exptab);
  181. av_freep(&s->exptab1);
  182. av_freep(&s->tmp_buf);
  183. }
  184. #define sqrthalf (float)M_SQRT1_2
  185. #define BF(x,y,a,b) {\
  186. x = a - b;\
  187. y = a + b;\
  188. }
  189. #define BUTTERFLIES(a0,a1,a2,a3) {\
  190. BF(t3, t5, t5, t1);\
  191. BF(a2.re, a0.re, a0.re, t5);\
  192. BF(a3.im, a1.im, a1.im, t3);\
  193. BF(t4, t6, t2, t6);\
  194. BF(a3.re, a1.re, a1.re, t4);\
  195. BF(a2.im, a0.im, a0.im, t6);\
  196. }
  197. // force loading all the inputs before storing any.
  198. // this is slightly slower for small data, but avoids store->load aliasing
  199. // for addresses separated by large powers of 2.
  200. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  201. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  202. BF(t3, t5, t5, t1);\
  203. BF(a2.re, a0.re, r0, t5);\
  204. BF(a3.im, a1.im, i1, t3);\
  205. BF(t4, t6, t2, t6);\
  206. BF(a3.re, a1.re, r1, t4);\
  207. BF(a2.im, a0.im, i0, t6);\
  208. }
  209. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  210. t1 = a2.re * wre + a2.im * wim;\
  211. t2 = a2.im * wre - a2.re * wim;\
  212. t5 = a3.re * wre - a3.im * wim;\
  213. t6 = a3.im * wre + a3.re * wim;\
  214. BUTTERFLIES(a0,a1,a2,a3)\
  215. }
  216. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  217. t1 = a2.re;\
  218. t2 = a2.im;\
  219. t5 = a3.re;\
  220. t6 = a3.im;\
  221. BUTTERFLIES(a0,a1,a2,a3)\
  222. }
  223. /* z[0...8n-1], w[1...2n-1] */
  224. #define PASS(name)\
  225. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  226. {\
  227. FFTSample t1, t2, t3, t4, t5, t6;\
  228. int o1 = 2*n;\
  229. int o2 = 4*n;\
  230. int o3 = 6*n;\
  231. const FFTSample *wim = wre+o1;\
  232. n--;\
  233. \
  234. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  235. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  236. do {\
  237. z += 2;\
  238. wre += 2;\
  239. wim -= 2;\
  240. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  241. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  242. } while(--n);\
  243. }
  244. PASS(pass)
  245. #undef BUTTERFLIES
  246. #define BUTTERFLIES BUTTERFLIES_BIG
  247. PASS(pass_big)
  248. #define DECL_FFT(n,n2,n4)\
  249. static void fft##n(FFTComplex *z)\
  250. {\
  251. fft##n2(z);\
  252. fft##n4(z+n4*2);\
  253. fft##n4(z+n4*3);\
  254. pass(z,ff_cos_##n,n4/2);\
  255. }
  256. static void fft4(FFTComplex *z)
  257. {
  258. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  259. BF(t3, t1, z[0].re, z[1].re);
  260. BF(t8, t6, z[3].re, z[2].re);
  261. BF(z[2].re, z[0].re, t1, t6);
  262. BF(t4, t2, z[0].im, z[1].im);
  263. BF(t7, t5, z[2].im, z[3].im);
  264. BF(z[3].im, z[1].im, t4, t8);
  265. BF(z[3].re, z[1].re, t3, t7);
  266. BF(z[2].im, z[0].im, t2, t5);
  267. }
  268. static void fft8(FFTComplex *z)
  269. {
  270. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  271. fft4(z);
  272. BF(t1, z[5].re, z[4].re, -z[5].re);
  273. BF(t2, z[5].im, z[4].im, -z[5].im);
  274. BF(t3, z[7].re, z[6].re, -z[7].re);
  275. BF(t4, z[7].im, z[6].im, -z[7].im);
  276. BF(t8, t1, t3, t1);
  277. BF(t7, t2, t2, t4);
  278. BF(z[4].re, z[0].re, z[0].re, t1);
  279. BF(z[4].im, z[0].im, z[0].im, t2);
  280. BF(z[6].re, z[2].re, z[2].re, t7);
  281. BF(z[6].im, z[2].im, z[2].im, t8);
  282. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  283. }
  284. #if !CONFIG_SMALL
  285. static void fft16(FFTComplex *z)
  286. {
  287. FFTSample t1, t2, t3, t4, t5, t6;
  288. fft8(z);
  289. fft4(z+8);
  290. fft4(z+12);
  291. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  292. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  293. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  294. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  295. }
  296. #else
  297. DECL_FFT(16,8,4)
  298. #endif
  299. DECL_FFT(32,16,8)
  300. DECL_FFT(64,32,16)
  301. DECL_FFT(128,64,32)
  302. DECL_FFT(256,128,64)
  303. DECL_FFT(512,256,128)
  304. #if !CONFIG_SMALL
  305. #define pass pass_big
  306. #endif
  307. DECL_FFT(1024,512,256)
  308. DECL_FFT(2048,1024,512)
  309. DECL_FFT(4096,2048,1024)
  310. DECL_FFT(8192,4096,2048)
  311. DECL_FFT(16384,8192,4096)
  312. DECL_FFT(32768,16384,8192)
  313. DECL_FFT(65536,32768,16384)
  314. static void (* const fft_dispatch[])(FFTComplex*) = {
  315. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  316. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  317. };
  318. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  319. {
  320. fft_dispatch[s->nbits-2](z);
  321. }