You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1026 lines
32KB

  1. /*
  2. * Atrac 3 compatible decoder
  3. * Copyright (c) 2006-2008 Maxim Poliakovski
  4. * Copyright (c) 2006-2008 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/atrac3.c
  24. * Atrac 3 compatible decoder.
  25. * This decoder handles Sony's ATRAC3 data.
  26. *
  27. * Container formats used to store atrac 3 data:
  28. * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
  29. *
  30. * To use this decoder, a calling application must supply the extradata
  31. * bytes provided in the containers above.
  32. */
  33. #include <math.h>
  34. #include <stddef.h>
  35. #include <stdio.h>
  36. #include "avcodec.h"
  37. #include "get_bits.h"
  38. #include "dsputil.h"
  39. #include "bytestream.h"
  40. #include "atrac.h"
  41. #include "atrac3data.h"
  42. #define JOINT_STEREO 0x12
  43. #define STEREO 0x2
  44. /* These structures are needed to store the parsed gain control data. */
  45. typedef struct {
  46. int num_gain_data;
  47. int levcode[8];
  48. int loccode[8];
  49. } gain_info;
  50. typedef struct {
  51. gain_info gBlock[4];
  52. } gain_block;
  53. typedef struct {
  54. int pos;
  55. int numCoefs;
  56. float coef[8];
  57. } tonal_component;
  58. typedef struct {
  59. int bandsCoded;
  60. int numComponents;
  61. tonal_component components[64];
  62. float prevFrame[1024];
  63. int gcBlkSwitch;
  64. gain_block gainBlock[2];
  65. DECLARE_ALIGNED_16(float, spectrum[1024]);
  66. DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
  67. float delayBuf1[46]; ///<qmf delay buffers
  68. float delayBuf2[46];
  69. float delayBuf3[46];
  70. } channel_unit;
  71. typedef struct {
  72. GetBitContext gb;
  73. //@{
  74. /** stream data */
  75. int channels;
  76. int codingMode;
  77. int bit_rate;
  78. int sample_rate;
  79. int samples_per_channel;
  80. int samples_per_frame;
  81. int bits_per_frame;
  82. int bytes_per_frame;
  83. int pBs;
  84. channel_unit* pUnits;
  85. //@}
  86. //@{
  87. /** joint-stereo related variables */
  88. int matrix_coeff_index_prev[4];
  89. int matrix_coeff_index_now[4];
  90. int matrix_coeff_index_next[4];
  91. int weighting_delay[6];
  92. //@}
  93. //@{
  94. /** data buffers */
  95. float outSamples[2048];
  96. uint8_t* decoded_bytes_buffer;
  97. float tempBuf[1070];
  98. //@}
  99. //@{
  100. /** extradata */
  101. int atrac3version;
  102. int delay;
  103. int scrambled_stream;
  104. int frame_factor;
  105. //@}
  106. } ATRAC3Context;
  107. static DECLARE_ALIGNED_16(float,mdct_window[512]);
  108. static VLC spectral_coeff_tab[7];
  109. static float gain_tab1[16];
  110. static float gain_tab2[31];
  111. static FFTContext mdct_ctx;
  112. static DSPContext dsp;
  113. /**
  114. * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
  115. * caused by the reverse spectra of the QMF.
  116. *
  117. * @param pInput float input
  118. * @param pOutput float output
  119. * @param odd_band 1 if the band is an odd band
  120. */
  121. static void IMLT(float *pInput, float *pOutput, int odd_band)
  122. {
  123. int i;
  124. if (odd_band) {
  125. /**
  126. * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
  127. * or it gives better compression to do it this way.
  128. * FIXME: It should be possible to handle this in ff_imdct_calc
  129. * for that to happen a modification of the prerotation step of
  130. * all SIMD code and C code is needed.
  131. * Or fix the functions before so they generate a pre reversed spectrum.
  132. */
  133. for (i=0; i<128; i++)
  134. FFSWAP(float, pInput[i], pInput[255-i]);
  135. }
  136. ff_imdct_calc(&mdct_ctx,pOutput,pInput);
  137. /* Perform windowing on the output. */
  138. dsp.vector_fmul(pOutput,mdct_window,512);
  139. }
  140. /**
  141. * Atrac 3 indata descrambling, only used for data coming from the rm container
  142. *
  143. * @param in pointer to 8 bit array of indata
  144. * @param bits amount of bits
  145. * @param out pointer to 8 bit array of outdata
  146. */
  147. static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
  148. int i, off;
  149. uint32_t c;
  150. const uint32_t* buf;
  151. uint32_t* obuf = (uint32_t*) out;
  152. off = (intptr_t)inbuffer & 3;
  153. buf = (const uint32_t*) (inbuffer - off);
  154. c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
  155. bytes += 3 + off;
  156. for (i = 0; i < bytes/4; i++)
  157. obuf[i] = c ^ buf[i];
  158. if (off)
  159. av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
  160. return off;
  161. }
  162. static av_cold void init_atrac3_transforms(ATRAC3Context *q) {
  163. float enc_window[256];
  164. int i;
  165. /* Generate the mdct window, for details see
  166. * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
  167. for (i=0 ; i<256; i++)
  168. enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
  169. if (!mdct_window[0])
  170. for (i=0 ; i<256; i++) {
  171. mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
  172. mdct_window[511-i] = mdct_window[i];
  173. }
  174. /* Initialize the MDCT transform. */
  175. ff_mdct_init(&mdct_ctx, 9, 1, 1.0);
  176. }
  177. /**
  178. * Atrac3 uninit, free all allocated memory
  179. */
  180. static av_cold int atrac3_decode_close(AVCodecContext *avctx)
  181. {
  182. ATRAC3Context *q = avctx->priv_data;
  183. av_free(q->pUnits);
  184. av_free(q->decoded_bytes_buffer);
  185. return 0;
  186. }
  187. /**
  188. / * Mantissa decoding
  189. *
  190. * @param gb the GetBit context
  191. * @param selector what table is the output values coded with
  192. * @param codingFlag constant length coding or variable length coding
  193. * @param mantissas mantissa output table
  194. * @param numCodes amount of values to get
  195. */
  196. static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
  197. {
  198. int numBits, cnt, code, huffSymb;
  199. if (selector == 1)
  200. numCodes /= 2;
  201. if (codingFlag != 0) {
  202. /* constant length coding (CLC) */
  203. numBits = CLCLengthTab[selector];
  204. if (selector > 1) {
  205. for (cnt = 0; cnt < numCodes; cnt++) {
  206. if (numBits)
  207. code = get_sbits(gb, numBits);
  208. else
  209. code = 0;
  210. mantissas[cnt] = code;
  211. }
  212. } else {
  213. for (cnt = 0; cnt < numCodes; cnt++) {
  214. if (numBits)
  215. code = get_bits(gb, numBits); //numBits is always 4 in this case
  216. else
  217. code = 0;
  218. mantissas[cnt*2] = seTab_0[code >> 2];
  219. mantissas[cnt*2+1] = seTab_0[code & 3];
  220. }
  221. }
  222. } else {
  223. /* variable length coding (VLC) */
  224. if (selector != 1) {
  225. for (cnt = 0; cnt < numCodes; cnt++) {
  226. huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
  227. huffSymb += 1;
  228. code = huffSymb >> 1;
  229. if (huffSymb & 1)
  230. code = -code;
  231. mantissas[cnt] = code;
  232. }
  233. } else {
  234. for (cnt = 0; cnt < numCodes; cnt++) {
  235. huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
  236. mantissas[cnt*2] = decTable1[huffSymb*2];
  237. mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
  238. }
  239. }
  240. }
  241. }
  242. /**
  243. * Restore the quantized band spectrum coefficients
  244. *
  245. * @param gb the GetBit context
  246. * @param pOut decoded band spectrum
  247. * @return outSubbands subband counter, fix for broken specification/files
  248. */
  249. static int decodeSpectrum (GetBitContext *gb, float *pOut)
  250. {
  251. int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
  252. int subband_vlc_index[32], SF_idxs[32];
  253. int mantissas[128];
  254. float SF;
  255. numSubbands = get_bits(gb, 5); // number of coded subbands
  256. codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
  257. /* Get the VLC selector table for the subbands, 0 means not coded. */
  258. for (cnt = 0; cnt <= numSubbands; cnt++)
  259. subband_vlc_index[cnt] = get_bits(gb, 3);
  260. /* Read the scale factor indexes from the stream. */
  261. for (cnt = 0; cnt <= numSubbands; cnt++) {
  262. if (subband_vlc_index[cnt] != 0)
  263. SF_idxs[cnt] = get_bits(gb, 6);
  264. }
  265. for (cnt = 0; cnt <= numSubbands; cnt++) {
  266. first = subbandTab[cnt];
  267. last = subbandTab[cnt+1];
  268. subbWidth = last - first;
  269. if (subband_vlc_index[cnt] != 0) {
  270. /* Decode spectral coefficients for this subband. */
  271. /* TODO: This can be done faster is several blocks share the
  272. * same VLC selector (subband_vlc_index) */
  273. readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
  274. /* Decode the scale factor for this subband. */
  275. SF = sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
  276. /* Inverse quantize the coefficients. */
  277. for (pIn=mantissas ; first<last; first++, pIn++)
  278. pOut[first] = *pIn * SF;
  279. } else {
  280. /* This subband was not coded, so zero the entire subband. */
  281. memset(pOut+first, 0, subbWidth*sizeof(float));
  282. }
  283. }
  284. /* Clear the subbands that were not coded. */
  285. first = subbandTab[cnt];
  286. memset(pOut+first, 0, (1024 - first) * sizeof(float));
  287. return numSubbands;
  288. }
  289. /**
  290. * Restore the quantized tonal components
  291. *
  292. * @param gb the GetBit context
  293. * @param pComponent tone component
  294. * @param numBands amount of coded bands
  295. */
  296. static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
  297. {
  298. int i,j,k,cnt;
  299. int components, coding_mode_selector, coding_mode, coded_values_per_component;
  300. int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
  301. int band_flags[4], mantissa[8];
  302. float *pCoef;
  303. float scalefactor;
  304. int component_count = 0;
  305. components = get_bits(gb,5);
  306. /* no tonal components */
  307. if (components == 0)
  308. return 0;
  309. coding_mode_selector = get_bits(gb,2);
  310. if (coding_mode_selector == 2)
  311. return -1;
  312. coding_mode = coding_mode_selector & 1;
  313. for (i = 0; i < components; i++) {
  314. for (cnt = 0; cnt <= numBands; cnt++)
  315. band_flags[cnt] = get_bits1(gb);
  316. coded_values_per_component = get_bits(gb,3);
  317. quant_step_index = get_bits(gb,3);
  318. if (quant_step_index <= 1)
  319. return -1;
  320. if (coding_mode_selector == 3)
  321. coding_mode = get_bits1(gb);
  322. for (j = 0; j < (numBands + 1) * 4; j++) {
  323. if (band_flags[j >> 2] == 0)
  324. continue;
  325. coded_components = get_bits(gb,3);
  326. for (k=0; k<coded_components; k++) {
  327. sfIndx = get_bits(gb,6);
  328. pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
  329. max_coded_values = 1024 - pComponent[component_count].pos;
  330. coded_values = coded_values_per_component + 1;
  331. coded_values = FFMIN(max_coded_values,coded_values);
  332. scalefactor = sf_table[sfIndx] * iMaxQuant[quant_step_index];
  333. readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
  334. pComponent[component_count].numCoefs = coded_values;
  335. /* inverse quant */
  336. pCoef = pComponent[component_count].coef;
  337. for (cnt = 0; cnt < coded_values; cnt++)
  338. pCoef[cnt] = mantissa[cnt] * scalefactor;
  339. component_count++;
  340. }
  341. }
  342. }
  343. return component_count;
  344. }
  345. /**
  346. * Decode gain parameters for the coded bands
  347. *
  348. * @param gb the GetBit context
  349. * @param pGb the gainblock for the current band
  350. * @param numBands amount of coded bands
  351. */
  352. static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
  353. {
  354. int i, cf, numData;
  355. int *pLevel, *pLoc;
  356. gain_info *pGain = pGb->gBlock;
  357. for (i=0 ; i<=numBands; i++)
  358. {
  359. numData = get_bits(gb,3);
  360. pGain[i].num_gain_data = numData;
  361. pLevel = pGain[i].levcode;
  362. pLoc = pGain[i].loccode;
  363. for (cf = 0; cf < numData; cf++){
  364. pLevel[cf]= get_bits(gb,4);
  365. pLoc [cf]= get_bits(gb,5);
  366. if(cf && pLoc[cf] <= pLoc[cf-1])
  367. return -1;
  368. }
  369. }
  370. /* Clear the unused blocks. */
  371. for (; i<4 ; i++)
  372. pGain[i].num_gain_data = 0;
  373. return 0;
  374. }
  375. /**
  376. * Apply gain parameters and perform the MDCT overlapping part
  377. *
  378. * @param pIn input float buffer
  379. * @param pPrev previous float buffer to perform overlap against
  380. * @param pOut output float buffer
  381. * @param pGain1 current band gain info
  382. * @param pGain2 next band gain info
  383. */
  384. static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
  385. {
  386. /* gain compensation function */
  387. float gain1, gain2, gain_inc;
  388. int cnt, numdata, nsample, startLoc, endLoc;
  389. if (pGain2->num_gain_data == 0)
  390. gain1 = 1.0;
  391. else
  392. gain1 = gain_tab1[pGain2->levcode[0]];
  393. if (pGain1->num_gain_data == 0) {
  394. for (cnt = 0; cnt < 256; cnt++)
  395. pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
  396. } else {
  397. numdata = pGain1->num_gain_data;
  398. pGain1->loccode[numdata] = 32;
  399. pGain1->levcode[numdata] = 4;
  400. nsample = 0; // current sample = 0
  401. for (cnt = 0; cnt < numdata; cnt++) {
  402. startLoc = pGain1->loccode[cnt] * 8;
  403. endLoc = startLoc + 8;
  404. gain2 = gain_tab1[pGain1->levcode[cnt]];
  405. gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
  406. /* interpolate */
  407. for (; nsample < startLoc; nsample++)
  408. pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
  409. /* interpolation is done over eight samples */
  410. for (; nsample < endLoc; nsample++) {
  411. pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
  412. gain2 *= gain_inc;
  413. }
  414. }
  415. for (; nsample < 256; nsample++)
  416. pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
  417. }
  418. /* Delay for the overlapping part. */
  419. memcpy(pPrev, &pIn[256], 256*sizeof(float));
  420. }
  421. /**
  422. * Combine the tonal band spectrum and regular band spectrum
  423. * Return position of the last tonal coefficient
  424. *
  425. * @param pSpectrum output spectrum buffer
  426. * @param numComponents amount of tonal components
  427. * @param pComponent tonal components for this band
  428. */
  429. static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
  430. {
  431. int cnt, i, lastPos = -1;
  432. float *pIn, *pOut;
  433. for (cnt = 0; cnt < numComponents; cnt++){
  434. lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
  435. pIn = pComponent[cnt].coef;
  436. pOut = &(pSpectrum[pComponent[cnt].pos]);
  437. for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
  438. pOut[i] += pIn[i];
  439. }
  440. return lastPos;
  441. }
  442. #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
  443. static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
  444. {
  445. int i, band, nsample, s1, s2;
  446. float c1, c2;
  447. float mc1_l, mc1_r, mc2_l, mc2_r;
  448. for (i=0,band = 0; band < 4*256; band+=256,i++) {
  449. s1 = pPrevCode[i];
  450. s2 = pCurrCode[i];
  451. nsample = 0;
  452. if (s1 != s2) {
  453. /* Selector value changed, interpolation needed. */
  454. mc1_l = matrixCoeffs[s1*2];
  455. mc1_r = matrixCoeffs[s1*2+1];
  456. mc2_l = matrixCoeffs[s2*2];
  457. mc2_r = matrixCoeffs[s2*2+1];
  458. /* Interpolation is done over the first eight samples. */
  459. for(; nsample < 8; nsample++) {
  460. c1 = su1[band+nsample];
  461. c2 = su2[band+nsample];
  462. c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
  463. su1[band+nsample] = c2;
  464. su2[band+nsample] = c1 * 2.0 - c2;
  465. }
  466. }
  467. /* Apply the matrix without interpolation. */
  468. switch (s2) {
  469. case 0: /* M/S decoding */
  470. for (; nsample < 256; nsample++) {
  471. c1 = su1[band+nsample];
  472. c2 = su2[band+nsample];
  473. su1[band+nsample] = c2 * 2.0;
  474. su2[band+nsample] = (c1 - c2) * 2.0;
  475. }
  476. break;
  477. case 1:
  478. for (; nsample < 256; nsample++) {
  479. c1 = su1[band+nsample];
  480. c2 = su2[band+nsample];
  481. su1[band+nsample] = (c1 + c2) * 2.0;
  482. su2[band+nsample] = c2 * -2.0;
  483. }
  484. break;
  485. case 2:
  486. case 3:
  487. for (; nsample < 256; nsample++) {
  488. c1 = su1[band+nsample];
  489. c2 = su2[band+nsample];
  490. su1[band+nsample] = c1 + c2;
  491. su2[band+nsample] = c1 - c2;
  492. }
  493. break;
  494. default:
  495. assert(0);
  496. }
  497. }
  498. }
  499. static void getChannelWeights (int indx, int flag, float ch[2]){
  500. if (indx == 7) {
  501. ch[0] = 1.0;
  502. ch[1] = 1.0;
  503. } else {
  504. ch[0] = (float)(indx & 7) / 7.0;
  505. ch[1] = sqrt(2 - ch[0]*ch[0]);
  506. if(flag)
  507. FFSWAP(float, ch[0], ch[1]);
  508. }
  509. }
  510. static void channelWeighting (float *su1, float *su2, int *p3)
  511. {
  512. int band, nsample;
  513. /* w[x][y] y=0 is left y=1 is right */
  514. float w[2][2];
  515. if (p3[1] != 7 || p3[3] != 7){
  516. getChannelWeights(p3[1], p3[0], w[0]);
  517. getChannelWeights(p3[3], p3[2], w[1]);
  518. for(band = 1; band < 4; band++) {
  519. /* scale the channels by the weights */
  520. for(nsample = 0; nsample < 8; nsample++) {
  521. su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
  522. su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
  523. }
  524. for(; nsample < 256; nsample++) {
  525. su1[band*256+nsample] *= w[1][0];
  526. su2[band*256+nsample] *= w[1][1];
  527. }
  528. }
  529. }
  530. }
  531. /**
  532. * Decode a Sound Unit
  533. *
  534. * @param gb the GetBit context
  535. * @param pSnd the channel unit to be used
  536. * @param pOut the decoded samples before IQMF in float representation
  537. * @param channelNum channel number
  538. * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
  539. */
  540. static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
  541. {
  542. int band, result=0, numSubbands, lastTonal, numBands;
  543. if (codingMode == JOINT_STEREO && channelNum == 1) {
  544. if (get_bits(gb,2) != 3) {
  545. av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
  546. return -1;
  547. }
  548. } else {
  549. if (get_bits(gb,6) != 0x28) {
  550. av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
  551. return -1;
  552. }
  553. }
  554. /* number of coded QMF bands */
  555. pSnd->bandsCoded = get_bits(gb,2);
  556. result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
  557. if (result) return result;
  558. pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
  559. if (pSnd->numComponents == -1) return -1;
  560. numSubbands = decodeSpectrum (gb, pSnd->spectrum);
  561. /* Merge the decoded spectrum and tonal components. */
  562. lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
  563. /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
  564. numBands = (subbandTab[numSubbands] - 1) >> 8;
  565. if (lastTonal >= 0)
  566. numBands = FFMAX((lastTonal + 256) >> 8, numBands);
  567. /* Reconstruct time domain samples. */
  568. for (band=0; band<4; band++) {
  569. /* Perform the IMDCT step without overlapping. */
  570. if (band <= numBands) {
  571. IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
  572. } else
  573. memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
  574. /* gain compensation and overlapping */
  575. gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
  576. &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
  577. &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
  578. }
  579. /* Swap the gain control buffers for the next frame. */
  580. pSnd->gcBlkSwitch ^= 1;
  581. return 0;
  582. }
  583. /**
  584. * Frame handling
  585. *
  586. * @param q Atrac3 private context
  587. * @param databuf the input data
  588. */
  589. static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf)
  590. {
  591. int result, i;
  592. float *p1, *p2, *p3, *p4;
  593. uint8_t *ptr1;
  594. if (q->codingMode == JOINT_STEREO) {
  595. /* channel coupling mode */
  596. /* decode Sound Unit 1 */
  597. init_get_bits(&q->gb,databuf,q->bits_per_frame);
  598. result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
  599. if (result != 0)
  600. return (result);
  601. /* Framedata of the su2 in the joint-stereo mode is encoded in
  602. * reverse byte order so we need to swap it first. */
  603. if (databuf == q->decoded_bytes_buffer) {
  604. uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
  605. ptr1 = q->decoded_bytes_buffer;
  606. for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
  607. FFSWAP(uint8_t,*ptr1,*ptr2);
  608. }
  609. } else {
  610. const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
  611. for (i = 0; i < q->bytes_per_frame; i++)
  612. q->decoded_bytes_buffer[i] = *ptr2--;
  613. }
  614. /* Skip the sync codes (0xF8). */
  615. ptr1 = q->decoded_bytes_buffer;
  616. for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
  617. if (i >= q->bytes_per_frame)
  618. return -1;
  619. }
  620. /* set the bitstream reader at the start of the second Sound Unit*/
  621. init_get_bits(&q->gb,ptr1,q->bits_per_frame);
  622. /* Fill the Weighting coeffs delay buffer */
  623. memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
  624. q->weighting_delay[4] = get_bits1(&q->gb);
  625. q->weighting_delay[5] = get_bits(&q->gb,3);
  626. for (i = 0; i < 4; i++) {
  627. q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
  628. q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
  629. q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
  630. }
  631. /* Decode Sound Unit 2. */
  632. result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
  633. if (result != 0)
  634. return (result);
  635. /* Reconstruct the channel coefficients. */
  636. reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
  637. channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
  638. } else {
  639. /* normal stereo mode or mono */
  640. /* Decode the channel sound units. */
  641. for (i=0 ; i<q->channels ; i++) {
  642. /* Set the bitstream reader at the start of a channel sound unit. */
  643. init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
  644. result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
  645. if (result != 0)
  646. return (result);
  647. }
  648. }
  649. /* Apply the iQMF synthesis filter. */
  650. p1= q->outSamples;
  651. for (i=0 ; i<q->channels ; i++) {
  652. p2= p1+256;
  653. p3= p2+256;
  654. p4= p3+256;
  655. atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
  656. atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
  657. atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
  658. p1 +=1024;
  659. }
  660. return 0;
  661. }
  662. /**
  663. * Atrac frame decoding
  664. *
  665. * @param avctx pointer to the AVCodecContext
  666. */
  667. static int atrac3_decode_frame(AVCodecContext *avctx,
  668. void *data, int *data_size,
  669. AVPacket *avpkt) {
  670. const uint8_t *buf = avpkt->data;
  671. int buf_size = avpkt->size;
  672. ATRAC3Context *q = avctx->priv_data;
  673. int result = 0, i;
  674. const uint8_t* databuf;
  675. int16_t* samples = data;
  676. if (buf_size < avctx->block_align)
  677. return buf_size;
  678. /* Check if we need to descramble and what buffer to pass on. */
  679. if (q->scrambled_stream) {
  680. decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
  681. databuf = q->decoded_bytes_buffer;
  682. } else {
  683. databuf = buf;
  684. }
  685. result = decodeFrame(q, databuf);
  686. if (result != 0) {
  687. av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
  688. return -1;
  689. }
  690. if (q->channels == 1) {
  691. /* mono */
  692. for (i = 0; i<1024; i++)
  693. samples[i] = av_clip_int16(round(q->outSamples[i]));
  694. *data_size = 1024 * sizeof(int16_t);
  695. } else {
  696. /* stereo */
  697. for (i = 0; i < 1024; i++) {
  698. samples[i*2] = av_clip_int16(round(q->outSamples[i]));
  699. samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
  700. }
  701. *data_size = 2048 * sizeof(int16_t);
  702. }
  703. return avctx->block_align;
  704. }
  705. /**
  706. * Atrac3 initialization
  707. *
  708. * @param avctx pointer to the AVCodecContext
  709. */
  710. static av_cold int atrac3_decode_init(AVCodecContext *avctx)
  711. {
  712. int i;
  713. const uint8_t *edata_ptr = avctx->extradata;
  714. ATRAC3Context *q = avctx->priv_data;
  715. static VLC_TYPE atrac3_vlc_table[4096][2];
  716. static int vlcs_initialized = 0;
  717. /* Take data from the AVCodecContext (RM container). */
  718. q->sample_rate = avctx->sample_rate;
  719. q->channels = avctx->channels;
  720. q->bit_rate = avctx->bit_rate;
  721. q->bits_per_frame = avctx->block_align * 8;
  722. q->bytes_per_frame = avctx->block_align;
  723. /* Take care of the codec-specific extradata. */
  724. if (avctx->extradata_size == 14) {
  725. /* Parse the extradata, WAV format */
  726. av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1
  727. q->samples_per_channel = bytestream_get_le32(&edata_ptr);
  728. q->codingMode = bytestream_get_le16(&edata_ptr);
  729. av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
  730. q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1
  731. av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0
  732. /* setup */
  733. q->samples_per_frame = 1024 * q->channels;
  734. q->atrac3version = 4;
  735. q->delay = 0x88E;
  736. if (q->codingMode)
  737. q->codingMode = JOINT_STEREO;
  738. else
  739. q->codingMode = STEREO;
  740. q->scrambled_stream = 0;
  741. if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
  742. } else {
  743. av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
  744. return -1;
  745. }
  746. } else if (avctx->extradata_size == 10) {
  747. /* Parse the extradata, RM format. */
  748. q->atrac3version = bytestream_get_be32(&edata_ptr);
  749. q->samples_per_frame = bytestream_get_be16(&edata_ptr);
  750. q->delay = bytestream_get_be16(&edata_ptr);
  751. q->codingMode = bytestream_get_be16(&edata_ptr);
  752. q->samples_per_channel = q->samples_per_frame / q->channels;
  753. q->scrambled_stream = 1;
  754. } else {
  755. av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
  756. }
  757. /* Check the extradata. */
  758. if (q->atrac3version != 4) {
  759. av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
  760. return -1;
  761. }
  762. if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
  763. av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
  764. return -1;
  765. }
  766. if (q->delay != 0x88E) {
  767. av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
  768. return -1;
  769. }
  770. if (q->codingMode == STEREO) {
  771. av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
  772. } else if (q->codingMode == JOINT_STEREO) {
  773. av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
  774. } else {
  775. av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
  776. return -1;
  777. }
  778. if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
  779. av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
  780. return -1;
  781. }
  782. if(avctx->block_align >= UINT_MAX/2)
  783. return -1;
  784. /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
  785. * this is for the bitstream reader. */
  786. if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
  787. return AVERROR(ENOMEM);
  788. /* Initialize the VLC tables. */
  789. if (!vlcs_initialized) {
  790. for (i=0 ; i<7 ; i++) {
  791. spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
  792. spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
  793. init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
  794. huff_bits[i], 1, 1,
  795. huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  796. }
  797. vlcs_initialized = 1;
  798. }
  799. init_atrac3_transforms(q);
  800. atrac_generate_tables();
  801. /* Generate gain tables. */
  802. for (i=0 ; i<16 ; i++)
  803. gain_tab1[i] = powf (2.0, (4 - i));
  804. for (i=-15 ; i<16 ; i++)
  805. gain_tab2[i+15] = powf (2.0, i * -0.125);
  806. /* init the joint-stereo decoding data */
  807. q->weighting_delay[0] = 0;
  808. q->weighting_delay[1] = 7;
  809. q->weighting_delay[2] = 0;
  810. q->weighting_delay[3] = 7;
  811. q->weighting_delay[4] = 0;
  812. q->weighting_delay[5] = 7;
  813. for (i=0; i<4; i++) {
  814. q->matrix_coeff_index_prev[i] = 3;
  815. q->matrix_coeff_index_now[i] = 3;
  816. q->matrix_coeff_index_next[i] = 3;
  817. }
  818. dsputil_init(&dsp, avctx);
  819. q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
  820. if (!q->pUnits) {
  821. av_free(q->decoded_bytes_buffer);
  822. return AVERROR(ENOMEM);
  823. }
  824. avctx->sample_fmt = SAMPLE_FMT_S16;
  825. return 0;
  826. }
  827. AVCodec atrac3_decoder =
  828. {
  829. .name = "atrac3",
  830. .type = CODEC_TYPE_AUDIO,
  831. .id = CODEC_ID_ATRAC3,
  832. .priv_data_size = sizeof(ATRAC3Context),
  833. .init = atrac3_decode_init,
  834. .close = atrac3_decode_close,
  835. .decode = atrac3_decode_frame,
  836. .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
  837. };