You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1043 lines
40KB

  1. /*
  2. * AAC coefficients encoder
  3. * Copyright (C) 2008-2009 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/aaccoder.c
  23. * AAC coefficients encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * speedup quantizer selection
  28. * add sane pulse detection
  29. ***********************************/
  30. #include "avcodec.h"
  31. #include "put_bits.h"
  32. #include "aac.h"
  33. #include "aacenc.h"
  34. #include "aactab.h"
  35. /** bits needed to code codebook run value for long windows */
  36. static const uint8_t run_value_bits_long[64] = {
  37. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  38. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
  39. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
  40. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
  41. };
  42. /** bits needed to code codebook run value for short windows */
  43. static const uint8_t run_value_bits_short[16] = {
  44. 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
  45. };
  46. static const uint8_t *run_value_bits[2] = {
  47. run_value_bits_long, run_value_bits_short
  48. };
  49. /**
  50. * Quantize one coefficient.
  51. * @return absolute value of the quantized coefficient
  52. * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  53. */
  54. static av_always_inline int quant(float coef, const float Q)
  55. {
  56. float a = coef * Q;
  57. return sqrtf(a * sqrtf(a)) + 0.4054;
  58. }
  59. static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
  60. int size, float Q34, int is_signed, int maxval)
  61. {
  62. int i;
  63. double qc;
  64. for (i = 0; i < size; i++) {
  65. qc = scaled[i] * Q34;
  66. out[i][0] = (int)FFMIN(qc, (double)maxval);
  67. out[i][1] = (int)FFMIN(qc + 0.4054, (double)maxval);
  68. if (is_signed && in[i] < 0.0f) {
  69. out[i][0] = -out[i][0];
  70. out[i][1] = -out[i][1];
  71. }
  72. }
  73. }
  74. static void abs_pow34_v(float *out, const float *in, const int size)
  75. {
  76. #ifndef USE_REALLY_FULL_SEARCH
  77. int i;
  78. for (i = 0; i < size; i++) {
  79. float a = fabsf(in[i]);
  80. out[i] = sqrtf(a * sqrtf(a));
  81. }
  82. #endif /* USE_REALLY_FULL_SEARCH */
  83. }
  84. static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
  85. static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
  86. /**
  87. * Calculate rate distortion cost for quantizing with given codebook
  88. *
  89. * @return quantization distortion
  90. */
  91. static float quantize_band_cost(struct AACEncContext *s, const float *in,
  92. const float *scaled, int size, int scale_idx,
  93. int cb, const float lambda, const float uplim,
  94. int *bits)
  95. {
  96. const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
  97. const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
  98. const float CLIPPED_ESCAPE = 165140.0f*IQ;
  99. int i, j, k;
  100. float cost = 0;
  101. const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
  102. int resbits = 0;
  103. #ifndef USE_REALLY_FULL_SEARCH
  104. const float Q34 = sqrtf(Q * sqrtf(Q));
  105. const int range = aac_cb_range[cb];
  106. const int maxval = aac_cb_maxval[cb];
  107. int offs[4];
  108. #endif /* USE_REALLY_FULL_SEARCH */
  109. if (!cb) {
  110. for (i = 0; i < size; i++)
  111. cost += in[i]*in[i];
  112. if (bits)
  113. *bits = 0;
  114. return cost * lambda;
  115. }
  116. #ifndef USE_REALLY_FULL_SEARCH
  117. offs[0] = 1;
  118. for (i = 1; i < dim; i++)
  119. offs[i] = offs[i-1]*range;
  120. quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
  121. #endif /* USE_REALLY_FULL_SEARCH */
  122. for (i = 0; i < size; i += dim) {
  123. float mincost;
  124. int minidx = 0;
  125. int minbits = 0;
  126. const float *vec;
  127. #ifndef USE_REALLY_FULL_SEARCH
  128. int (*quants)[2] = &s->qcoefs[i];
  129. mincost = 0.0f;
  130. for (j = 0; j < dim; j++)
  131. mincost += in[i+j]*in[i+j];
  132. minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
  133. minbits = ff_aac_spectral_bits[cb-1][minidx];
  134. mincost = mincost * lambda + minbits;
  135. for (j = 0; j < (1<<dim); j++) {
  136. float rd = 0.0f;
  137. int curbits;
  138. int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
  139. int same = 0;
  140. for (k = 0; k < dim; k++) {
  141. if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
  142. same = 1;
  143. break;
  144. }
  145. }
  146. if (same)
  147. continue;
  148. for (k = 0; k < dim; k++)
  149. curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
  150. curbits = ff_aac_spectral_bits[cb-1][curidx];
  151. vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
  152. #else
  153. mincost = INFINITY;
  154. vec = ff_aac_codebook_vectors[cb-1];
  155. for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
  156. float rd = 0.0f;
  157. int curbits = ff_aac_spectral_bits[cb-1][j];
  158. #endif /* USE_REALLY_FULL_SEARCH */
  159. if (IS_CODEBOOK_UNSIGNED(cb)) {
  160. for (k = 0; k < dim; k++) {
  161. float t = fabsf(in[i+k]);
  162. float di;
  163. if (vec[k] == 64.0f) { //FIXME: slow
  164. //do not code with escape sequence small values
  165. if (t < 39.0f*IQ) {
  166. rd = INFINITY;
  167. break;
  168. }
  169. if (t >= CLIPPED_ESCAPE) {
  170. di = t - CLIPPED_ESCAPE;
  171. curbits += 21;
  172. } else {
  173. int c = av_clip(quant(t, Q), 0, 8191);
  174. di = t - c*cbrtf(c)*IQ;
  175. curbits += av_log2(c)*2 - 4 + 1;
  176. }
  177. } else {
  178. di = t - vec[k]*IQ;
  179. }
  180. if (vec[k] != 0.0f)
  181. curbits++;
  182. rd += di*di;
  183. }
  184. } else {
  185. for (k = 0; k < dim; k++) {
  186. float di = in[i+k] - vec[k]*IQ;
  187. rd += di*di;
  188. }
  189. }
  190. rd = rd * lambda + curbits;
  191. if (rd < mincost) {
  192. mincost = rd;
  193. minidx = j;
  194. minbits = curbits;
  195. }
  196. }
  197. cost += mincost;
  198. resbits += minbits;
  199. if (cost >= uplim)
  200. return uplim;
  201. }
  202. if (bits)
  203. *bits = resbits;
  204. return cost;
  205. }
  206. static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
  207. const float *in, int size, int scale_idx,
  208. int cb, const float lambda)
  209. {
  210. const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
  211. const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
  212. const float CLIPPED_ESCAPE = 165140.0f*IQ;
  213. const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
  214. int i, j, k;
  215. #ifndef USE_REALLY_FULL_SEARCH
  216. const float Q34 = sqrtf(Q * sqrtf(Q));
  217. const int range = aac_cb_range[cb];
  218. const int maxval = aac_cb_maxval[cb];
  219. int offs[4];
  220. float *scaled = s->scoefs;
  221. #endif /* USE_REALLY_FULL_SEARCH */
  222. //START_TIMER
  223. if (!cb)
  224. return;
  225. #ifndef USE_REALLY_FULL_SEARCH
  226. offs[0] = 1;
  227. for (i = 1; i < dim; i++)
  228. offs[i] = offs[i-1]*range;
  229. abs_pow34_v(scaled, in, size);
  230. quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
  231. #endif /* USE_REALLY_FULL_SEARCH */
  232. for (i = 0; i < size; i += dim) {
  233. float mincost;
  234. int minidx = 0;
  235. int minbits = 0;
  236. const float *vec;
  237. #ifndef USE_REALLY_FULL_SEARCH
  238. int (*quants)[2] = &s->qcoefs[i];
  239. mincost = 0.0f;
  240. for (j = 0; j < dim; j++)
  241. mincost += in[i+j]*in[i+j];
  242. minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
  243. minbits = ff_aac_spectral_bits[cb-1][minidx];
  244. mincost = mincost * lambda + minbits;
  245. for (j = 0; j < (1<<dim); j++) {
  246. float rd = 0.0f;
  247. int curbits;
  248. int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
  249. int same = 0;
  250. for (k = 0; k < dim; k++) {
  251. if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
  252. same = 1;
  253. break;
  254. }
  255. }
  256. if (same)
  257. continue;
  258. for (k = 0; k < dim; k++)
  259. curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
  260. curbits = ff_aac_spectral_bits[cb-1][curidx];
  261. vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
  262. #else
  263. vec = ff_aac_codebook_vectors[cb-1];
  264. mincost = INFINITY;
  265. for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
  266. float rd = 0.0f;
  267. int curbits = ff_aac_spectral_bits[cb-1][j];
  268. int curidx = j;
  269. #endif /* USE_REALLY_FULL_SEARCH */
  270. if (IS_CODEBOOK_UNSIGNED(cb)) {
  271. for (k = 0; k < dim; k++) {
  272. float t = fabsf(in[i+k]);
  273. float di;
  274. if (vec[k] == 64.0f) { //FIXME: slow
  275. //do not code with escape sequence small values
  276. if (t < 39.0f*IQ) {
  277. rd = INFINITY;
  278. break;
  279. }
  280. if (t >= CLIPPED_ESCAPE) {
  281. di = t - CLIPPED_ESCAPE;
  282. curbits += 21;
  283. } else {
  284. int c = av_clip(quant(t, Q), 0, 8191);
  285. di = t - c*cbrtf(c)*IQ;
  286. curbits += av_log2(c)*2 - 4 + 1;
  287. }
  288. } else {
  289. di = t - vec[k]*IQ;
  290. }
  291. if (vec[k] != 0.0f)
  292. curbits++;
  293. rd += di*di;
  294. }
  295. } else {
  296. for (k = 0; k < dim; k++) {
  297. float di = in[i+k] - vec[k]*IQ;
  298. rd += di*di;
  299. }
  300. }
  301. rd = rd * lambda + curbits;
  302. if (rd < mincost) {
  303. mincost = rd;
  304. minidx = curidx;
  305. minbits = curbits;
  306. }
  307. }
  308. put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
  309. if (IS_CODEBOOK_UNSIGNED(cb))
  310. for (j = 0; j < dim; j++)
  311. if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
  312. put_bits(pb, 1, in[i+j] < 0.0f);
  313. if (cb == ESC_BT) {
  314. for (j = 0; j < 2; j++) {
  315. if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
  316. int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
  317. int len = av_log2(coef);
  318. put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
  319. put_bits(pb, len, coef & ((1 << len) - 1));
  320. }
  321. }
  322. }
  323. }
  324. //STOP_TIMER("quantize_and_encode")
  325. }
  326. /**
  327. * structure used in optimal codebook search
  328. */
  329. typedef struct BandCodingPath {
  330. int prev_idx; ///< pointer to the previous path point
  331. float cost; ///< path cost
  332. int run;
  333. } BandCodingPath;
  334. /**
  335. * Encode band info for single window group bands.
  336. */
  337. static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
  338. int win, int group_len, const float lambda)
  339. {
  340. BandCodingPath path[120][12];
  341. int w, swb, cb, start, start2, size;
  342. int i, j;
  343. const int max_sfb = sce->ics.max_sfb;
  344. const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
  345. const int run_esc = (1 << run_bits) - 1;
  346. int idx, ppos, count;
  347. int stackrun[120], stackcb[120], stack_len;
  348. float next_minrd = INFINITY;
  349. int next_mincb = 0;
  350. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  351. start = win*128;
  352. for (cb = 0; cb < 12; cb++) {
  353. path[0][cb].cost = 0.0f;
  354. path[0][cb].prev_idx = -1;
  355. path[0][cb].run = 0;
  356. }
  357. for (swb = 0; swb < max_sfb; swb++) {
  358. start2 = start;
  359. size = sce->ics.swb_sizes[swb];
  360. if (sce->zeroes[win*16 + swb]) {
  361. for (cb = 0; cb < 12; cb++) {
  362. path[swb+1][cb].prev_idx = cb;
  363. path[swb+1][cb].cost = path[swb][cb].cost;
  364. path[swb+1][cb].run = path[swb][cb].run + 1;
  365. }
  366. } else {
  367. float minrd = next_minrd;
  368. int mincb = next_mincb;
  369. next_minrd = INFINITY;
  370. next_mincb = 0;
  371. for (cb = 0; cb < 12; cb++) {
  372. float cost_stay_here, cost_get_here;
  373. float rd = 0.0f;
  374. for (w = 0; w < group_len; w++) {
  375. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
  376. rd += quantize_band_cost(s, sce->coeffs + start + w*128,
  377. s->scoefs + start + w*128, size,
  378. sce->sf_idx[(win+w)*16+swb], cb,
  379. lambda / band->threshold, INFINITY, NULL);
  380. }
  381. cost_stay_here = path[swb][cb].cost + rd;
  382. cost_get_here = minrd + rd + run_bits + 4;
  383. if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
  384. != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
  385. cost_stay_here += run_bits;
  386. if (cost_get_here < cost_stay_here) {
  387. path[swb+1][cb].prev_idx = mincb;
  388. path[swb+1][cb].cost = cost_get_here;
  389. path[swb+1][cb].run = 1;
  390. } else {
  391. path[swb+1][cb].prev_idx = cb;
  392. path[swb+1][cb].cost = cost_stay_here;
  393. path[swb+1][cb].run = path[swb][cb].run + 1;
  394. }
  395. if (path[swb+1][cb].cost < next_minrd) {
  396. next_minrd = path[swb+1][cb].cost;
  397. next_mincb = cb;
  398. }
  399. }
  400. }
  401. start += sce->ics.swb_sizes[swb];
  402. }
  403. //convert resulting path from backward-linked list
  404. stack_len = 0;
  405. idx = 0;
  406. for (cb = 1; cb < 12; cb++)
  407. if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
  408. idx = cb;
  409. ppos = max_sfb;
  410. while (ppos > 0) {
  411. cb = idx;
  412. stackrun[stack_len] = path[ppos][cb].run;
  413. stackcb [stack_len] = cb;
  414. idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
  415. ppos -= path[ppos][cb].run;
  416. stack_len++;
  417. }
  418. //perform actual band info encoding
  419. start = 0;
  420. for (i = stack_len - 1; i >= 0; i--) {
  421. put_bits(&s->pb, 4, stackcb[i]);
  422. count = stackrun[i];
  423. memset(sce->zeroes + win*16 + start, !stackcb[i], count);
  424. //XXX: memset when band_type is also uint8_t
  425. for (j = 0; j < count; j++) {
  426. sce->band_type[win*16 + start] = stackcb[i];
  427. start++;
  428. }
  429. while (count >= run_esc) {
  430. put_bits(&s->pb, run_bits, run_esc);
  431. count -= run_esc;
  432. }
  433. put_bits(&s->pb, run_bits, count);
  434. }
  435. }
  436. typedef struct TrellisPath {
  437. float cost;
  438. int prev;
  439. int min_val;
  440. int max_val;
  441. } TrellisPath;
  442. #define TRELLIS_STAGES 121
  443. #define TRELLIS_STATES 256
  444. static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
  445. SingleChannelElement *sce,
  446. const float lambda)
  447. {
  448. int q, w, w2, g, start = 0;
  449. int i, j;
  450. int idx;
  451. TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
  452. int bandaddr[TRELLIS_STAGES];
  453. int minq;
  454. float mincost;
  455. for (i = 0; i < TRELLIS_STATES; i++) {
  456. paths[0][i].cost = 0.0f;
  457. paths[0][i].prev = -1;
  458. paths[0][i].min_val = i;
  459. paths[0][i].max_val = i;
  460. }
  461. for (j = 1; j < TRELLIS_STAGES; j++) {
  462. for (i = 0; i < TRELLIS_STATES; i++) {
  463. paths[j][i].cost = INFINITY;
  464. paths[j][i].prev = -2;
  465. paths[j][i].min_val = INT_MAX;
  466. paths[j][i].max_val = 0;
  467. }
  468. }
  469. idx = 1;
  470. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  471. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  472. start = w*128;
  473. for (g = 0; g < sce->ics.num_swb; g++) {
  474. const float *coefs = sce->coeffs + start;
  475. float qmin, qmax;
  476. int nz = 0;
  477. bandaddr[idx] = w * 16 + g;
  478. qmin = INT_MAX;
  479. qmax = 0.0f;
  480. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  481. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  482. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  483. sce->zeroes[(w+w2)*16+g] = 1;
  484. continue;
  485. }
  486. sce->zeroes[(w+w2)*16+g] = 0;
  487. nz = 1;
  488. for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
  489. float t = fabsf(coefs[w2*128+i]);
  490. if (t > 0.0f)
  491. qmin = FFMIN(qmin, t);
  492. qmax = FFMAX(qmax, t);
  493. }
  494. }
  495. if (nz) {
  496. int minscale, maxscale;
  497. float minrd = INFINITY;
  498. //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
  499. minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
  500. //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
  501. maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
  502. for (q = minscale; q < maxscale; q++) {
  503. float dists[12], dist;
  504. memset(dists, 0, sizeof(dists));
  505. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  506. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  507. int cb;
  508. for (cb = 0; cb <= ESC_BT; cb++)
  509. dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
  510. q, cb, lambda / band->threshold, INFINITY, NULL);
  511. }
  512. dist = dists[0];
  513. for (i = 1; i <= ESC_BT; i++)
  514. dist = FFMIN(dist, dists[i]);
  515. minrd = FFMIN(minrd, dist);
  516. for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) {
  517. float cost;
  518. int minv, maxv;
  519. if (isinf(paths[idx - 1][i].cost))
  520. continue;
  521. cost = paths[idx - 1][i].cost + dist
  522. + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
  523. minv = FFMIN(paths[idx - 1][i].min_val, q);
  524. maxv = FFMAX(paths[idx - 1][i].max_val, q);
  525. if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) {
  526. paths[idx][q].cost = cost;
  527. paths[idx][q].prev = i;
  528. paths[idx][q].min_val = minv;
  529. paths[idx][q].max_val = maxv;
  530. }
  531. }
  532. }
  533. } else {
  534. for (q = 0; q < TRELLIS_STATES; q++) {
  535. if (!isinf(paths[idx - 1][q].cost)) {
  536. paths[idx][q].cost = paths[idx - 1][q].cost + 1;
  537. paths[idx][q].prev = q;
  538. paths[idx][q].min_val = FFMIN(paths[idx - 1][q].min_val, q);
  539. paths[idx][q].max_val = FFMAX(paths[idx - 1][q].max_val, q);
  540. continue;
  541. }
  542. for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) {
  543. float cost;
  544. int minv, maxv;
  545. if (isinf(paths[idx - 1][i].cost))
  546. continue;
  547. cost = paths[idx - 1][i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
  548. minv = FFMIN(paths[idx - 1][i].min_val, q);
  549. maxv = FFMAX(paths[idx - 1][i].max_val, q);
  550. if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) {
  551. paths[idx][q].cost = cost;
  552. paths[idx][q].prev = i;
  553. paths[idx][q].min_val = minv;
  554. paths[idx][q].max_val = maxv;
  555. }
  556. }
  557. }
  558. }
  559. sce->zeroes[w*16+g] = !nz;
  560. start += sce->ics.swb_sizes[g];
  561. idx++;
  562. }
  563. }
  564. idx--;
  565. mincost = paths[idx][0].cost;
  566. minq = 0;
  567. for (i = 1; i < TRELLIS_STATES; i++) {
  568. if (paths[idx][i].cost < mincost) {
  569. mincost = paths[idx][i].cost;
  570. minq = i;
  571. }
  572. }
  573. while (idx) {
  574. sce->sf_idx[bandaddr[idx]] = minq;
  575. minq = paths[idx][minq].prev;
  576. idx--;
  577. }
  578. //set the same quantizers inside window groups
  579. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  580. for (g = 0; g < sce->ics.num_swb; g++)
  581. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  582. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  583. }
  584. /**
  585. * two-loop quantizers search taken from ISO 13818-7 Appendix C
  586. */
  587. static void search_for_quantizers_twoloop(AVCodecContext *avctx,
  588. AACEncContext *s,
  589. SingleChannelElement *sce,
  590. const float lambda)
  591. {
  592. int start = 0, i, w, w2, g;
  593. int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
  594. float dists[128], uplims[128];
  595. int fflag, minscaler;
  596. int its = 0;
  597. int allz = 0;
  598. float minthr = INFINITY;
  599. //XXX: some heuristic to determine initial quantizers will reduce search time
  600. memset(dists, 0, sizeof(dists));
  601. //determine zero bands and upper limits
  602. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  603. for (g = 0; g < sce->ics.num_swb; g++) {
  604. int nz = 0;
  605. float uplim = 0.0f;
  606. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  607. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  608. uplim += band->threshold;
  609. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  610. sce->zeroes[(w+w2)*16+g] = 1;
  611. continue;
  612. }
  613. nz = 1;
  614. }
  615. uplims[w*16+g] = uplim *512;
  616. sce->zeroes[w*16+g] = !nz;
  617. if (nz)
  618. minthr = FFMIN(minthr, uplim);
  619. allz = FFMAX(allz, nz);
  620. }
  621. }
  622. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  623. for (g = 0; g < sce->ics.num_swb; g++) {
  624. if (sce->zeroes[w*16+g]) {
  625. sce->sf_idx[w*16+g] = SCALE_ONE_POS;
  626. continue;
  627. }
  628. sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
  629. }
  630. }
  631. if (!allz)
  632. return;
  633. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  634. //perform two-loop search
  635. //outer loop - improve quality
  636. do {
  637. int tbits, qstep;
  638. minscaler = sce->sf_idx[0];
  639. //inner loop - quantize spectrum to fit into given number of bits
  640. qstep = its ? 1 : 32;
  641. do {
  642. int prev = -1;
  643. tbits = 0;
  644. fflag = 0;
  645. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  646. start = w*128;
  647. for (g = 0; g < sce->ics.num_swb; g++) {
  648. const float *coefs = sce->coeffs + start;
  649. const float *scaled = s->scoefs + start;
  650. int bits = 0;
  651. int cb;
  652. float mindist = INFINITY;
  653. int minbits = 0;
  654. if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
  655. start += sce->ics.swb_sizes[g];
  656. continue;
  657. }
  658. minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
  659. for (cb = 0; cb <= ESC_BT; cb++) {
  660. float dist = 0.0f;
  661. int bb = 0;
  662. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  663. int b;
  664. dist += quantize_band_cost(s, coefs + w2*128,
  665. scaled + w2*128,
  666. sce->ics.swb_sizes[g],
  667. sce->sf_idx[w*16+g],
  668. cb,
  669. lambda,
  670. INFINITY,
  671. &b);
  672. bb += b;
  673. }
  674. if (dist < mindist) {
  675. mindist = dist;
  676. minbits = bb;
  677. }
  678. }
  679. dists[w*16+g] = (mindist - minbits) / lambda;
  680. bits = minbits;
  681. if (prev != -1) {
  682. bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
  683. }
  684. tbits += bits;
  685. start += sce->ics.swb_sizes[g];
  686. prev = sce->sf_idx[w*16+g];
  687. }
  688. }
  689. if (tbits > destbits) {
  690. for (i = 0; i < 128; i++)
  691. if (sce->sf_idx[i] < 218 - qstep)
  692. sce->sf_idx[i] += qstep;
  693. } else {
  694. for (i = 0; i < 128; i++)
  695. if (sce->sf_idx[i] > 60 - qstep)
  696. sce->sf_idx[i] -= qstep;
  697. }
  698. qstep >>= 1;
  699. if (!qstep && tbits > destbits*1.02)
  700. qstep = 1;
  701. if (sce->sf_idx[0] >= 217)
  702. break;
  703. } while (qstep);
  704. fflag = 0;
  705. minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
  706. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  707. start = w*128;
  708. for (g = 0; g < sce->ics.num_swb; g++) {
  709. int prevsc = sce->sf_idx[w*16+g];
  710. if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
  711. sce->sf_idx[w*16+g]--;
  712. sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
  713. sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
  714. if (sce->sf_idx[w*16+g] != prevsc)
  715. fflag = 1;
  716. }
  717. }
  718. its++;
  719. } while (fflag && its < 10);
  720. }
  721. static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
  722. SingleChannelElement *sce,
  723. const float lambda)
  724. {
  725. int start = 0, i, w, w2, g;
  726. float uplim[128], maxq[128];
  727. int minq, maxsf;
  728. float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
  729. int last = 0, lastband = 0, curband = 0;
  730. float avg_energy = 0.0;
  731. if (sce->ics.num_windows == 1) {
  732. start = 0;
  733. for (i = 0; i < 1024; i++) {
  734. if (i - start >= sce->ics.swb_sizes[curband]) {
  735. start += sce->ics.swb_sizes[curband];
  736. curband++;
  737. }
  738. if (sce->coeffs[i]) {
  739. avg_energy += sce->coeffs[i] * sce->coeffs[i];
  740. last = i;
  741. lastband = curband;
  742. }
  743. }
  744. } else {
  745. for (w = 0; w < 8; w++) {
  746. const float *coeffs = sce->coeffs + w*128;
  747. start = 0;
  748. for (i = 0; i < 128; i++) {
  749. if (i - start >= sce->ics.swb_sizes[curband]) {
  750. start += sce->ics.swb_sizes[curband];
  751. curband++;
  752. }
  753. if (coeffs[i]) {
  754. avg_energy += coeffs[i] * coeffs[i];
  755. last = FFMAX(last, i);
  756. lastband = FFMAX(lastband, curband);
  757. }
  758. }
  759. }
  760. }
  761. last++;
  762. avg_energy /= last;
  763. if (avg_energy == 0.0f) {
  764. for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
  765. sce->sf_idx[i] = SCALE_ONE_POS;
  766. return;
  767. }
  768. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  769. start = w*128;
  770. for (g = 0; g < sce->ics.num_swb; g++) {
  771. float *coefs = sce->coeffs + start;
  772. const int size = sce->ics.swb_sizes[g];
  773. int start2 = start, end2 = start + size, peakpos = start;
  774. float maxval = -1, thr = 0.0f, t;
  775. maxq[w*16+g] = 0.0f;
  776. if (g > lastband) {
  777. maxq[w*16+g] = 0.0f;
  778. start += size;
  779. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
  780. memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
  781. continue;
  782. }
  783. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  784. for (i = 0; i < size; i++) {
  785. float t = coefs[w2*128+i]*coefs[w2*128+i];
  786. maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
  787. thr += t;
  788. if (sce->ics.num_windows == 1 && maxval < t) {
  789. maxval = t;
  790. peakpos = start+i;
  791. }
  792. }
  793. }
  794. if (sce->ics.num_windows == 1) {
  795. start2 = FFMAX(peakpos - 2, start2);
  796. end2 = FFMIN(peakpos + 3, end2);
  797. } else {
  798. start2 -= start;
  799. end2 -= start;
  800. }
  801. start += size;
  802. thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
  803. t = 1.0 - (1.0 * start2 / last);
  804. uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
  805. }
  806. }
  807. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  808. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  809. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  810. start = w*128;
  811. for (g = 0; g < sce->ics.num_swb; g++) {
  812. const float *coefs = sce->coeffs + start;
  813. const float *scaled = s->scoefs + start;
  814. const int size = sce->ics.swb_sizes[g];
  815. int scf, prev_scf, step;
  816. int min_scf = 0, max_scf = 255;
  817. float curdiff;
  818. if (maxq[w*16+g] < 21.544) {
  819. sce->zeroes[w*16+g] = 1;
  820. start += size;
  821. continue;
  822. }
  823. sce->zeroes[w*16+g] = 0;
  824. scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
  825. step = 16;
  826. for (;;) {
  827. float dist = 0.0f;
  828. int quant_max;
  829. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  830. int b;
  831. dist += quantize_band_cost(s, coefs + w2*128,
  832. scaled + w2*128,
  833. sce->ics.swb_sizes[g],
  834. scf,
  835. ESC_BT,
  836. lambda,
  837. INFINITY,
  838. &b);
  839. dist -= b;
  840. }
  841. dist *= 1.0f / 512.0f / lambda;
  842. quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
  843. if (quant_max >= 8191) { // too much, return to the previous quantizer
  844. sce->sf_idx[w*16+g] = prev_scf;
  845. break;
  846. }
  847. prev_scf = scf;
  848. curdiff = fabsf(dist - uplim[w*16+g]);
  849. if (curdiff == 0.0f)
  850. step = 0;
  851. else
  852. step = fabsf(log2(curdiff));
  853. if (dist > uplim[w*16+g])
  854. step = -step;
  855. if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
  856. sce->sf_idx[w*16+g] = scf;
  857. break;
  858. }
  859. scf += step;
  860. if (step > 0)
  861. min_scf = scf;
  862. else
  863. max_scf = scf;
  864. }
  865. start += size;
  866. }
  867. }
  868. minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
  869. for (i = 1; i < 128; i++) {
  870. if (!sce->sf_idx[i])
  871. sce->sf_idx[i] = sce->sf_idx[i-1];
  872. else
  873. minq = FFMIN(minq, sce->sf_idx[i]);
  874. }
  875. if (minq == INT_MAX)
  876. minq = 0;
  877. minq = FFMIN(minq, SCALE_MAX_POS);
  878. maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
  879. for (i = 126; i >= 0; i--) {
  880. if (!sce->sf_idx[i])
  881. sce->sf_idx[i] = sce->sf_idx[i+1];
  882. sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
  883. }
  884. }
  885. static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
  886. SingleChannelElement *sce,
  887. const float lambda)
  888. {
  889. int start = 0, i, w, w2, g;
  890. int minq = 255;
  891. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  892. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  893. start = w*128;
  894. for (g = 0; g < sce->ics.num_swb; g++) {
  895. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  896. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  897. if (band->energy <= band->threshold) {
  898. sce->sf_idx[(w+w2)*16+g] = 218;
  899. sce->zeroes[(w+w2)*16+g] = 1;
  900. } else {
  901. sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
  902. sce->zeroes[(w+w2)*16+g] = 0;
  903. }
  904. minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
  905. }
  906. }
  907. }
  908. for (i = 0; i < 128; i++) {
  909. sce->sf_idx[i] = 140;
  910. //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
  911. }
  912. //set the same quantizers inside window groups
  913. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  914. for (g = 0; g < sce->ics.num_swb; g++)
  915. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  916. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  917. }
  918. static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
  919. const float lambda)
  920. {
  921. int start = 0, i, w, w2, g;
  922. float M[128], S[128];
  923. float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
  924. SingleChannelElement *sce0 = &cpe->ch[0];
  925. SingleChannelElement *sce1 = &cpe->ch[1];
  926. if (!cpe->common_window)
  927. return;
  928. for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  929. for (g = 0; g < sce0->ics.num_swb; g++) {
  930. if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
  931. float dist1 = 0.0f, dist2 = 0.0f;
  932. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  933. FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
  934. FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
  935. float minthr = FFMIN(band0->threshold, band1->threshold);
  936. float maxthr = FFMAX(band0->threshold, band1->threshold);
  937. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  938. M[i] = (sce0->coeffs[start+w2*128+i]
  939. + sce1->coeffs[start+w2*128+i]) * 0.5;
  940. S[i] = sce0->coeffs[start+w2*128+i]
  941. - sce1->coeffs[start+w2*128+i];
  942. }
  943. abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  944. abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  945. abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
  946. abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
  947. dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
  948. L34,
  949. sce0->ics.swb_sizes[g],
  950. sce0->sf_idx[(w+w2)*16+g],
  951. sce0->band_type[(w+w2)*16+g],
  952. lambda / band0->threshold, INFINITY, NULL);
  953. dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
  954. R34,
  955. sce1->ics.swb_sizes[g],
  956. sce1->sf_idx[(w+w2)*16+g],
  957. sce1->band_type[(w+w2)*16+g],
  958. lambda / band1->threshold, INFINITY, NULL);
  959. dist2 += quantize_band_cost(s, M,
  960. M34,
  961. sce0->ics.swb_sizes[g],
  962. sce0->sf_idx[(w+w2)*16+g],
  963. sce0->band_type[(w+w2)*16+g],
  964. lambda / maxthr, INFINITY, NULL);
  965. dist2 += quantize_band_cost(s, S,
  966. S34,
  967. sce1->ics.swb_sizes[g],
  968. sce1->sf_idx[(w+w2)*16+g],
  969. sce1->band_type[(w+w2)*16+g],
  970. lambda / minthr, INFINITY, NULL);
  971. }
  972. cpe->ms_mask[w*16+g] = dist2 < dist1;
  973. }
  974. start += sce0->ics.swb_sizes[g];
  975. }
  976. }
  977. }
  978. AACCoefficientsEncoder ff_aac_coders[] = {
  979. {
  980. search_for_quantizers_faac,
  981. encode_window_bands_info,
  982. quantize_and_encode_band,
  983. search_for_ms,
  984. },
  985. {
  986. search_for_quantizers_anmr,
  987. encode_window_bands_info,
  988. quantize_and_encode_band,
  989. search_for_ms,
  990. },
  991. {
  992. search_for_quantizers_twoloop,
  993. encode_window_bands_info,
  994. quantize_and_encode_band,
  995. search_for_ms,
  996. },
  997. {
  998. search_for_quantizers_fast,
  999. encode_window_bands_info,
  1000. quantize_and_encode_band,
  1001. search_for_ms,
  1002. },
  1003. };