You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

996 lines
39KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. typedef int DWTELEM;
  36. typedef short IDWTELEM;
  37. void fdct_ifast (DCTELEM *data);
  38. void fdct_ifast248 (DCTELEM *data);
  39. void ff_jpeg_fdct_islow (DCTELEM *data);
  40. void ff_fdct248_islow (DCTELEM *data);
  41. void j_rev_dct (DCTELEM *data);
  42. void j_rev_dct4 (DCTELEM *data);
  43. void j_rev_dct2 (DCTELEM *data);
  44. void j_rev_dct1 (DCTELEM *data);
  45. void ff_wmv2_idct_c(DCTELEM *data);
  46. void ff_fdct_mmx(DCTELEM *block);
  47. void ff_fdct_mmx2(DCTELEM *block);
  48. void ff_fdct_sse2(DCTELEM *block);
  49. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  53. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  55. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  58. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  59. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  60. const float *win, float add_bias, int len);
  61. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  62. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  63. /* encoding scans */
  64. extern const uint8_t ff_alternate_horizontal_scan[64];
  65. extern const uint8_t ff_alternate_vertical_scan[64];
  66. extern const uint8_t ff_zigzag_direct[64];
  67. extern const uint8_t ff_zigzag248_direct[64];
  68. /* pixel operations */
  69. #define MAX_NEG_CROP 1024
  70. /* temporary */
  71. extern uint32_t ff_squareTbl[512];
  72. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  73. /* VP3 DSP functions */
  74. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  75. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  76. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  77. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  78. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  79. /* VP6 DSP functions */
  80. void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
  81. const int16_t *h_weights, const int16_t *v_weights);
  82. /* 1/2^n downscaling functions from imgconvert.c */
  83. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  84. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  85. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  86. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  87. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  88. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  89. /* minimum alignment rules ;)
  90. If you notice errors in the align stuff, need more alignment for some ASM code
  91. for some CPU or need to use a function with less aligned data then send a mail
  92. to the ffmpeg-devel mailing list, ...
  93. !warning These alignments might not match reality, (missing attribute((align))
  94. stuff somewhere possible).
  95. I (Michael) did not check them, these are just the alignments which I think
  96. could be reached easily ...
  97. !future video codecs might need functions with less strict alignment
  98. */
  99. /*
  100. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  101. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  102. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  103. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  104. void clear_blocks_c(DCTELEM *blocks);
  105. */
  106. /* add and put pixel (decoding) */
  107. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  108. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  109. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  110. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  111. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  112. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  113. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  114. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  115. #define DEF_OLD_QPEL(name)\
  116. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  117. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  118. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  119. DEF_OLD_QPEL(qpel16_mc11_old_c)
  120. DEF_OLD_QPEL(qpel16_mc31_old_c)
  121. DEF_OLD_QPEL(qpel16_mc12_old_c)
  122. DEF_OLD_QPEL(qpel16_mc32_old_c)
  123. DEF_OLD_QPEL(qpel16_mc13_old_c)
  124. DEF_OLD_QPEL(qpel16_mc33_old_c)
  125. DEF_OLD_QPEL(qpel8_mc11_old_c)
  126. DEF_OLD_QPEL(qpel8_mc31_old_c)
  127. DEF_OLD_QPEL(qpel8_mc12_old_c)
  128. DEF_OLD_QPEL(qpel8_mc32_old_c)
  129. DEF_OLD_QPEL(qpel8_mc13_old_c)
  130. DEF_OLD_QPEL(qpel8_mc33_old_c)
  131. #define CALL_2X_PIXELS(a, b, n)\
  132. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  133. b(block , pixels , line_size, h);\
  134. b(block+n, pixels+n, line_size, h);\
  135. }
  136. /* motion estimation */
  137. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  138. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  139. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  140. // for snow slices
  141. typedef struct slice_buffer_s slice_buffer;
  142. /**
  143. * Scantable.
  144. */
  145. typedef struct ScanTable{
  146. const uint8_t *scantable;
  147. uint8_t permutated[64];
  148. uint8_t raster_end[64];
  149. #if ARCH_PPC
  150. /** Used by dct_quantize_altivec to find last-non-zero */
  151. DECLARE_ALIGNED(16, uint8_t, inverse[64]);
  152. #endif
  153. } ScanTable;
  154. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  155. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  156. int block_w, int block_h,
  157. int src_x, int src_y, int w, int h);
  158. /**
  159. * DSPContext.
  160. */
  161. typedef struct DSPContext {
  162. /* pixel ops : interface with DCT */
  163. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  164. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  165. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  166. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  167. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  168. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  169. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  170. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  171. /**
  172. * translational global motion compensation.
  173. */
  174. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  175. /**
  176. * global motion compensation.
  177. */
  178. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  179. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  180. void (*clear_block)(DCTELEM *block/*align 16*/);
  181. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  182. int (*pix_sum)(uint8_t * pix, int line_size);
  183. int (*pix_norm1)(uint8_t * pix, int line_size);
  184. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  185. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  186. me_cmp_func sse[6];
  187. me_cmp_func hadamard8_diff[6];
  188. me_cmp_func dct_sad[6];
  189. me_cmp_func quant_psnr[6];
  190. me_cmp_func bit[6];
  191. me_cmp_func rd[6];
  192. me_cmp_func vsad[6];
  193. me_cmp_func vsse[6];
  194. me_cmp_func nsse[6];
  195. me_cmp_func w53[6];
  196. me_cmp_func w97[6];
  197. me_cmp_func dct_max[6];
  198. me_cmp_func dct264_sad[6];
  199. me_cmp_func me_pre_cmp[6];
  200. me_cmp_func me_cmp[6];
  201. me_cmp_func me_sub_cmp[6];
  202. me_cmp_func mb_cmp[6];
  203. me_cmp_func ildct_cmp[6]; //only width 16 used
  204. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  205. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  206. int size);
  207. /**
  208. * Halfpel motion compensation with rounding (a+b+1)>>1.
  209. * this is an array[4][4] of motion compensation functions for 4
  210. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  211. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  212. * @param block destination where the result is stored
  213. * @param pixels source
  214. * @param line_size number of bytes in a horizontal line of block
  215. * @param h height
  216. */
  217. op_pixels_func put_pixels_tab[4][4];
  218. /**
  219. * Halfpel motion compensation with rounding (a+b+1)>>1.
  220. * This is an array[4][4] of motion compensation functions for 4
  221. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  222. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  223. * @param block destination into which the result is averaged (a+b+1)>>1
  224. * @param pixels source
  225. * @param line_size number of bytes in a horizontal line of block
  226. * @param h height
  227. */
  228. op_pixels_func avg_pixels_tab[4][4];
  229. /**
  230. * Halfpel motion compensation with no rounding (a+b)>>1.
  231. * this is an array[2][4] of motion compensation functions for 2
  232. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  233. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  234. * @param block destination where the result is stored
  235. * @param pixels source
  236. * @param line_size number of bytes in a horizontal line of block
  237. * @param h height
  238. */
  239. op_pixels_func put_no_rnd_pixels_tab[4][4];
  240. /**
  241. * Halfpel motion compensation with no rounding (a+b)>>1.
  242. * this is an array[2][4] of motion compensation functions for 2
  243. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  244. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  245. * @param block destination into which the result is averaged (a+b)>>1
  246. * @param pixels source
  247. * @param line_size number of bytes in a horizontal line of block
  248. * @param h height
  249. */
  250. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  251. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  252. /**
  253. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  254. * this is an array[12] of motion compensation functions for the 9 thirdpe
  255. * positions<br>
  256. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  257. * @param block destination where the result is stored
  258. * @param pixels source
  259. * @param line_size number of bytes in a horizontal line of block
  260. * @param h height
  261. */
  262. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  263. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  264. qpel_mc_func put_qpel_pixels_tab[2][16];
  265. qpel_mc_func avg_qpel_pixels_tab[2][16];
  266. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  267. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  268. qpel_mc_func put_mspel_pixels_tab[8];
  269. /**
  270. * h264 Chroma MC
  271. */
  272. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  273. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  274. /* This is really one func used in VC-1 decoding */
  275. h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
  276. h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
  277. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  278. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  279. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  280. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  281. h264_weight_func weight_h264_pixels_tab[10];
  282. h264_biweight_func biweight_h264_pixels_tab[10];
  283. /* AVS specific */
  284. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  285. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  286. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  287. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  288. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  289. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  290. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  291. me_cmp_func pix_abs[2][4];
  292. /* huffyuv specific */
  293. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  294. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  295. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  296. /**
  297. * subtract huffyuv's variant of median prediction
  298. * note, this might read from src1[-1], src2[-1]
  299. */
  300. void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
  301. void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
  302. int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
  303. void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue);
  304. /* this might write to dst[w] */
  305. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  306. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  307. void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
  308. void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
  309. /* v/h_loop_filter_luma_intra: align 16 */
  310. void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  311. void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  312. void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
  313. void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
  314. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  315. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  316. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  317. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  318. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  319. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  320. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  321. void (*h261_loop_filter)(uint8_t *src, int stride);
  322. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  323. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  324. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  325. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  326. void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
  327. const int16_t *h_weights,const int16_t *v_weights);
  328. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  329. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  330. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  331. /* no alignment needed */
  332. void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  333. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  334. void (*vector_fmul)(float *dst, const float *src, int len);
  335. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  336. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  337. void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
  338. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  339. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  340. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  341. void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
  342. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  343. /**
  344. * Multiply a vector of floats by a scalar float. Source and
  345. * destination vectors must overlap exactly or not at all.
  346. * @param dst result vector, 16-byte aligned
  347. * @param src input vector, 16-byte aligned
  348. * @param mul scalar value
  349. * @param len length of vector, multiple of 4
  350. */
  351. void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
  352. int len);
  353. /**
  354. * Multiply a vector of floats by concatenated short vectors of
  355. * floats and by a scalar float. Source and destination vectors
  356. * must overlap exactly or not at all.
  357. * [0]: short vectors of length 2, 8-byte aligned
  358. * [1]: short vectors of length 4, 16-byte aligned
  359. * @param dst output vector, 16-byte aligned
  360. * @param src input vector, 16-byte aligned
  361. * @param sv array of pointers to short vectors
  362. * @param mul scalar value
  363. * @param len number of elements in src and dst, multiple of 4
  364. */
  365. void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
  366. const float **sv, float mul, int len);
  367. /**
  368. * Multiply short vectors of floats by a scalar float, store
  369. * concatenated result.
  370. * [0]: short vectors of length 2, 8-byte aligned
  371. * [1]: short vectors of length 4, 16-byte aligned
  372. * @param dst output vector, 16-byte aligned
  373. * @param sv array of pointers to short vectors
  374. * @param mul scalar value
  375. * @param len number of output elements, multiple of 4
  376. */
  377. void (*sv_fmul_scalar[2])(float *dst, const float **sv,
  378. float mul, int len);
  379. /**
  380. * Calculate the scalar product of two vectors of floats.
  381. * @param v1 first vector, 16-byte aligned
  382. * @param v2 second vector, 16-byte aligned
  383. * @param len length of vectors, multiple of 4
  384. */
  385. float (*scalarproduct_float)(const float *v1, const float *v2, int len);
  386. /**
  387. * Calculate the sum and difference of two vectors of floats.
  388. * @param v1 first input vector, sum output, 16-byte aligned
  389. * @param v2 second input vector, difference output, 16-byte aligned
  390. * @param len length of vectors, multiple of 4
  391. */
  392. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  393. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  394. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  395. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  396. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  397. /* (I)DCT */
  398. void (*fdct)(DCTELEM *block/* align 16*/);
  399. void (*fdct248)(DCTELEM *block/* align 16*/);
  400. /* IDCT really*/
  401. void (*idct)(DCTELEM *block/* align 16*/);
  402. /**
  403. * block -> idct -> clip to unsigned 8 bit -> dest.
  404. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  405. * @param line_size size in bytes of a horizontal line of dest
  406. */
  407. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  408. /**
  409. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  410. * @param line_size size in bytes of a horizontal line of dest
  411. */
  412. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  413. /**
  414. * idct input permutation.
  415. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  416. * IDCT)
  417. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  418. * with the zigzag/alternate scan<br>
  419. * an example to avoid confusion:
  420. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  421. * - (x -> referece dct -> reference idct -> x)
  422. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  423. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  424. */
  425. uint8_t idct_permutation[64];
  426. int idct_permutation_type;
  427. #define FF_NO_IDCT_PERM 1
  428. #define FF_LIBMPEG2_IDCT_PERM 2
  429. #define FF_SIMPLE_IDCT_PERM 3
  430. #define FF_TRANSPOSE_IDCT_PERM 4
  431. #define FF_PARTTRANS_IDCT_PERM 5
  432. #define FF_SSE2_IDCT_PERM 6
  433. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  434. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  435. #define BASIS_SHIFT 16
  436. #define RECON_SHIFT 6
  437. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  438. #define EDGE_WIDTH 16
  439. /* h264 functions */
  440. /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
  441. NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
  442. The reason for above, is that no 2 out of one list may use a different permutation.
  443. */
  444. void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  445. void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  446. void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  447. void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  448. void (*h264_dct)(DCTELEM block[4][4]);
  449. void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  450. void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  451. void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  452. void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  453. /* snow wavelet */
  454. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  455. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  456. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  457. void (*prefetch)(void *mem, int stride, int h);
  458. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  459. /* mlp/truehd functions */
  460. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  461. int firorder, int iirorder,
  462. unsigned int filter_shift, int32_t mask, int blocksize,
  463. int32_t *sample_buffer);
  464. /* vc1 functions */
  465. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  466. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  467. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  468. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  469. void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  470. void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  471. void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  472. void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
  473. void (*vc1_v_overlap)(uint8_t* src, int stride);
  474. void (*vc1_h_overlap)(uint8_t* src, int stride);
  475. void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
  476. void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
  477. void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
  478. void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
  479. void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
  480. void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
  481. /* put 8x8 block with bicubic interpolation and quarterpel precision
  482. * last argument is actually round value instead of height
  483. */
  484. op_pixels_func put_vc1_mspel_pixels_tab[16];
  485. op_pixels_func avg_vc1_mspel_pixels_tab[16];
  486. /* intrax8 functions */
  487. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  488. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  489. int * range, int * sum, int edges);
  490. /* ape functions */
  491. /**
  492. * Add contents of the second vector to the first one.
  493. * @param len length of vectors, should be multiple of 16
  494. */
  495. void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  496. /**
  497. * Add contents of the second vector to the first one.
  498. * @param len length of vectors, should be multiple of 16
  499. */
  500. void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  501. /**
  502. * Calculate scalar product of two vectors.
  503. * @param len length of vectors, should be multiple of 16
  504. * @param shift number of bits to discard from product
  505. */
  506. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  507. /* rv30 functions */
  508. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  509. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  510. /* rv40 functions */
  511. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  512. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  513. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  514. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  515. } DSPContext;
  516. void dsputil_static_init(void);
  517. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  518. int ff_check_alignment(void);
  519. /**
  520. * permute block according to permuatation.
  521. * @param last last non zero element in scantable order
  522. */
  523. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  524. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  525. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  526. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  527. {
  528. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  529. }
  530. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  531. {
  532. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  533. }
  534. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  535. switch(type&0xFF){
  536. default:
  537. case FF_CMP_SAD:
  538. return lambda>>FF_LAMBDA_SHIFT;
  539. case FF_CMP_DCT:
  540. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  541. case FF_CMP_W53:
  542. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  543. case FF_CMP_W97:
  544. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  545. case FF_CMP_SATD:
  546. case FF_CMP_DCT264:
  547. return (2*lambda)>>FF_LAMBDA_SHIFT;
  548. case FF_CMP_RD:
  549. case FF_CMP_PSNR:
  550. case FF_CMP_SSE:
  551. case FF_CMP_NSSE:
  552. return lambda2>>FF_LAMBDA_SHIFT;
  553. case FF_CMP_BIT:
  554. return 1;
  555. }
  556. }
  557. /**
  558. * Empty mmx state.
  559. * this must be called between any dsp function and float/double code.
  560. * for example sin(); dsp->idct_put(); emms_c(); cos()
  561. */
  562. #define emms_c()
  563. /* should be defined by architectures supporting
  564. one or more MultiMedia extension */
  565. int mm_support(void);
  566. extern int mm_flags;
  567. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  568. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  569. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  570. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  571. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  572. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  573. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  574. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  575. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  576. #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
  577. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
  578. #if HAVE_MMX
  579. #undef emms_c
  580. static inline void emms(void)
  581. {
  582. __asm__ volatile ("emms;":::"memory");
  583. }
  584. #define emms_c() \
  585. {\
  586. if (mm_flags & FF_MM_MMX)\
  587. emms();\
  588. }
  589. #elif ARCH_ARM
  590. #if HAVE_NEON
  591. # define STRIDE_ALIGN 16
  592. #endif
  593. #elif ARCH_PPC
  594. #define STRIDE_ALIGN 16
  595. #elif HAVE_MMI
  596. #define STRIDE_ALIGN 16
  597. #else
  598. #define mm_flags 0
  599. #define mm_support() 0
  600. #endif
  601. #ifndef STRIDE_ALIGN
  602. # define STRIDE_ALIGN 8
  603. #endif
  604. /* PSNR */
  605. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  606. int orig_linesize[3], int coded_linesize,
  607. AVCodecContext *avctx);
  608. /* FFT computation */
  609. /* NOTE: soon integer code will be added, so you must use the
  610. FFTSample type */
  611. typedef float FFTSample;
  612. typedef struct FFTComplex {
  613. FFTSample re, im;
  614. } FFTComplex;
  615. typedef struct FFTContext {
  616. int nbits;
  617. int inverse;
  618. uint16_t *revtab;
  619. FFTComplex *exptab;
  620. FFTComplex *exptab1; /* only used by SSE code */
  621. FFTComplex *tmp_buf;
  622. int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
  623. int mdct_bits; /* n = 2^nbits */
  624. /* pre/post rotation tables */
  625. FFTSample *tcos;
  626. FFTSample *tsin;
  627. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  628. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  629. void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  630. void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  631. void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
  632. int split_radix;
  633. int permutation;
  634. #define FF_MDCT_PERM_NONE 0
  635. #define FF_MDCT_PERM_INTERLEAVE 1
  636. } FFTContext;
  637. #if CONFIG_HARDCODED_TABLES
  638. #define COSTABLE_CONST const
  639. #define SINTABLE_CONST const
  640. #else
  641. #define COSTABLE_CONST
  642. #define SINTABLE_CONST
  643. #endif
  644. #define COSTABLE(size) \
  645. COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size[size/2])
  646. #define SINTABLE(size) \
  647. SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size[size/2])
  648. extern COSTABLE(16);
  649. extern COSTABLE(32);
  650. extern COSTABLE(64);
  651. extern COSTABLE(128);
  652. extern COSTABLE(256);
  653. extern COSTABLE(512);
  654. extern COSTABLE(1024);
  655. extern COSTABLE(2048);
  656. extern COSTABLE(4096);
  657. extern COSTABLE(8192);
  658. extern COSTABLE(16384);
  659. extern COSTABLE(32768);
  660. extern COSTABLE(65536);
  661. extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17];
  662. /**
  663. * Initializes the cosine table in ff_cos_tabs[index]
  664. * \param index index in ff_cos_tabs array of the table to initialize
  665. */
  666. void ff_init_ff_cos_tabs(int index);
  667. extern SINTABLE(16);
  668. extern SINTABLE(32);
  669. extern SINTABLE(64);
  670. extern SINTABLE(128);
  671. extern SINTABLE(256);
  672. extern SINTABLE(512);
  673. extern SINTABLE(1024);
  674. extern SINTABLE(2048);
  675. extern SINTABLE(4096);
  676. extern SINTABLE(8192);
  677. extern SINTABLE(16384);
  678. extern SINTABLE(32768);
  679. extern SINTABLE(65536);
  680. /**
  681. * Sets up a complex FFT.
  682. * @param nbits log2 of the length of the input array
  683. * @param inverse if 0 perform the forward transform, if 1 perform the inverse
  684. */
  685. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  686. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  687. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  688. void ff_fft_init_altivec(FFTContext *s);
  689. void ff_fft_init_mmx(FFTContext *s);
  690. void ff_fft_init_arm(FFTContext *s);
  691. /**
  692. * Do the permutation needed BEFORE calling ff_fft_calc().
  693. */
  694. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  695. {
  696. s->fft_permute(s, z);
  697. }
  698. /**
  699. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  700. * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
  701. */
  702. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  703. {
  704. s->fft_calc(s, z);
  705. }
  706. void ff_fft_end(FFTContext *s);
  707. /* MDCT computation */
  708. static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
  709. {
  710. s->imdct_calc(s, output, input);
  711. }
  712. static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
  713. {
  714. s->imdct_half(s, output, input);
  715. }
  716. static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
  717. const FFTSample *input)
  718. {
  719. s->mdct_calc(s, output, input);
  720. }
  721. /**
  722. * Generate a Kaiser-Bessel Derived Window.
  723. * @param window pointer to half window
  724. * @param alpha determines window shape
  725. * @param n size of half window
  726. */
  727. void ff_kbd_window_init(float *window, float alpha, int n);
  728. /**
  729. * Generate a sine window.
  730. * @param window pointer to half window
  731. * @param n size of half window
  732. */
  733. void ff_sine_window_init(float *window, int n);
  734. extern float ff_sine_32 [ 32];
  735. extern float ff_sine_64 [ 64];
  736. extern float ff_sine_128 [ 128];
  737. extern float ff_sine_256 [ 256];
  738. extern float ff_sine_512 [ 512];
  739. extern float ff_sine_1024[1024];
  740. extern float ff_sine_2048[2048];
  741. extern float ff_sine_4096[4096];
  742. extern float * const ff_sine_windows[13];
  743. int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
  744. void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  745. void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  746. void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
  747. void ff_mdct_end(FFTContext *s);
  748. /* Real Discrete Fourier Transform */
  749. enum RDFTransformType {
  750. RDFT,
  751. IRDFT,
  752. RIDFT,
  753. IRIDFT,
  754. };
  755. typedef struct {
  756. int nbits;
  757. int inverse;
  758. int sign_convention;
  759. /* pre/post rotation tables */
  760. const FFTSample *tcos;
  761. SINTABLE_CONST FFTSample *tsin;
  762. FFTContext fft;
  763. } RDFTContext;
  764. /**
  765. * Sets up a real FFT.
  766. * @param nbits log2 of the length of the input array
  767. * @param trans the type of transform
  768. */
  769. int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
  770. void ff_rdft_calc(RDFTContext *s, FFTSample *data);
  771. void ff_rdft_end(RDFTContext *s);
  772. #define WRAPPER8_16(name8, name16)\
  773. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  774. return name8(s, dst , src , stride, h)\
  775. +name8(s, dst+8 , src+8 , stride, h);\
  776. }
  777. #define WRAPPER8_16_SQ(name8, name16)\
  778. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  779. int score=0;\
  780. score +=name8(s, dst , src , stride, 8);\
  781. score +=name8(s, dst+8 , src+8 , stride, 8);\
  782. if(h==16){\
  783. dst += 8*stride;\
  784. src += 8*stride;\
  785. score +=name8(s, dst , src , stride, 8);\
  786. score +=name8(s, dst+8 , src+8 , stride, 8);\
  787. }\
  788. return score;\
  789. }
  790. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  791. {
  792. int i;
  793. for(i=0; i<h; i++)
  794. {
  795. AV_WN16(dst , AV_RN16(src ));
  796. dst+=dstStride;
  797. src+=srcStride;
  798. }
  799. }
  800. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  801. {
  802. int i;
  803. for(i=0; i<h; i++)
  804. {
  805. AV_WN32(dst , AV_RN32(src ));
  806. dst+=dstStride;
  807. src+=srcStride;
  808. }
  809. }
  810. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  811. {
  812. int i;
  813. for(i=0; i<h; i++)
  814. {
  815. AV_WN32(dst , AV_RN32(src ));
  816. AV_WN32(dst+4 , AV_RN32(src+4 ));
  817. dst+=dstStride;
  818. src+=srcStride;
  819. }
  820. }
  821. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  822. {
  823. int i;
  824. for(i=0; i<h; i++)
  825. {
  826. AV_WN32(dst , AV_RN32(src ));
  827. AV_WN32(dst+4 , AV_RN32(src+4 ));
  828. dst[8]= src[8];
  829. dst+=dstStride;
  830. src+=srcStride;
  831. }
  832. }
  833. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  834. {
  835. int i;
  836. for(i=0; i<h; i++)
  837. {
  838. AV_WN32(dst , AV_RN32(src ));
  839. AV_WN32(dst+4 , AV_RN32(src+4 ));
  840. AV_WN32(dst+8 , AV_RN32(src+8 ));
  841. AV_WN32(dst+12, AV_RN32(src+12));
  842. dst+=dstStride;
  843. src+=srcStride;
  844. }
  845. }
  846. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  847. {
  848. int i;
  849. for(i=0; i<h; i++)
  850. {
  851. AV_WN32(dst , AV_RN32(src ));
  852. AV_WN32(dst+4 , AV_RN32(src+4 ));
  853. AV_WN32(dst+8 , AV_RN32(src+8 ));
  854. AV_WN32(dst+12, AV_RN32(src+12));
  855. dst[16]= src[16];
  856. dst+=dstStride;
  857. src+=srcStride;
  858. }
  859. }
  860. #endif /* AVCODEC_DSPUTIL_H */