You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4168 lines
164KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "thread.h"
  27. #include "videodsp.h"
  28. #include "vp56.h"
  29. #include "vp9.h"
  30. #include "vp9data.h"
  31. #include "vp9dsp.h"
  32. #include "libavutil/avassert.h"
  33. #define VP9_SYNCCODE 0x498342
  34. enum CompPredMode {
  35. PRED_SINGLEREF,
  36. PRED_COMPREF,
  37. PRED_SWITCHABLE,
  38. };
  39. enum BlockLevel {
  40. BL_64X64,
  41. BL_32X32,
  42. BL_16X16,
  43. BL_8X8,
  44. };
  45. enum BlockSize {
  46. BS_64x64,
  47. BS_64x32,
  48. BS_32x64,
  49. BS_32x32,
  50. BS_32x16,
  51. BS_16x32,
  52. BS_16x16,
  53. BS_16x8,
  54. BS_8x16,
  55. BS_8x8,
  56. BS_8x4,
  57. BS_4x8,
  58. BS_4x4,
  59. N_BS_SIZES,
  60. };
  61. struct VP9mvrefPair {
  62. VP56mv mv[2];
  63. int8_t ref[2];
  64. };
  65. typedef struct VP9Frame {
  66. ThreadFrame tf;
  67. AVBufferRef *extradata;
  68. uint8_t *segmentation_map;
  69. struct VP9mvrefPair *mv;
  70. int uses_2pass;
  71. } VP9Frame;
  72. struct VP9Filter {
  73. uint8_t level[8 * 8];
  74. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  75. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  76. };
  77. typedef struct VP9Block {
  78. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  79. enum FilterMode filter;
  80. VP56mv mv[4 /* b_idx */][2 /* ref */];
  81. enum BlockSize bs;
  82. enum TxfmMode tx, uvtx;
  83. enum BlockLevel bl;
  84. enum BlockPartition bp;
  85. } VP9Block;
  86. typedef struct VP9Context {
  87. VP9DSPContext dsp;
  88. VideoDSPContext vdsp;
  89. GetBitContext gb;
  90. VP56RangeCoder c;
  91. VP56RangeCoder *c_b;
  92. unsigned c_b_size;
  93. VP9Block *b_base, *b;
  94. int pass;
  95. int row, row7, col, col7;
  96. uint8_t *dst[3];
  97. ptrdiff_t y_stride, uv_stride;
  98. // bitstream header
  99. uint8_t profile;
  100. uint8_t keyframe, last_keyframe;
  101. uint8_t invisible;
  102. uint8_t use_last_frame_mvs;
  103. uint8_t errorres;
  104. uint8_t ss_h, ss_v;
  105. uint8_t intraonly;
  106. uint8_t resetctx;
  107. uint8_t refreshrefmask;
  108. uint8_t highprecisionmvs;
  109. enum FilterMode filtermode;
  110. uint8_t allowcompinter;
  111. uint8_t fixcompref;
  112. uint8_t refreshctx;
  113. uint8_t parallelmode;
  114. uint8_t framectxid;
  115. uint8_t refidx[3];
  116. uint8_t signbias[3];
  117. uint8_t varcompref[2];
  118. ThreadFrame refs[8], next_refs[8];
  119. #define CUR_FRAME 0
  120. #define REF_FRAME_MVPAIR 1
  121. #define REF_FRAME_SEGMAP 2
  122. VP9Frame frames[3];
  123. struct {
  124. uint8_t level;
  125. int8_t sharpness;
  126. uint8_t lim_lut[64];
  127. uint8_t mblim_lut[64];
  128. } filter;
  129. struct {
  130. uint8_t enabled;
  131. int8_t mode[2];
  132. int8_t ref[4];
  133. } lf_delta;
  134. uint8_t yac_qi;
  135. int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
  136. uint8_t lossless;
  137. #define MAX_SEGMENT 8
  138. struct {
  139. uint8_t enabled;
  140. uint8_t temporal;
  141. uint8_t absolute_vals;
  142. uint8_t update_map;
  143. struct {
  144. uint8_t q_enabled;
  145. uint8_t lf_enabled;
  146. uint8_t ref_enabled;
  147. uint8_t skip_enabled;
  148. uint8_t ref_val;
  149. int16_t q_val;
  150. int8_t lf_val;
  151. int16_t qmul[2][2];
  152. uint8_t lflvl[4][2];
  153. } feat[MAX_SEGMENT];
  154. } segmentation;
  155. struct {
  156. unsigned log2_tile_cols, log2_tile_rows;
  157. unsigned tile_cols, tile_rows;
  158. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  159. } tiling;
  160. unsigned sb_cols, sb_rows, rows, cols;
  161. struct {
  162. prob_context p;
  163. uint8_t coef[4][2][2][6][6][3];
  164. } prob_ctx[4];
  165. struct {
  166. prob_context p;
  167. uint8_t coef[4][2][2][6][6][11];
  168. uint8_t seg[7];
  169. uint8_t segpred[3];
  170. } prob;
  171. struct {
  172. unsigned y_mode[4][10];
  173. unsigned uv_mode[10][10];
  174. unsigned filter[4][3];
  175. unsigned mv_mode[7][4];
  176. unsigned intra[4][2];
  177. unsigned comp[5][2];
  178. unsigned single_ref[5][2][2];
  179. unsigned comp_ref[5][2];
  180. unsigned tx32p[2][4];
  181. unsigned tx16p[2][3];
  182. unsigned tx8p[2][2];
  183. unsigned skip[3][2];
  184. unsigned mv_joint[4];
  185. struct {
  186. unsigned sign[2];
  187. unsigned classes[11];
  188. unsigned class0[2];
  189. unsigned bits[10][2];
  190. unsigned class0_fp[2][4];
  191. unsigned fp[4];
  192. unsigned class0_hp[2];
  193. unsigned hp[2];
  194. } mv_comp[2];
  195. unsigned partition[4][4][4];
  196. unsigned coef[4][2][2][6][6][3];
  197. unsigned eob[4][2][2][6][6][2];
  198. } counts;
  199. enum TxfmMode txfmmode;
  200. enum CompPredMode comppredmode;
  201. // contextual (left/above) cache
  202. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  203. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  204. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  205. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  206. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  207. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  208. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  209. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  210. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  211. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  212. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  213. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  214. uint8_t *above_partition_ctx;
  215. uint8_t *above_mode_ctx;
  216. // FIXME maybe merge some of the below in a flags field?
  217. uint8_t *above_y_nnz_ctx;
  218. uint8_t *above_uv_nnz_ctx[2];
  219. uint8_t *above_skip_ctx; // 1bit
  220. uint8_t *above_txfm_ctx; // 2bit
  221. uint8_t *above_segpred_ctx; // 1bit
  222. uint8_t *above_intra_ctx; // 1bit
  223. uint8_t *above_comp_ctx; // 1bit
  224. uint8_t *above_ref_ctx; // 2bit
  225. uint8_t *above_filter_ctx;
  226. VP56mv (*above_mv_ctx)[2];
  227. // whole-frame cache
  228. uint8_t *intra_pred_data[3];
  229. struct VP9Filter *lflvl;
  230. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135*144];
  231. // block reconstruction intermediates
  232. int block_alloc_using_2pass;
  233. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  234. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  235. struct { int x, y; } min_mv, max_mv;
  236. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64];
  237. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64];
  238. uint16_t mvscale[3][2];
  239. uint8_t mvstep[3][2];
  240. } VP9Context;
  241. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  242. {
  243. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  244. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  245. }, {
  246. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  247. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  248. }
  249. };
  250. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  251. {
  252. VP9Context *s = ctx->priv_data;
  253. int ret, sz;
  254. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  255. return ret;
  256. sz = 64 * s->sb_cols * s->sb_rows;
  257. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  258. ff_thread_release_buffer(ctx, &f->tf);
  259. return AVERROR(ENOMEM);
  260. }
  261. f->segmentation_map = f->extradata->data;
  262. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  263. return 0;
  264. }
  265. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  266. {
  267. ff_thread_release_buffer(ctx, &f->tf);
  268. av_buffer_unref(&f->extradata);
  269. }
  270. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  271. {
  272. int res;
  273. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  274. return res;
  275. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  276. vp9_unref_frame(ctx, dst);
  277. return AVERROR(ENOMEM);
  278. }
  279. dst->segmentation_map = src->segmentation_map;
  280. dst->mv = src->mv;
  281. dst->uses_2pass = src->uses_2pass;
  282. return 0;
  283. }
  284. static int update_size(AVCodecContext *ctx, int w, int h, enum AVPixelFormat fmt)
  285. {
  286. VP9Context *s = ctx->priv_data;
  287. uint8_t *p;
  288. av_assert0(w > 0 && h > 0);
  289. if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && ctx->pix_fmt == fmt)
  290. return 0;
  291. ctx->width = w;
  292. ctx->height = h;
  293. ctx->pix_fmt = fmt;
  294. s->sb_cols = (w + 63) >> 6;
  295. s->sb_rows = (h + 63) >> 6;
  296. s->cols = (w + 7) >> 3;
  297. s->rows = (h + 7) >> 3;
  298. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  299. av_freep(&s->intra_pred_data[0]);
  300. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  301. // bit of padding shouldn't affect performance...
  302. p = av_malloc(s->sb_cols * (320 + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  303. if (!p)
  304. return AVERROR(ENOMEM);
  305. assign(s->intra_pred_data[0], uint8_t *, 64);
  306. assign(s->intra_pred_data[1], uint8_t *, 64);
  307. assign(s->intra_pred_data[2], uint8_t *, 64);
  308. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  309. assign(s->above_mode_ctx, uint8_t *, 16);
  310. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  311. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  312. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  313. assign(s->above_partition_ctx, uint8_t *, 8);
  314. assign(s->above_skip_ctx, uint8_t *, 8);
  315. assign(s->above_txfm_ctx, uint8_t *, 8);
  316. assign(s->above_segpred_ctx, uint8_t *, 8);
  317. assign(s->above_intra_ctx, uint8_t *, 8);
  318. assign(s->above_comp_ctx, uint8_t *, 8);
  319. assign(s->above_ref_ctx, uint8_t *, 8);
  320. assign(s->above_filter_ctx, uint8_t *, 8);
  321. assign(s->lflvl, struct VP9Filter *, 1);
  322. #undef assign
  323. // these will be re-allocated a little later
  324. av_freep(&s->b_base);
  325. av_freep(&s->block_base);
  326. return 0;
  327. }
  328. static int update_block_buffers(AVCodecContext *ctx)
  329. {
  330. VP9Context *s = ctx->priv_data;
  331. int chroma_blocks, chroma_eobs;
  332. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->frames[CUR_FRAME].uses_2pass)
  333. return 0;
  334. av_free(s->b_base);
  335. av_free(s->block_base);
  336. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  337. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  338. if (s->frames[CUR_FRAME].uses_2pass) {
  339. int sbs = s->sb_cols * s->sb_rows;
  340. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  341. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * sizeof(int16_t) +
  342. 16 * 16 + 2 * chroma_eobs) * sbs);
  343. if (!s->b_base || !s->block_base)
  344. return AVERROR(ENOMEM);
  345. s->uvblock_base[0] = s->block_base + sbs * 64 * 64;
  346. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks;
  347. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks);
  348. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  349. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  350. } else {
  351. s->b_base = av_malloc(sizeof(VP9Block));
  352. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * sizeof(int16_t) +
  353. 16 * 16 + 2 * chroma_eobs);
  354. if (!s->b_base || !s->block_base)
  355. return AVERROR(ENOMEM);
  356. s->uvblock_base[0] = s->block_base + 64 * 64;
  357. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks;
  358. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks);
  359. s->uveob_base[0] = s->eob_base + 16 * 16;
  360. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  361. }
  362. s->block_alloc_using_2pass = s->frames[CUR_FRAME].uses_2pass;
  363. return 0;
  364. }
  365. // for some reason the sign bit is at the end, not the start, of a bit sequence
  366. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  367. {
  368. int v = get_bits(gb, n);
  369. return get_bits1(gb) ? -v : v;
  370. }
  371. static av_always_inline int inv_recenter_nonneg(int v, int m)
  372. {
  373. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  374. }
  375. // differential forward probability updates
  376. static int update_prob(VP56RangeCoder *c, int p)
  377. {
  378. static const int inv_map_table[254] = {
  379. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  380. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  381. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  382. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  383. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  384. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  385. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  386. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  387. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  388. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  389. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  390. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  391. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  392. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  393. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  394. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  395. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  396. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  397. 252, 253,
  398. };
  399. int d;
  400. /* This code is trying to do a differential probability update. For a
  401. * current probability A in the range [1, 255], the difference to a new
  402. * probability of any value can be expressed differentially as 1-A,255-A
  403. * where some part of this (absolute range) exists both in positive as
  404. * well as the negative part, whereas another part only exists in one
  405. * half. We're trying to code this shared part differentially, i.e.
  406. * times two where the value of the lowest bit specifies the sign, and
  407. * the single part is then coded on top of this. This absolute difference
  408. * then again has a value of [0,254], but a bigger value in this range
  409. * indicates that we're further away from the original value A, so we
  410. * can code this as a VLC code, since higher values are increasingly
  411. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  412. * updates vs. the 'fine, exact' updates further down the range, which
  413. * adds one extra dimension to this differential update model. */
  414. if (!vp8_rac_get(c)) {
  415. d = vp8_rac_get_uint(c, 4) + 0;
  416. } else if (!vp8_rac_get(c)) {
  417. d = vp8_rac_get_uint(c, 4) + 16;
  418. } else if (!vp8_rac_get(c)) {
  419. d = vp8_rac_get_uint(c, 5) + 32;
  420. } else {
  421. d = vp8_rac_get_uint(c, 7);
  422. if (d >= 65)
  423. d = (d << 1) - 65 + vp8_rac_get(c);
  424. d += 64;
  425. }
  426. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  427. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  428. }
  429. static enum AVPixelFormat read_colorspace_details(AVCodecContext *ctx)
  430. {
  431. static const enum AVColorSpace colorspaces[8] = {
  432. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  433. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  434. };
  435. VP9Context *s = ctx->priv_data;
  436. enum AVPixelFormat res;
  437. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  438. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  439. if (s->profile == 1) {
  440. s->ss_h = s->ss_v = 1;
  441. res = AV_PIX_FMT_GBRP;
  442. ctx->color_range = AVCOL_RANGE_JPEG;
  443. } else {
  444. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile 0\n");
  445. return AVERROR_INVALIDDATA;
  446. }
  447. } else {
  448. static const enum AVPixelFormat pix_fmt_for_ss[2 /* v */][2 /* h */] = {
  449. { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  450. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P },
  451. };
  452. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  453. if (s->profile == 1) {
  454. s->ss_h = get_bits1(&s->gb);
  455. s->ss_v = get_bits1(&s->gb);
  456. if ((res = pix_fmt_for_ss[s->ss_v][s->ss_h]) == AV_PIX_FMT_YUV420P) {
  457. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile 1\n");
  458. return AVERROR_INVALIDDATA;
  459. } else if (get_bits1(&s->gb)) {
  460. av_log(ctx, AV_LOG_ERROR, "Profile 1 color details reserved bit set\n");
  461. return AVERROR_INVALIDDATA;
  462. }
  463. } else {
  464. s->ss_h = s->ss_v = 1;
  465. res = AV_PIX_FMT_YUV420P;
  466. }
  467. }
  468. return res;
  469. }
  470. static int decode_frame_header(AVCodecContext *ctx,
  471. const uint8_t *data, int size, int *ref)
  472. {
  473. VP9Context *s = ctx->priv_data;
  474. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  475. enum AVPixelFormat fmt = ctx->pix_fmt;
  476. int last_invisible;
  477. const uint8_t *data2;
  478. /* general header */
  479. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  480. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  481. return res;
  482. }
  483. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  484. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  485. return AVERROR_INVALIDDATA;
  486. }
  487. s->profile = get_bits1(&s->gb);
  488. s->profile |= get_bits1(&s->gb) << 1;
  489. if (s->profile > 1) {
  490. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", s->profile);
  491. return AVERROR_INVALIDDATA;
  492. }
  493. if (get_bits1(&s->gb)) {
  494. *ref = get_bits(&s->gb, 3);
  495. return 0;
  496. }
  497. s->last_keyframe = s->keyframe;
  498. s->keyframe = !get_bits1(&s->gb);
  499. last_invisible = s->invisible;
  500. s->invisible = !get_bits1(&s->gb);
  501. s->errorres = get_bits1(&s->gb);
  502. s->use_last_frame_mvs = !s->errorres && !last_invisible;
  503. if (s->keyframe) {
  504. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  505. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  506. return AVERROR_INVALIDDATA;
  507. }
  508. if ((fmt = read_colorspace_details(ctx)) < 0)
  509. return fmt;
  510. // for profile 1, here follows the subsampling bits
  511. s->refreshrefmask = 0xff;
  512. w = get_bits(&s->gb, 16) + 1;
  513. h = get_bits(&s->gb, 16) + 1;
  514. if (get_bits1(&s->gb)) // display size
  515. skip_bits(&s->gb, 32);
  516. } else {
  517. s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
  518. s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
  519. if (s->intraonly) {
  520. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  521. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  522. return AVERROR_INVALIDDATA;
  523. }
  524. if (s->profile == 1) {
  525. if ((fmt = read_colorspace_details(ctx)) < 0)
  526. return fmt;
  527. } else {
  528. s->ss_h = s->ss_v = 1;
  529. fmt = AV_PIX_FMT_YUV420P;
  530. ctx->colorspace = AVCOL_SPC_BT470BG;
  531. ctx->color_range = AVCOL_RANGE_JPEG;
  532. }
  533. s->refreshrefmask = get_bits(&s->gb, 8);
  534. w = get_bits(&s->gb, 16) + 1;
  535. h = get_bits(&s->gb, 16) + 1;
  536. if (get_bits1(&s->gb)) // display size
  537. skip_bits(&s->gb, 32);
  538. } else {
  539. s->refreshrefmask = get_bits(&s->gb, 8);
  540. s->refidx[0] = get_bits(&s->gb, 3);
  541. s->signbias[0] = get_bits1(&s->gb);
  542. s->refidx[1] = get_bits(&s->gb, 3);
  543. s->signbias[1] = get_bits1(&s->gb);
  544. s->refidx[2] = get_bits(&s->gb, 3);
  545. s->signbias[2] = get_bits1(&s->gb);
  546. if (!s->refs[s->refidx[0]].f->data[0] ||
  547. !s->refs[s->refidx[1]].f->data[0] ||
  548. !s->refs[s->refidx[2]].f->data[0]) {
  549. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  550. return AVERROR_INVALIDDATA;
  551. }
  552. if (get_bits1(&s->gb)) {
  553. w = s->refs[s->refidx[0]].f->width;
  554. h = s->refs[s->refidx[0]].f->height;
  555. } else if (get_bits1(&s->gb)) {
  556. w = s->refs[s->refidx[1]].f->width;
  557. h = s->refs[s->refidx[1]].f->height;
  558. } else if (get_bits1(&s->gb)) {
  559. w = s->refs[s->refidx[2]].f->width;
  560. h = s->refs[s->refidx[2]].f->height;
  561. } else {
  562. w = get_bits(&s->gb, 16) + 1;
  563. h = get_bits(&s->gb, 16) + 1;
  564. }
  565. // Note that in this code, "CUR_FRAME" is actually before we
  566. // have formally allocated a frame, and thus actually represents
  567. // the _last_ frame
  568. s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w &&
  569. s->frames[CUR_FRAME].tf.f->height == h;
  570. if (get_bits1(&s->gb)) // display size
  571. skip_bits(&s->gb, 32);
  572. s->highprecisionmvs = get_bits1(&s->gb);
  573. s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  574. get_bits(&s->gb, 2);
  575. s->allowcompinter = s->signbias[0] != s->signbias[1] ||
  576. s->signbias[0] != s->signbias[2];
  577. if (s->allowcompinter) {
  578. if (s->signbias[0] == s->signbias[1]) {
  579. s->fixcompref = 2;
  580. s->varcompref[0] = 0;
  581. s->varcompref[1] = 1;
  582. } else if (s->signbias[0] == s->signbias[2]) {
  583. s->fixcompref = 1;
  584. s->varcompref[0] = 0;
  585. s->varcompref[1] = 2;
  586. } else {
  587. s->fixcompref = 0;
  588. s->varcompref[0] = 1;
  589. s->varcompref[1] = 2;
  590. }
  591. }
  592. for (i = 0; i < 3; i++) {
  593. AVFrame *ref = s->refs[s->refidx[i]].f;
  594. int refw = ref->width, refh = ref->height;
  595. if (refw == w && refh == h) {
  596. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  597. } else {
  598. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  599. av_log(ctx, AV_LOG_ERROR,
  600. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  601. refw, refh, w, h);
  602. return AVERROR_INVALIDDATA;
  603. }
  604. s->mvscale[i][0] = (refw << 14) / w;
  605. s->mvscale[i][1] = (refh << 14) / h;
  606. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  607. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  608. }
  609. }
  610. }
  611. }
  612. s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
  613. s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
  614. s->framectxid = c = get_bits(&s->gb, 2);
  615. /* loopfilter header data */
  616. s->filter.level = get_bits(&s->gb, 6);
  617. sharp = get_bits(&s->gb, 3);
  618. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  619. // the old cache values since they are still valid
  620. if (s->filter.sharpness != sharp)
  621. memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
  622. s->filter.sharpness = sharp;
  623. if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
  624. if (get_bits1(&s->gb)) {
  625. for (i = 0; i < 4; i++)
  626. if (get_bits1(&s->gb))
  627. s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  628. for (i = 0; i < 2; i++)
  629. if (get_bits1(&s->gb))
  630. s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  631. }
  632. }
  633. /* quantization header data */
  634. s->yac_qi = get_bits(&s->gb, 8);
  635. s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  636. s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  637. s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  638. s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
  639. s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
  640. /* segmentation header info */
  641. if ((s->segmentation.enabled = get_bits1(&s->gb))) {
  642. if ((s->segmentation.update_map = get_bits1(&s->gb))) {
  643. for (i = 0; i < 7; i++)
  644. s->prob.seg[i] = get_bits1(&s->gb) ?
  645. get_bits(&s->gb, 8) : 255;
  646. if ((s->segmentation.temporal = get_bits1(&s->gb))) {
  647. for (i = 0; i < 3; i++)
  648. s->prob.segpred[i] = get_bits1(&s->gb) ?
  649. get_bits(&s->gb, 8) : 255;
  650. }
  651. }
  652. if ((!s->segmentation.update_map || s->segmentation.temporal) &&
  653. (w != s->frames[CUR_FRAME].tf.f->width ||
  654. h != s->frames[CUR_FRAME].tf.f->height)) {
  655. av_log(ctx, AV_LOG_ERROR,
  656. "Reference segmap (temp=%d,update=%d) enabled on size-change!\n",
  657. s->segmentation.temporal, s->segmentation.update_map);
  658. return AVERROR_INVALIDDATA;
  659. }
  660. if (get_bits1(&s->gb)) {
  661. s->segmentation.absolute_vals = get_bits1(&s->gb);
  662. for (i = 0; i < 8; i++) {
  663. if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  664. s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  665. if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  666. s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  667. if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  668. s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  669. s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  670. }
  671. }
  672. } else {
  673. s->segmentation.feat[0].q_enabled = 0;
  674. s->segmentation.feat[0].lf_enabled = 0;
  675. s->segmentation.feat[0].skip_enabled = 0;
  676. s->segmentation.feat[0].ref_enabled = 0;
  677. }
  678. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  679. for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
  680. int qyac, qydc, quvac, quvdc, lflvl, sh;
  681. if (s->segmentation.feat[i].q_enabled) {
  682. if (s->segmentation.absolute_vals)
  683. qyac = s->segmentation.feat[i].q_val;
  684. else
  685. qyac = s->yac_qi + s->segmentation.feat[i].q_val;
  686. } else {
  687. qyac = s->yac_qi;
  688. }
  689. qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
  690. quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
  691. quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
  692. qyac = av_clip_uintp2(qyac, 8);
  693. s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[qydc];
  694. s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[qyac];
  695. s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[quvdc];
  696. s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[quvac];
  697. sh = s->filter.level >= 32;
  698. if (s->segmentation.feat[i].lf_enabled) {
  699. if (s->segmentation.absolute_vals)
  700. lflvl = s->segmentation.feat[i].lf_val;
  701. else
  702. lflvl = s->filter.level + s->segmentation.feat[i].lf_val;
  703. } else {
  704. lflvl = s->filter.level;
  705. }
  706. if (s->lf_delta.enabled) {
  707. s->segmentation.feat[i].lflvl[0][0] =
  708. s->segmentation.feat[i].lflvl[0][1] =
  709. av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
  710. for (j = 1; j < 4; j++) {
  711. s->segmentation.feat[i].lflvl[j][0] =
  712. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  713. s->lf_delta.mode[0]) * (1 << sh)), 6);
  714. s->segmentation.feat[i].lflvl[j][1] =
  715. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  716. s->lf_delta.mode[1]) * (1 << sh)), 6);
  717. }
  718. } else {
  719. memset(s->segmentation.feat[i].lflvl, lflvl,
  720. sizeof(s->segmentation.feat[i].lflvl));
  721. }
  722. }
  723. /* tiling info */
  724. if ((res = update_size(ctx, w, h, fmt)) < 0) {
  725. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, fmt);
  726. return res;
  727. }
  728. for (s->tiling.log2_tile_cols = 0;
  729. (s->sb_cols >> s->tiling.log2_tile_cols) > 64;
  730. s->tiling.log2_tile_cols++) ;
  731. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  732. max = FFMAX(0, max - 1);
  733. while (max > s->tiling.log2_tile_cols) {
  734. if (get_bits1(&s->gb))
  735. s->tiling.log2_tile_cols++;
  736. else
  737. break;
  738. }
  739. s->tiling.log2_tile_rows = decode012(&s->gb);
  740. s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
  741. if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
  742. s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
  743. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  744. sizeof(VP56RangeCoder) * s->tiling.tile_cols);
  745. if (!s->c_b) {
  746. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  747. return AVERROR(ENOMEM);
  748. }
  749. }
  750. if (s->keyframe || s->errorres || s->intraonly) {
  751. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  752. s->prob_ctx[3].p = vp9_default_probs;
  753. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  754. sizeof(vp9_default_coef_probs));
  755. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  756. sizeof(vp9_default_coef_probs));
  757. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  758. sizeof(vp9_default_coef_probs));
  759. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  760. sizeof(vp9_default_coef_probs));
  761. }
  762. // next 16 bits is size of the rest of the header (arith-coded)
  763. size2 = get_bits(&s->gb, 16);
  764. data2 = align_get_bits(&s->gb);
  765. if (size2 > size - (data2 - data)) {
  766. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  767. return AVERROR_INVALIDDATA;
  768. }
  769. ff_vp56_init_range_decoder(&s->c, data2, size2);
  770. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  771. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  772. return AVERROR_INVALIDDATA;
  773. }
  774. if (s->keyframe || s->intraonly) {
  775. memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob));
  776. } else {
  777. memset(&s->counts, 0, sizeof(s->counts));
  778. }
  779. // FIXME is it faster to not copy here, but do it down in the fw updates
  780. // as explicit copies if the fw update is missing (and skip the copy upon
  781. // fw update)?
  782. s->prob.p = s->prob_ctx[c].p;
  783. // txfm updates
  784. if (s->lossless) {
  785. s->txfmmode = TX_4X4;
  786. } else {
  787. s->txfmmode = vp8_rac_get_uint(&s->c, 2);
  788. if (s->txfmmode == 3)
  789. s->txfmmode += vp8_rac_get(&s->c);
  790. if (s->txfmmode == TX_SWITCHABLE) {
  791. for (i = 0; i < 2; i++)
  792. if (vp56_rac_get_prob_branchy(&s->c, 252))
  793. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  794. for (i = 0; i < 2; i++)
  795. for (j = 0; j < 2; j++)
  796. if (vp56_rac_get_prob_branchy(&s->c, 252))
  797. s->prob.p.tx16p[i][j] =
  798. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  799. for (i = 0; i < 2; i++)
  800. for (j = 0; j < 3; j++)
  801. if (vp56_rac_get_prob_branchy(&s->c, 252))
  802. s->prob.p.tx32p[i][j] =
  803. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  804. }
  805. }
  806. // coef updates
  807. for (i = 0; i < 4; i++) {
  808. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  809. if (vp8_rac_get(&s->c)) {
  810. for (j = 0; j < 2; j++)
  811. for (k = 0; k < 2; k++)
  812. for (l = 0; l < 6; l++)
  813. for (m = 0; m < 6; m++) {
  814. uint8_t *p = s->prob.coef[i][j][k][l][m];
  815. uint8_t *r = ref[j][k][l][m];
  816. if (m >= 3 && l == 0) // dc only has 3 pt
  817. break;
  818. for (n = 0; n < 3; n++) {
  819. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  820. p[n] = update_prob(&s->c, r[n]);
  821. } else {
  822. p[n] = r[n];
  823. }
  824. }
  825. p[3] = 0;
  826. }
  827. } else {
  828. for (j = 0; j < 2; j++)
  829. for (k = 0; k < 2; k++)
  830. for (l = 0; l < 6; l++)
  831. for (m = 0; m < 6; m++) {
  832. uint8_t *p = s->prob.coef[i][j][k][l][m];
  833. uint8_t *r = ref[j][k][l][m];
  834. if (m > 3 && l == 0) // dc only has 3 pt
  835. break;
  836. memcpy(p, r, 3);
  837. p[3] = 0;
  838. }
  839. }
  840. if (s->txfmmode == i)
  841. break;
  842. }
  843. // mode updates
  844. for (i = 0; i < 3; i++)
  845. if (vp56_rac_get_prob_branchy(&s->c, 252))
  846. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  847. if (!s->keyframe && !s->intraonly) {
  848. for (i = 0; i < 7; i++)
  849. for (j = 0; j < 3; j++)
  850. if (vp56_rac_get_prob_branchy(&s->c, 252))
  851. s->prob.p.mv_mode[i][j] =
  852. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  853. if (s->filtermode == FILTER_SWITCHABLE)
  854. for (i = 0; i < 4; i++)
  855. for (j = 0; j < 2; j++)
  856. if (vp56_rac_get_prob_branchy(&s->c, 252))
  857. s->prob.p.filter[i][j] =
  858. update_prob(&s->c, s->prob.p.filter[i][j]);
  859. for (i = 0; i < 4; i++)
  860. if (vp56_rac_get_prob_branchy(&s->c, 252))
  861. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  862. if (s->allowcompinter) {
  863. s->comppredmode = vp8_rac_get(&s->c);
  864. if (s->comppredmode)
  865. s->comppredmode += vp8_rac_get(&s->c);
  866. if (s->comppredmode == PRED_SWITCHABLE)
  867. for (i = 0; i < 5; i++)
  868. if (vp56_rac_get_prob_branchy(&s->c, 252))
  869. s->prob.p.comp[i] =
  870. update_prob(&s->c, s->prob.p.comp[i]);
  871. } else {
  872. s->comppredmode = PRED_SINGLEREF;
  873. }
  874. if (s->comppredmode != PRED_COMPREF) {
  875. for (i = 0; i < 5; i++) {
  876. if (vp56_rac_get_prob_branchy(&s->c, 252))
  877. s->prob.p.single_ref[i][0] =
  878. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  879. if (vp56_rac_get_prob_branchy(&s->c, 252))
  880. s->prob.p.single_ref[i][1] =
  881. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  882. }
  883. }
  884. if (s->comppredmode != PRED_SINGLEREF) {
  885. for (i = 0; i < 5; i++)
  886. if (vp56_rac_get_prob_branchy(&s->c, 252))
  887. s->prob.p.comp_ref[i] =
  888. update_prob(&s->c, s->prob.p.comp_ref[i]);
  889. }
  890. for (i = 0; i < 4; i++)
  891. for (j = 0; j < 9; j++)
  892. if (vp56_rac_get_prob_branchy(&s->c, 252))
  893. s->prob.p.y_mode[i][j] =
  894. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  895. for (i = 0; i < 4; i++)
  896. for (j = 0; j < 4; j++)
  897. for (k = 0; k < 3; k++)
  898. if (vp56_rac_get_prob_branchy(&s->c, 252))
  899. s->prob.p.partition[3 - i][j][k] =
  900. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  901. // mv fields don't use the update_prob subexp model for some reason
  902. for (i = 0; i < 3; i++)
  903. if (vp56_rac_get_prob_branchy(&s->c, 252))
  904. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  905. for (i = 0; i < 2; i++) {
  906. if (vp56_rac_get_prob_branchy(&s->c, 252))
  907. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  908. for (j = 0; j < 10; j++)
  909. if (vp56_rac_get_prob_branchy(&s->c, 252))
  910. s->prob.p.mv_comp[i].classes[j] =
  911. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  912. if (vp56_rac_get_prob_branchy(&s->c, 252))
  913. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  914. for (j = 0; j < 10; j++)
  915. if (vp56_rac_get_prob_branchy(&s->c, 252))
  916. s->prob.p.mv_comp[i].bits[j] =
  917. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  918. }
  919. for (i = 0; i < 2; i++) {
  920. for (j = 0; j < 2; j++)
  921. for (k = 0; k < 3; k++)
  922. if (vp56_rac_get_prob_branchy(&s->c, 252))
  923. s->prob.p.mv_comp[i].class0_fp[j][k] =
  924. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  925. for (j = 0; j < 3; j++)
  926. if (vp56_rac_get_prob_branchy(&s->c, 252))
  927. s->prob.p.mv_comp[i].fp[j] =
  928. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  929. }
  930. if (s->highprecisionmvs) {
  931. for (i = 0; i < 2; i++) {
  932. if (vp56_rac_get_prob_branchy(&s->c, 252))
  933. s->prob.p.mv_comp[i].class0_hp =
  934. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  935. if (vp56_rac_get_prob_branchy(&s->c, 252))
  936. s->prob.p.mv_comp[i].hp =
  937. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  938. }
  939. }
  940. }
  941. return (data2 - data) + size2;
  942. }
  943. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  944. VP9Context *s)
  945. {
  946. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  947. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  948. }
  949. static void find_ref_mvs(VP9Context *s,
  950. VP56mv *pmv, int ref, int z, int idx, int sb)
  951. {
  952. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  953. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  954. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  955. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  956. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  957. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  958. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  959. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  960. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  961. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  962. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  963. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  964. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  965. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  966. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  967. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  968. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  969. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  970. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  971. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  972. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  973. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  974. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  975. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  976. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  977. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  978. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  979. };
  980. VP9Block *b = s->b;
  981. int row = s->row, col = s->col, row7 = s->row7;
  982. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  983. #define INVALID_MV 0x80008000U
  984. uint32_t mem = INVALID_MV;
  985. int i;
  986. #define RETURN_DIRECT_MV(mv) \
  987. do { \
  988. uint32_t m = AV_RN32A(&mv); \
  989. if (!idx) { \
  990. AV_WN32A(pmv, m); \
  991. return; \
  992. } else if (mem == INVALID_MV) { \
  993. mem = m; \
  994. } else if (m != mem) { \
  995. AV_WN32A(pmv, m); \
  996. return; \
  997. } \
  998. } while (0)
  999. if (sb >= 0) {
  1000. if (sb == 2 || sb == 1) {
  1001. RETURN_DIRECT_MV(b->mv[0][z]);
  1002. } else if (sb == 3) {
  1003. RETURN_DIRECT_MV(b->mv[2][z]);
  1004. RETURN_DIRECT_MV(b->mv[1][z]);
  1005. RETURN_DIRECT_MV(b->mv[0][z]);
  1006. }
  1007. #define RETURN_MV(mv) \
  1008. do { \
  1009. if (sb > 0) { \
  1010. VP56mv tmp; \
  1011. uint32_t m; \
  1012. clamp_mv(&tmp, &mv, s); \
  1013. m = AV_RN32A(&tmp); \
  1014. if (!idx) { \
  1015. AV_WN32A(pmv, m); \
  1016. return; \
  1017. } else if (mem == INVALID_MV) { \
  1018. mem = m; \
  1019. } else if (m != mem) { \
  1020. AV_WN32A(pmv, m); \
  1021. return; \
  1022. } \
  1023. } else { \
  1024. uint32_t m = AV_RN32A(&mv); \
  1025. if (!idx) { \
  1026. clamp_mv(pmv, &mv, s); \
  1027. return; \
  1028. } else if (mem == INVALID_MV) { \
  1029. mem = m; \
  1030. } else if (m != mem) { \
  1031. clamp_mv(pmv, &mv, s); \
  1032. return; \
  1033. } \
  1034. } \
  1035. } while (0)
  1036. if (row > 0) {
  1037. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1038. if (mv->ref[0] == ref) {
  1039. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1040. } else if (mv->ref[1] == ref) {
  1041. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1042. }
  1043. }
  1044. if (col > s->tiling.tile_col_start) {
  1045. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1046. if (mv->ref[0] == ref) {
  1047. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1048. } else if (mv->ref[1] == ref) {
  1049. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1050. }
  1051. }
  1052. i = 2;
  1053. } else {
  1054. i = 0;
  1055. }
  1056. // previously coded MVs in this neighbourhood, using same reference frame
  1057. for (; i < 8; i++) {
  1058. int c = p[i][0] + col, r = p[i][1] + row;
  1059. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1060. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1061. if (mv->ref[0] == ref) {
  1062. RETURN_MV(mv->mv[0]);
  1063. } else if (mv->ref[1] == ref) {
  1064. RETURN_MV(mv->mv[1]);
  1065. }
  1066. }
  1067. }
  1068. // MV at this position in previous frame, using same reference frame
  1069. if (s->use_last_frame_mvs) {
  1070. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1071. if (!s->frames[REF_FRAME_MVPAIR].uses_2pass)
  1072. ff_thread_await_progress(&s->frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1073. if (mv->ref[0] == ref) {
  1074. RETURN_MV(mv->mv[0]);
  1075. } else if (mv->ref[1] == ref) {
  1076. RETURN_MV(mv->mv[1]);
  1077. }
  1078. }
  1079. #define RETURN_SCALE_MV(mv, scale) \
  1080. do { \
  1081. if (scale) { \
  1082. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1083. RETURN_MV(mv_temp); \
  1084. } else { \
  1085. RETURN_MV(mv); \
  1086. } \
  1087. } while (0)
  1088. // previously coded MVs in this neighbourhood, using different reference frame
  1089. for (i = 0; i < 8; i++) {
  1090. int c = p[i][0] + col, r = p[i][1] + row;
  1091. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1092. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1093. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1094. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1095. }
  1096. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1097. // BUG - libvpx has this condition regardless of whether
  1098. // we used the first ref MV and pre-scaling
  1099. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1100. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1101. }
  1102. }
  1103. }
  1104. // MV at this position in previous frame, using different reference frame
  1105. if (s->use_last_frame_mvs) {
  1106. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1107. // no need to await_progress, because we already did that above
  1108. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1109. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1110. }
  1111. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1112. // BUG - libvpx has this condition regardless of whether
  1113. // we used the first ref MV and pre-scaling
  1114. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1115. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1116. }
  1117. }
  1118. AV_ZERO32(pmv);
  1119. #undef INVALID_MV
  1120. #undef RETURN_MV
  1121. #undef RETURN_SCALE_MV
  1122. }
  1123. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1124. {
  1125. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1126. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1127. s->prob.p.mv_comp[idx].classes);
  1128. s->counts.mv_comp[idx].sign[sign]++;
  1129. s->counts.mv_comp[idx].classes[c]++;
  1130. if (c) {
  1131. int m;
  1132. for (n = 0, m = 0; m < c; m++) {
  1133. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1134. n |= bit << m;
  1135. s->counts.mv_comp[idx].bits[m][bit]++;
  1136. }
  1137. n <<= 3;
  1138. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1139. n |= bit << 1;
  1140. s->counts.mv_comp[idx].fp[bit]++;
  1141. if (hp) {
  1142. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1143. s->counts.mv_comp[idx].hp[bit]++;
  1144. n |= bit;
  1145. } else {
  1146. n |= 1;
  1147. // bug in libvpx - we count for bw entropy purposes even if the
  1148. // bit wasn't coded
  1149. s->counts.mv_comp[idx].hp[1]++;
  1150. }
  1151. n += 8 << c;
  1152. } else {
  1153. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1154. s->counts.mv_comp[idx].class0[n]++;
  1155. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1156. s->prob.p.mv_comp[idx].class0_fp[n]);
  1157. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1158. n = (n << 3) | (bit << 1);
  1159. if (hp) {
  1160. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1161. s->counts.mv_comp[idx].class0_hp[bit]++;
  1162. n |= bit;
  1163. } else {
  1164. n |= 1;
  1165. // bug in libvpx - we count for bw entropy purposes even if the
  1166. // bit wasn't coded
  1167. s->counts.mv_comp[idx].class0_hp[1]++;
  1168. }
  1169. }
  1170. return sign ? -(n + 1) : (n + 1);
  1171. }
  1172. static void fill_mv(VP9Context *s,
  1173. VP56mv *mv, int mode, int sb)
  1174. {
  1175. VP9Block *b = s->b;
  1176. if (mode == ZEROMV) {
  1177. AV_ZERO64(mv);
  1178. } else {
  1179. int hp;
  1180. // FIXME cache this value and reuse for other subblocks
  1181. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1182. mode == NEWMV ? -1 : sb);
  1183. // FIXME maybe move this code into find_ref_mvs()
  1184. if ((mode == NEWMV || sb == -1) &&
  1185. !(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1186. if (mv[0].y & 1) {
  1187. if (mv[0].y < 0)
  1188. mv[0].y++;
  1189. else
  1190. mv[0].y--;
  1191. }
  1192. if (mv[0].x & 1) {
  1193. if (mv[0].x < 0)
  1194. mv[0].x++;
  1195. else
  1196. mv[0].x--;
  1197. }
  1198. }
  1199. if (mode == NEWMV) {
  1200. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1201. s->prob.p.mv_joint);
  1202. s->counts.mv_joint[j]++;
  1203. if (j >= MV_JOINT_V)
  1204. mv[0].y += read_mv_component(s, 0, hp);
  1205. if (j & 1)
  1206. mv[0].x += read_mv_component(s, 1, hp);
  1207. }
  1208. if (b->comp) {
  1209. // FIXME cache this value and reuse for other subblocks
  1210. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1211. mode == NEWMV ? -1 : sb);
  1212. if ((mode == NEWMV || sb == -1) &&
  1213. !(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1214. if (mv[1].y & 1) {
  1215. if (mv[1].y < 0)
  1216. mv[1].y++;
  1217. else
  1218. mv[1].y--;
  1219. }
  1220. if (mv[1].x & 1) {
  1221. if (mv[1].x < 0)
  1222. mv[1].x++;
  1223. else
  1224. mv[1].x--;
  1225. }
  1226. }
  1227. if (mode == NEWMV) {
  1228. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1229. s->prob.p.mv_joint);
  1230. s->counts.mv_joint[j]++;
  1231. if (j >= MV_JOINT_V)
  1232. mv[1].y += read_mv_component(s, 0, hp);
  1233. if (j & 1)
  1234. mv[1].x += read_mv_component(s, 1, hp);
  1235. }
  1236. }
  1237. }
  1238. }
  1239. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1240. ptrdiff_t stride, int v)
  1241. {
  1242. switch (w) {
  1243. case 1:
  1244. do {
  1245. *ptr = v;
  1246. ptr += stride;
  1247. } while (--h);
  1248. break;
  1249. case 2: {
  1250. int v16 = v * 0x0101;
  1251. do {
  1252. AV_WN16A(ptr, v16);
  1253. ptr += stride;
  1254. } while (--h);
  1255. break;
  1256. }
  1257. case 4: {
  1258. uint32_t v32 = v * 0x01010101;
  1259. do {
  1260. AV_WN32A(ptr, v32);
  1261. ptr += stride;
  1262. } while (--h);
  1263. break;
  1264. }
  1265. case 8: {
  1266. #if HAVE_FAST_64BIT
  1267. uint64_t v64 = v * 0x0101010101010101ULL;
  1268. do {
  1269. AV_WN64A(ptr, v64);
  1270. ptr += stride;
  1271. } while (--h);
  1272. #else
  1273. uint32_t v32 = v * 0x01010101;
  1274. do {
  1275. AV_WN32A(ptr, v32);
  1276. AV_WN32A(ptr + 4, v32);
  1277. ptr += stride;
  1278. } while (--h);
  1279. #endif
  1280. break;
  1281. }
  1282. }
  1283. }
  1284. static void decode_mode(AVCodecContext *ctx)
  1285. {
  1286. static const uint8_t left_ctx[N_BS_SIZES] = {
  1287. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1288. };
  1289. static const uint8_t above_ctx[N_BS_SIZES] = {
  1290. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1291. };
  1292. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1293. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1294. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1295. };
  1296. VP9Context *s = ctx->priv_data;
  1297. VP9Block *b = s->b;
  1298. int row = s->row, col = s->col, row7 = s->row7;
  1299. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1300. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1301. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1302. int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
  1303. int vref, filter_id;
  1304. if (!s->segmentation.enabled) {
  1305. b->seg_id = 0;
  1306. } else if (s->keyframe || s->intraonly) {
  1307. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg);
  1308. } else if (!s->segmentation.update_map ||
  1309. (s->segmentation.temporal &&
  1310. vp56_rac_get_prob_branchy(&s->c,
  1311. s->prob.segpred[s->above_segpred_ctx[col] +
  1312. s->left_segpred_ctx[row7]]))) {
  1313. if (!s->errorres) {
  1314. int pred = 8, x;
  1315. uint8_t *refsegmap = s->frames[REF_FRAME_SEGMAP].segmentation_map;
  1316. if (!s->frames[REF_FRAME_SEGMAP].uses_2pass)
  1317. ff_thread_await_progress(&s->frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1318. for (y = 0; y < h4; y++) {
  1319. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1320. for (x = 0; x < w4; x++)
  1321. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1322. }
  1323. av_assert1(pred < 8);
  1324. b->seg_id = pred;
  1325. } else {
  1326. b->seg_id = 0;
  1327. }
  1328. memset(&s->above_segpred_ctx[col], 1, w4);
  1329. memset(&s->left_segpred_ctx[row7], 1, h4);
  1330. } else {
  1331. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1332. s->prob.seg);
  1333. memset(&s->above_segpred_ctx[col], 0, w4);
  1334. memset(&s->left_segpred_ctx[row7], 0, h4);
  1335. }
  1336. if (s->segmentation.enabled &&
  1337. (s->segmentation.update_map || s->keyframe || s->intraonly)) {
  1338. setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1339. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1340. }
  1341. b->skip = s->segmentation.enabled &&
  1342. s->segmentation.feat[b->seg_id].skip_enabled;
  1343. if (!b->skip) {
  1344. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1345. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1346. s->counts.skip[c][b->skip]++;
  1347. }
  1348. if (s->keyframe || s->intraonly) {
  1349. b->intra = 1;
  1350. } else if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1351. b->intra = !s->segmentation.feat[b->seg_id].ref_val;
  1352. } else {
  1353. int c, bit;
  1354. if (have_a && have_l) {
  1355. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1356. c += (c == 2);
  1357. } else {
  1358. c = have_a ? 2 * s->above_intra_ctx[col] :
  1359. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1360. }
  1361. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1362. s->counts.intra[c][bit]++;
  1363. b->intra = !bit;
  1364. }
  1365. if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
  1366. int c;
  1367. if (have_a) {
  1368. if (have_l) {
  1369. c = (s->above_skip_ctx[col] ? max_tx :
  1370. s->above_txfm_ctx[col]) +
  1371. (s->left_skip_ctx[row7] ? max_tx :
  1372. s->left_txfm_ctx[row7]) > max_tx;
  1373. } else {
  1374. c = s->above_skip_ctx[col] ? 1 :
  1375. (s->above_txfm_ctx[col] * 2 > max_tx);
  1376. }
  1377. } else if (have_l) {
  1378. c = s->left_skip_ctx[row7] ? 1 :
  1379. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1380. } else {
  1381. c = 1;
  1382. }
  1383. switch (max_tx) {
  1384. case TX_32X32:
  1385. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1386. if (b->tx) {
  1387. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1388. if (b->tx == 2)
  1389. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1390. }
  1391. s->counts.tx32p[c][b->tx]++;
  1392. break;
  1393. case TX_16X16:
  1394. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1395. if (b->tx)
  1396. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1397. s->counts.tx16p[c][b->tx]++;
  1398. break;
  1399. case TX_8X8:
  1400. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1401. s->counts.tx8p[c][b->tx]++;
  1402. break;
  1403. case TX_4X4:
  1404. b->tx = TX_4X4;
  1405. break;
  1406. }
  1407. } else {
  1408. b->tx = FFMIN(max_tx, s->txfmmode);
  1409. }
  1410. if (s->keyframe || s->intraonly) {
  1411. uint8_t *a = &s->above_mode_ctx[col * 2];
  1412. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1413. b->comp = 0;
  1414. if (b->bs > BS_8x8) {
  1415. // FIXME the memory storage intermediates here aren't really
  1416. // necessary, they're just there to make the code slightly
  1417. // simpler for now
  1418. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1419. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1420. if (b->bs != BS_8x4) {
  1421. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1422. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1423. l[0] = a[1] = b->mode[1];
  1424. } else {
  1425. l[0] = a[1] = b->mode[1] = b->mode[0];
  1426. }
  1427. if (b->bs != BS_4x8) {
  1428. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1429. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1430. if (b->bs != BS_8x4) {
  1431. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1432. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1433. l[1] = a[1] = b->mode[3];
  1434. } else {
  1435. l[1] = a[1] = b->mode[3] = b->mode[2];
  1436. }
  1437. } else {
  1438. b->mode[2] = b->mode[0];
  1439. l[1] = a[1] = b->mode[3] = b->mode[1];
  1440. }
  1441. } else {
  1442. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1443. vp9_default_kf_ymode_probs[*a][*l]);
  1444. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1445. // FIXME this can probably be optimized
  1446. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1447. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1448. }
  1449. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1450. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1451. } else if (b->intra) {
  1452. b->comp = 0;
  1453. if (b->bs > BS_8x8) {
  1454. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1455. s->prob.p.y_mode[0]);
  1456. s->counts.y_mode[0][b->mode[0]]++;
  1457. if (b->bs != BS_8x4) {
  1458. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1459. s->prob.p.y_mode[0]);
  1460. s->counts.y_mode[0][b->mode[1]]++;
  1461. } else {
  1462. b->mode[1] = b->mode[0];
  1463. }
  1464. if (b->bs != BS_4x8) {
  1465. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1466. s->prob.p.y_mode[0]);
  1467. s->counts.y_mode[0][b->mode[2]]++;
  1468. if (b->bs != BS_8x4) {
  1469. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1470. s->prob.p.y_mode[0]);
  1471. s->counts.y_mode[0][b->mode[3]]++;
  1472. } else {
  1473. b->mode[3] = b->mode[2];
  1474. }
  1475. } else {
  1476. b->mode[2] = b->mode[0];
  1477. b->mode[3] = b->mode[1];
  1478. }
  1479. } else {
  1480. static const uint8_t size_group[10] = {
  1481. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1482. };
  1483. int sz = size_group[b->bs];
  1484. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1485. s->prob.p.y_mode[sz]);
  1486. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1487. s->counts.y_mode[sz][b->mode[3]]++;
  1488. }
  1489. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1490. s->prob.p.uv_mode[b->mode[3]]);
  1491. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1492. } else {
  1493. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1494. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1495. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1496. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1497. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1498. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1499. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1500. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1501. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1502. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1503. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1504. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1505. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1506. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1507. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1508. };
  1509. if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1510. av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
  1511. b->comp = 0;
  1512. b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
  1513. } else {
  1514. // read comp_pred flag
  1515. if (s->comppredmode != PRED_SWITCHABLE) {
  1516. b->comp = s->comppredmode == PRED_COMPREF;
  1517. } else {
  1518. int c;
  1519. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1520. if (have_a) {
  1521. if (have_l) {
  1522. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1523. c = 4;
  1524. } else if (s->above_comp_ctx[col]) {
  1525. c = 2 + (s->left_intra_ctx[row7] ||
  1526. s->left_ref_ctx[row7] == s->fixcompref);
  1527. } else if (s->left_comp_ctx[row7]) {
  1528. c = 2 + (s->above_intra_ctx[col] ||
  1529. s->above_ref_ctx[col] == s->fixcompref);
  1530. } else {
  1531. c = (!s->above_intra_ctx[col] &&
  1532. s->above_ref_ctx[col] == s->fixcompref) ^
  1533. (!s->left_intra_ctx[row7] &&
  1534. s->left_ref_ctx[row & 7] == s->fixcompref);
  1535. }
  1536. } else {
  1537. c = s->above_comp_ctx[col] ? 3 :
  1538. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
  1539. }
  1540. } else if (have_l) {
  1541. c = s->left_comp_ctx[row7] ? 3 :
  1542. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
  1543. } else {
  1544. c = 1;
  1545. }
  1546. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1547. s->counts.comp[c][b->comp]++;
  1548. }
  1549. // read actual references
  1550. // FIXME probably cache a few variables here to prevent repetitive
  1551. // memory accesses below
  1552. if (b->comp) /* two references */ {
  1553. int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
  1554. b->ref[fix_idx] = s->fixcompref;
  1555. // FIXME can this codeblob be replaced by some sort of LUT?
  1556. if (have_a) {
  1557. if (have_l) {
  1558. if (s->above_intra_ctx[col]) {
  1559. if (s->left_intra_ctx[row7]) {
  1560. c = 2;
  1561. } else {
  1562. c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1563. }
  1564. } else if (s->left_intra_ctx[row7]) {
  1565. c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1566. } else {
  1567. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1568. if (refl == refa && refa == s->varcompref[1]) {
  1569. c = 0;
  1570. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1571. if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
  1572. (refl == s->fixcompref && refa == s->varcompref[0])) {
  1573. c = 4;
  1574. } else {
  1575. c = (refa == refl) ? 3 : 1;
  1576. }
  1577. } else if (!s->left_comp_ctx[row7]) {
  1578. if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
  1579. c = 1;
  1580. } else {
  1581. c = (refl == s->varcompref[1] &&
  1582. refa != s->varcompref[1]) ? 2 : 4;
  1583. }
  1584. } else if (!s->above_comp_ctx[col]) {
  1585. if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
  1586. c = 1;
  1587. } else {
  1588. c = (refa == s->varcompref[1] &&
  1589. refl != s->varcompref[1]) ? 2 : 4;
  1590. }
  1591. } else {
  1592. c = (refl == refa) ? 4 : 2;
  1593. }
  1594. }
  1595. } else {
  1596. if (s->above_intra_ctx[col]) {
  1597. c = 2;
  1598. } else if (s->above_comp_ctx[col]) {
  1599. c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1600. } else {
  1601. c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1602. }
  1603. }
  1604. } else if (have_l) {
  1605. if (s->left_intra_ctx[row7]) {
  1606. c = 2;
  1607. } else if (s->left_comp_ctx[row7]) {
  1608. c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1609. } else {
  1610. c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1611. }
  1612. } else {
  1613. c = 2;
  1614. }
  1615. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1616. b->ref[var_idx] = s->varcompref[bit];
  1617. s->counts.comp_ref[c][bit]++;
  1618. } else /* single reference */ {
  1619. int bit, c;
  1620. if (have_a && !s->above_intra_ctx[col]) {
  1621. if (have_l && !s->left_intra_ctx[row7]) {
  1622. if (s->left_comp_ctx[row7]) {
  1623. if (s->above_comp_ctx[col]) {
  1624. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
  1625. !s->above_ref_ctx[col]);
  1626. } else {
  1627. c = (3 * !s->above_ref_ctx[col]) +
  1628. (!s->fixcompref || !s->left_ref_ctx[row7]);
  1629. }
  1630. } else if (s->above_comp_ctx[col]) {
  1631. c = (3 * !s->left_ref_ctx[row7]) +
  1632. (!s->fixcompref || !s->above_ref_ctx[col]);
  1633. } else {
  1634. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1635. }
  1636. } else if (s->above_intra_ctx[col]) {
  1637. c = 2;
  1638. } else if (s->above_comp_ctx[col]) {
  1639. c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
  1640. } else {
  1641. c = 4 * (!s->above_ref_ctx[col]);
  1642. }
  1643. } else if (have_l && !s->left_intra_ctx[row7]) {
  1644. if (s->left_intra_ctx[row7]) {
  1645. c = 2;
  1646. } else if (s->left_comp_ctx[row7]) {
  1647. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
  1648. } else {
  1649. c = 4 * (!s->left_ref_ctx[row7]);
  1650. }
  1651. } else {
  1652. c = 2;
  1653. }
  1654. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1655. s->counts.single_ref[c][0][bit]++;
  1656. if (!bit) {
  1657. b->ref[0] = 0;
  1658. } else {
  1659. // FIXME can this codeblob be replaced by some sort of LUT?
  1660. if (have_a) {
  1661. if (have_l) {
  1662. if (s->left_intra_ctx[row7]) {
  1663. if (s->above_intra_ctx[col]) {
  1664. c = 2;
  1665. } else if (s->above_comp_ctx[col]) {
  1666. c = 1 + 2 * (s->fixcompref == 1 ||
  1667. s->above_ref_ctx[col] == 1);
  1668. } else if (!s->above_ref_ctx[col]) {
  1669. c = 3;
  1670. } else {
  1671. c = 4 * (s->above_ref_ctx[col] == 1);
  1672. }
  1673. } else if (s->above_intra_ctx[col]) {
  1674. if (s->left_intra_ctx[row7]) {
  1675. c = 2;
  1676. } else if (s->left_comp_ctx[row7]) {
  1677. c = 1 + 2 * (s->fixcompref == 1 ||
  1678. s->left_ref_ctx[row7] == 1);
  1679. } else if (!s->left_ref_ctx[row7]) {
  1680. c = 3;
  1681. } else {
  1682. c = 4 * (s->left_ref_ctx[row7] == 1);
  1683. }
  1684. } else if (s->above_comp_ctx[col]) {
  1685. if (s->left_comp_ctx[row7]) {
  1686. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1687. c = 3 * (s->fixcompref == 1 ||
  1688. s->left_ref_ctx[row7] == 1);
  1689. } else {
  1690. c = 2;
  1691. }
  1692. } else if (!s->left_ref_ctx[row7]) {
  1693. c = 1 + 2 * (s->fixcompref == 1 ||
  1694. s->above_ref_ctx[col] == 1);
  1695. } else {
  1696. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1697. (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1698. }
  1699. } else if (s->left_comp_ctx[row7]) {
  1700. if (!s->above_ref_ctx[col]) {
  1701. c = 1 + 2 * (s->fixcompref == 1 ||
  1702. s->left_ref_ctx[row7] == 1);
  1703. } else {
  1704. c = 3 * (s->above_ref_ctx[col] == 1) +
  1705. (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1706. }
  1707. } else if (!s->above_ref_ctx[col]) {
  1708. if (!s->left_ref_ctx[row7]) {
  1709. c = 3;
  1710. } else {
  1711. c = 4 * (s->left_ref_ctx[row7] == 1);
  1712. }
  1713. } else if (!s->left_ref_ctx[row7]) {
  1714. c = 4 * (s->above_ref_ctx[col] == 1);
  1715. } else {
  1716. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1717. 2 * (s->above_ref_ctx[col] == 1);
  1718. }
  1719. } else {
  1720. if (s->above_intra_ctx[col] ||
  1721. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1722. c = 2;
  1723. } else if (s->above_comp_ctx[col]) {
  1724. c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1725. } else {
  1726. c = 4 * (s->above_ref_ctx[col] == 1);
  1727. }
  1728. }
  1729. } else if (have_l) {
  1730. if (s->left_intra_ctx[row7] ||
  1731. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1732. c = 2;
  1733. } else if (s->left_comp_ctx[row7]) {
  1734. c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1735. } else {
  1736. c = 4 * (s->left_ref_ctx[row7] == 1);
  1737. }
  1738. } else {
  1739. c = 2;
  1740. }
  1741. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1742. s->counts.single_ref[c][1][bit]++;
  1743. b->ref[0] = 1 + bit;
  1744. }
  1745. }
  1746. }
  1747. if (b->bs <= BS_8x8) {
  1748. if (s->segmentation.feat[b->seg_id].skip_enabled) {
  1749. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1750. } else {
  1751. static const uint8_t off[10] = {
  1752. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1753. };
  1754. // FIXME this needs to use the LUT tables from find_ref_mvs
  1755. // because not all are -1,0/0,-1
  1756. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1757. [s->left_mode_ctx[row7 + off[b->bs]]];
  1758. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1759. s->prob.p.mv_mode[c]);
  1760. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1761. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1762. }
  1763. }
  1764. if (s->filtermode == FILTER_SWITCHABLE) {
  1765. int c;
  1766. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1767. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1768. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1769. s->left_filter_ctx[row7] : 3;
  1770. } else {
  1771. c = s->above_filter_ctx[col];
  1772. }
  1773. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1774. c = s->left_filter_ctx[row7];
  1775. } else {
  1776. c = 3;
  1777. }
  1778. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1779. s->prob.p.filter[c]);
  1780. s->counts.filter[c][filter_id]++;
  1781. b->filter = vp9_filter_lut[filter_id];
  1782. } else {
  1783. b->filter = s->filtermode;
  1784. }
  1785. if (b->bs > BS_8x8) {
  1786. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1787. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1788. s->prob.p.mv_mode[c]);
  1789. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1790. fill_mv(s, b->mv[0], b->mode[0], 0);
  1791. if (b->bs != BS_8x4) {
  1792. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1793. s->prob.p.mv_mode[c]);
  1794. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1795. fill_mv(s, b->mv[1], b->mode[1], 1);
  1796. } else {
  1797. b->mode[1] = b->mode[0];
  1798. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1799. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1800. }
  1801. if (b->bs != BS_4x8) {
  1802. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1803. s->prob.p.mv_mode[c]);
  1804. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1805. fill_mv(s, b->mv[2], b->mode[2], 2);
  1806. if (b->bs != BS_8x4) {
  1807. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1808. s->prob.p.mv_mode[c]);
  1809. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1810. fill_mv(s, b->mv[3], b->mode[3], 3);
  1811. } else {
  1812. b->mode[3] = b->mode[2];
  1813. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1814. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1815. }
  1816. } else {
  1817. b->mode[2] = b->mode[0];
  1818. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1819. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1820. b->mode[3] = b->mode[1];
  1821. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1822. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1823. }
  1824. } else {
  1825. fill_mv(s, b->mv[0], b->mode[0], -1);
  1826. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1827. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1828. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1829. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1830. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1831. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1832. }
  1833. vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
  1834. }
  1835. #if HAVE_FAST_64BIT
  1836. #define SPLAT_CTX(var, val, n) \
  1837. switch (n) { \
  1838. case 1: var = val; break; \
  1839. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1840. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1841. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1842. case 16: { \
  1843. uint64_t v64 = val * 0x0101010101010101ULL; \
  1844. AV_WN64A( &var, v64); \
  1845. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1846. break; \
  1847. } \
  1848. }
  1849. #else
  1850. #define SPLAT_CTX(var, val, n) \
  1851. switch (n) { \
  1852. case 1: var = val; break; \
  1853. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1854. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1855. case 8: { \
  1856. uint32_t v32 = val * 0x01010101; \
  1857. AV_WN32A( &var, v32); \
  1858. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1859. break; \
  1860. } \
  1861. case 16: { \
  1862. uint32_t v32 = val * 0x01010101; \
  1863. AV_WN32A( &var, v32); \
  1864. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1865. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1866. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1867. break; \
  1868. } \
  1869. }
  1870. #endif
  1871. switch (bwh_tab[1][b->bs][0]) {
  1872. #define SET_CTXS(dir, off, n) \
  1873. do { \
  1874. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1875. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1876. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1877. if (!s->keyframe && !s->intraonly) { \
  1878. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1879. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1880. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1881. if (!b->intra) { \
  1882. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1883. if (s->filtermode == FILTER_SWITCHABLE) { \
  1884. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1885. } \
  1886. } \
  1887. } \
  1888. } while (0)
  1889. case 1: SET_CTXS(above, col, 1); break;
  1890. case 2: SET_CTXS(above, col, 2); break;
  1891. case 4: SET_CTXS(above, col, 4); break;
  1892. case 8: SET_CTXS(above, col, 8); break;
  1893. }
  1894. switch (bwh_tab[1][b->bs][1]) {
  1895. case 1: SET_CTXS(left, row7, 1); break;
  1896. case 2: SET_CTXS(left, row7, 2); break;
  1897. case 4: SET_CTXS(left, row7, 4); break;
  1898. case 8: SET_CTXS(left, row7, 8); break;
  1899. }
  1900. #undef SPLAT_CTX
  1901. #undef SET_CTXS
  1902. if (!s->keyframe && !s->intraonly) {
  1903. if (b->bs > BS_8x8) {
  1904. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1905. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1906. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1907. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1908. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1909. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1910. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1911. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1912. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1913. } else {
  1914. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1915. for (n = 0; n < w4 * 2; n++) {
  1916. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1917. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1918. }
  1919. for (n = 0; n < h4 * 2; n++) {
  1920. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1921. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1922. }
  1923. }
  1924. }
  1925. // FIXME kinda ugly
  1926. for (y = 0; y < h4; y++) {
  1927. int x, o = (row + y) * s->sb_cols * 8 + col;
  1928. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
  1929. if (b->intra) {
  1930. for (x = 0; x < w4; x++) {
  1931. mv[x].ref[0] =
  1932. mv[x].ref[1] = -1;
  1933. }
  1934. } else if (b->comp) {
  1935. for (x = 0; x < w4; x++) {
  1936. mv[x].ref[0] = b->ref[0];
  1937. mv[x].ref[1] = b->ref[1];
  1938. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1939. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  1940. }
  1941. } else {
  1942. for (x = 0; x < w4; x++) {
  1943. mv[x].ref[0] = b->ref[0];
  1944. mv[x].ref[1] = -1;
  1945. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1946. }
  1947. }
  1948. }
  1949. }
  1950. // FIXME merge cnt/eob arguments?
  1951. static av_always_inline int
  1952. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  1953. int is_tx32x32, unsigned (*cnt)[6][3],
  1954. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  1955. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  1956. const int16_t *band_counts, const int16_t *qmul)
  1957. {
  1958. int i = 0, band = 0, band_left = band_counts[band];
  1959. uint8_t *tp = p[0][nnz];
  1960. uint8_t cache[1024];
  1961. do {
  1962. int val, rc;
  1963. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  1964. eob[band][nnz][val]++;
  1965. if (!val)
  1966. break;
  1967. skip_eob:
  1968. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  1969. cnt[band][nnz][0]++;
  1970. if (!--band_left)
  1971. band_left = band_counts[++band];
  1972. cache[scan[i]] = 0;
  1973. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  1974. tp = p[band][nnz];
  1975. if (++i == n_coeffs)
  1976. break; //invalid input; blocks should end with EOB
  1977. goto skip_eob;
  1978. }
  1979. rc = scan[i];
  1980. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  1981. cnt[band][nnz][1]++;
  1982. val = 1;
  1983. cache[rc] = 1;
  1984. } else {
  1985. // fill in p[3-10] (model fill) - only once per frame for each pos
  1986. if (!tp[3])
  1987. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  1988. cnt[band][nnz][2]++;
  1989. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  1990. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  1991. cache[rc] = val = 2;
  1992. } else {
  1993. val = 3 + vp56_rac_get_prob(c, tp[5]);
  1994. cache[rc] = 3;
  1995. }
  1996. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  1997. cache[rc] = 4;
  1998. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  1999. val = 5 + vp56_rac_get_prob(c, 159);
  2000. } else {
  2001. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2002. val += vp56_rac_get_prob(c, 145);
  2003. }
  2004. } else { // cat 3-6
  2005. cache[rc] = 5;
  2006. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2007. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2008. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2009. val += (vp56_rac_get_prob(c, 148) << 1);
  2010. val += vp56_rac_get_prob(c, 140);
  2011. } else {
  2012. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2013. val += (vp56_rac_get_prob(c, 155) << 2);
  2014. val += (vp56_rac_get_prob(c, 140) << 1);
  2015. val += vp56_rac_get_prob(c, 135);
  2016. }
  2017. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2018. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2019. val += (vp56_rac_get_prob(c, 157) << 3);
  2020. val += (vp56_rac_get_prob(c, 141) << 2);
  2021. val += (vp56_rac_get_prob(c, 134) << 1);
  2022. val += vp56_rac_get_prob(c, 130);
  2023. } else {
  2024. val = 67 + (vp56_rac_get_prob(c, 254) << 13);
  2025. val += (vp56_rac_get_prob(c, 254) << 12);
  2026. val += (vp56_rac_get_prob(c, 254) << 11);
  2027. val += (vp56_rac_get_prob(c, 252) << 10);
  2028. val += (vp56_rac_get_prob(c, 249) << 9);
  2029. val += (vp56_rac_get_prob(c, 243) << 8);
  2030. val += (vp56_rac_get_prob(c, 230) << 7);
  2031. val += (vp56_rac_get_prob(c, 196) << 6);
  2032. val += (vp56_rac_get_prob(c, 177) << 5);
  2033. val += (vp56_rac_get_prob(c, 153) << 4);
  2034. val += (vp56_rac_get_prob(c, 140) << 3);
  2035. val += (vp56_rac_get_prob(c, 133) << 2);
  2036. val += (vp56_rac_get_prob(c, 130) << 1);
  2037. val += vp56_rac_get_prob(c, 129);
  2038. }
  2039. }
  2040. }
  2041. if (!--band_left)
  2042. band_left = band_counts[++band];
  2043. if (is_tx32x32)
  2044. coef[rc] = ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2;
  2045. else
  2046. coef[rc] = (vp8_rac_get(c) ? -val : val) * qmul[!!i];
  2047. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2048. tp = p[band][nnz];
  2049. } while (++i < n_coeffs);
  2050. return i;
  2051. }
  2052. static int decode_coeffs_b(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  2053. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2054. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2055. const int16_t (*nb)[2], const int16_t *band_counts,
  2056. const int16_t *qmul)
  2057. {
  2058. return decode_coeffs_b_generic(c, coef, n_coeffs, 0, cnt, eob, p,
  2059. nnz, scan, nb, band_counts, qmul);
  2060. }
  2061. static int decode_coeffs_b32(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  2062. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2063. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2064. const int16_t (*nb)[2], const int16_t *band_counts,
  2065. const int16_t *qmul)
  2066. {
  2067. return decode_coeffs_b_generic(c, coef, n_coeffs, 1, cnt, eob, p,
  2068. nnz, scan, nb, band_counts, qmul);
  2069. }
  2070. static void decode_coeffs(AVCodecContext *ctx)
  2071. {
  2072. VP9Context *s = ctx->priv_data;
  2073. VP9Block *b = s->b;
  2074. int row = s->row, col = s->col;
  2075. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2076. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2077. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2078. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2079. int end_x = FFMIN(2 * (s->cols - col), w4);
  2080. int end_y = FFMIN(2 * (s->rows - row), h4);
  2081. int n, pl, x, y, res;
  2082. int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
  2083. int tx = 4 * s->lossless + b->tx;
  2084. const int16_t * const *yscans = vp9_scans[tx];
  2085. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2086. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2087. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2088. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2089. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2090. static const int16_t band_counts[4][8] = {
  2091. { 1, 2, 3, 4, 3, 16 - 13 },
  2092. { 1, 2, 3, 4, 11, 64 - 21 },
  2093. { 1, 2, 3, 4, 11, 256 - 21 },
  2094. { 1, 2, 3, 4, 11, 1024 - 21 },
  2095. };
  2096. const int16_t *y_band_counts = band_counts[b->tx];
  2097. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2098. #define MERGE(la, end, step, rd) \
  2099. for (n = 0; n < end; n += step) \
  2100. la[n] = !!rd(&la[n])
  2101. #define MERGE_CTX(step, rd) \
  2102. do { \
  2103. MERGE(l, end_y, step, rd); \
  2104. MERGE(a, end_x, step, rd); \
  2105. } while (0)
  2106. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2107. for (n = 0, y = 0; y < end_y; y += step) { \
  2108. for (x = 0; x < end_x; x += step, n += step * step) { \
  2109. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2110. res = decode_coeffs_b##v(&s->c, s->block + 16 * n, 16 * step * step, \
  2111. c, e, p, a[x] + l[y], yscans[txtp], \
  2112. ynbs[txtp], y_band_counts, qmul[0]); \
  2113. a[x] = l[y] = !!res; \
  2114. if (step >= 4) { \
  2115. AV_WN16A(&s->eob[n], res); \
  2116. } else { \
  2117. s->eob[n] = res; \
  2118. } \
  2119. } \
  2120. }
  2121. #define SPLAT(la, end, step, cond) \
  2122. if (step == 2) { \
  2123. for (n = 1; n < end; n += step) \
  2124. la[n] = la[n - 1]; \
  2125. } else if (step == 4) { \
  2126. if (cond) { \
  2127. for (n = 0; n < end; n += step) \
  2128. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2129. } else { \
  2130. for (n = 0; n < end; n += step) \
  2131. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2132. } \
  2133. } else /* step == 8 */ { \
  2134. if (cond) { \
  2135. if (HAVE_FAST_64BIT) { \
  2136. for (n = 0; n < end; n += step) \
  2137. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2138. } else { \
  2139. for (n = 0; n < end; n += step) { \
  2140. uint32_t v32 = la[n] * 0x01010101; \
  2141. AV_WN32A(&la[n], v32); \
  2142. AV_WN32A(&la[n + 4], v32); \
  2143. } \
  2144. } \
  2145. } else { \
  2146. for (n = 0; n < end; n += step) \
  2147. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2148. } \
  2149. }
  2150. #define SPLAT_CTX(step) \
  2151. do { \
  2152. SPLAT(a, end_x, step, end_x == w4); \
  2153. SPLAT(l, end_y, step, end_y == h4); \
  2154. } while (0)
  2155. /* y tokens */
  2156. switch (b->tx) {
  2157. case TX_4X4:
  2158. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2159. break;
  2160. case TX_8X8:
  2161. MERGE_CTX(2, AV_RN16A);
  2162. DECODE_Y_COEF_LOOP(2, 0,);
  2163. SPLAT_CTX(2);
  2164. break;
  2165. case TX_16X16:
  2166. MERGE_CTX(4, AV_RN32A);
  2167. DECODE_Y_COEF_LOOP(4, 0,);
  2168. SPLAT_CTX(4);
  2169. break;
  2170. case TX_32X32:
  2171. MERGE_CTX(8, AV_RN64A);
  2172. DECODE_Y_COEF_LOOP(8, 0, 32);
  2173. SPLAT_CTX(8);
  2174. break;
  2175. }
  2176. #define DECODE_UV_COEF_LOOP(step, decode_coeffs_fn) \
  2177. for (n = 0, y = 0; y < end_y; y += step) { \
  2178. for (x = 0; x < end_x; x += step, n += step * step) { \
  2179. res = decode_coeffs_fn(&s->c, s->uvblock[pl] + 16 * n, \
  2180. 16 * step * step, c, e, p, a[x] + l[y], \
  2181. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2182. a[x] = l[y] = !!res; \
  2183. if (step >= 4) { \
  2184. AV_WN16A(&s->uveob[pl][n], res); \
  2185. } else { \
  2186. s->uveob[pl][n] = res; \
  2187. } \
  2188. } \
  2189. }
  2190. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2191. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2192. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2193. w4 >>= s->ss_h;
  2194. end_x >>= s->ss_h;
  2195. h4 >>= s->ss_v;
  2196. end_y >>= s->ss_v;
  2197. for (pl = 0; pl < 2; pl++) {
  2198. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2199. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2200. switch (b->uvtx) {
  2201. case TX_4X4:
  2202. DECODE_UV_COEF_LOOP(1, decode_coeffs_b);
  2203. break;
  2204. case TX_8X8:
  2205. MERGE_CTX(2, AV_RN16A);
  2206. DECODE_UV_COEF_LOOP(2, decode_coeffs_b);
  2207. SPLAT_CTX(2);
  2208. break;
  2209. case TX_16X16:
  2210. MERGE_CTX(4, AV_RN32A);
  2211. DECODE_UV_COEF_LOOP(4, decode_coeffs_b);
  2212. SPLAT_CTX(4);
  2213. break;
  2214. case TX_32X32:
  2215. MERGE_CTX(8, AV_RN64A);
  2216. DECODE_UV_COEF_LOOP(8, decode_coeffs_b32);
  2217. SPLAT_CTX(8);
  2218. break;
  2219. }
  2220. }
  2221. }
  2222. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2223. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2224. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2225. uint8_t *l, int col, int x, int w,
  2226. int row, int y, enum TxfmMode tx,
  2227. int p, int ss_h, int ss_v)
  2228. {
  2229. int have_top = row > 0 || y > 0;
  2230. int have_left = col > s->tiling.tile_col_start || x > 0;
  2231. int have_right = x < w - 1;
  2232. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2233. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2234. { DC_127_PRED, VERT_PRED } },
  2235. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2236. { HOR_PRED, HOR_PRED } },
  2237. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2238. { LEFT_DC_PRED, DC_PRED } },
  2239. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2240. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2241. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2242. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2243. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2244. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2245. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2246. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2247. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2248. { DC_127_PRED, VERT_LEFT_PRED } },
  2249. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2250. { HOR_UP_PRED, HOR_UP_PRED } },
  2251. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2252. { HOR_PRED, TM_VP8_PRED } },
  2253. };
  2254. static const struct {
  2255. uint8_t needs_left:1;
  2256. uint8_t needs_top:1;
  2257. uint8_t needs_topleft:1;
  2258. uint8_t needs_topright:1;
  2259. uint8_t invert_left:1;
  2260. } edges[N_INTRA_PRED_MODES] = {
  2261. [VERT_PRED] = { .needs_top = 1 },
  2262. [HOR_PRED] = { .needs_left = 1 },
  2263. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2264. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2265. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2266. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2267. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2268. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2269. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2270. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2271. [LEFT_DC_PRED] = { .needs_left = 1 },
  2272. [TOP_DC_PRED] = { .needs_top = 1 },
  2273. [DC_128_PRED] = { 0 },
  2274. [DC_127_PRED] = { 0 },
  2275. [DC_129_PRED] = { 0 }
  2276. };
  2277. av_assert2(mode >= 0 && mode < 10);
  2278. mode = mode_conv[mode][have_left][have_top];
  2279. if (edges[mode].needs_top) {
  2280. uint8_t *top, *topleft;
  2281. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2282. int n_px_need_tr = 0;
  2283. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2284. n_px_need_tr = 4;
  2285. // if top of sb64-row, use s->intra_pred_data[] instead of
  2286. // dst[-stride] for intra prediction (it contains pre- instead of
  2287. // post-loopfilter data)
  2288. if (have_top) {
  2289. top = !(row & 7) && !y ?
  2290. s->intra_pred_data[p] + col * (8 >> ss_h) + x * 4 :
  2291. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2292. if (have_left)
  2293. topleft = !(row & 7) && !y ?
  2294. s->intra_pred_data[p] + col * (8 >> ss_h) + x * 4 :
  2295. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2296. &dst_inner[-stride_inner];
  2297. }
  2298. if (have_top &&
  2299. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2300. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2301. n_px_need + n_px_need_tr <= n_px_have) {
  2302. *a = top;
  2303. } else {
  2304. if (have_top) {
  2305. if (n_px_need <= n_px_have) {
  2306. memcpy(*a, top, n_px_need);
  2307. } else {
  2308. memcpy(*a, top, n_px_have);
  2309. memset(&(*a)[n_px_have], (*a)[n_px_have - 1],
  2310. n_px_need - n_px_have);
  2311. }
  2312. } else {
  2313. memset(*a, 127, n_px_need);
  2314. }
  2315. if (edges[mode].needs_topleft) {
  2316. if (have_left && have_top) {
  2317. (*a)[-1] = topleft[-1];
  2318. } else {
  2319. (*a)[-1] = have_top ? 129 : 127;
  2320. }
  2321. }
  2322. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2323. if (have_top && have_right &&
  2324. n_px_need + n_px_need_tr <= n_px_have) {
  2325. memcpy(&(*a)[4], &top[4], 4);
  2326. } else {
  2327. memset(&(*a)[4], (*a)[3], 4);
  2328. }
  2329. }
  2330. }
  2331. }
  2332. if (edges[mode].needs_left) {
  2333. if (have_left) {
  2334. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2335. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2336. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2337. if (edges[mode].invert_left) {
  2338. if (n_px_need <= n_px_have) {
  2339. for (i = 0; i < n_px_need; i++)
  2340. l[i] = dst[i * stride - 1];
  2341. } else {
  2342. for (i = 0; i < n_px_have; i++)
  2343. l[i] = dst[i * stride - 1];
  2344. memset(&l[n_px_have], l[n_px_have - 1], n_px_need - n_px_have);
  2345. }
  2346. } else {
  2347. if (n_px_need <= n_px_have) {
  2348. for (i = 0; i < n_px_need; i++)
  2349. l[n_px_need - 1 - i] = dst[i * stride - 1];
  2350. } else {
  2351. for (i = 0; i < n_px_have; i++)
  2352. l[n_px_need - 1 - i] = dst[i * stride - 1];
  2353. memset(l, l[n_px_need - n_px_have], n_px_need - n_px_have);
  2354. }
  2355. }
  2356. } else {
  2357. memset(l, 129, 4 << tx);
  2358. }
  2359. }
  2360. return mode;
  2361. }
  2362. static void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2363. {
  2364. VP9Context *s = ctx->priv_data;
  2365. VP9Block *b = s->b;
  2366. int row = s->row, col = s->col;
  2367. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2368. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2369. int end_x = FFMIN(2 * (s->cols - col), w4);
  2370. int end_y = FFMIN(2 * (s->rows - row), h4);
  2371. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2372. int uvstep1d = 1 << b->uvtx, p;
  2373. uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
  2374. LOCAL_ALIGNED_32(uint8_t, a_buf, [64]);
  2375. LOCAL_ALIGNED_32(uint8_t, l, [32]);
  2376. for (n = 0, y = 0; y < end_y; y += step1d) {
  2377. uint8_t *ptr = dst, *ptr_r = dst_r;
  2378. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d,
  2379. ptr_r += 4 * step1d, n += step) {
  2380. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2381. y * 2 + x : 0];
  2382. uint8_t *a = &a_buf[32];
  2383. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2384. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2385. mode = check_intra_mode(s, mode, &a, ptr_r,
  2386. s->frames[CUR_FRAME].tf.f->linesize[0],
  2387. ptr, s->y_stride, l,
  2388. col, x, w4, row, y, b->tx, 0, 0, 0);
  2389. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2390. if (eob)
  2391. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2392. s->block + 16 * n, eob);
  2393. }
  2394. dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
  2395. dst += 4 * step1d * s->y_stride;
  2396. }
  2397. // U/V
  2398. w4 >>= s->ss_h;
  2399. end_x >>= s->ss_h;
  2400. end_y >>= s->ss_v;
  2401. step = 1 << (b->uvtx * 2);
  2402. for (p = 0; p < 2; p++) {
  2403. dst = s->dst[1 + p];
  2404. dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2405. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2406. uint8_t *ptr = dst, *ptr_r = dst_r;
  2407. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d,
  2408. ptr_r += 4 * uvstep1d, n += step) {
  2409. int mode = b->uvmode;
  2410. uint8_t *a = &a_buf[32];
  2411. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2412. mode = check_intra_mode(s, mode, &a, ptr_r,
  2413. s->frames[CUR_FRAME].tf.f->linesize[1],
  2414. ptr, s->uv_stride, l, col, x, w4, row, y,
  2415. b->uvtx, p + 1, s->ss_h, s->ss_v);
  2416. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2417. if (eob)
  2418. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2419. s->uvblock[p] + 16 * n, eob);
  2420. }
  2421. dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
  2422. dst += 4 * uvstep1d * s->uv_stride;
  2423. }
  2424. }
  2425. }
  2426. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2427. uint8_t *dst, ptrdiff_t dst_stride,
  2428. const uint8_t *ref, ptrdiff_t ref_stride,
  2429. ThreadFrame *ref_frame,
  2430. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2431. int bw, int bh, int w, int h,
  2432. const uint16_t *scale, const uint8_t *step)
  2433. {
  2434. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2435. // BUG libvpx seems to scale the two components separately. This introduces
  2436. // rounding errors but we have to reproduce them to be exactly compatible
  2437. // with the output from libvpx...
  2438. int mx = scale_mv(mv->x * 2, 0) + scale_mv(x * 16, 0);
  2439. int my = scale_mv(mv->y * 2, 1) + scale_mv(y * 16, 1);
  2440. int refbw_m1, refbh_m1;
  2441. int th;
  2442. y = my >> 4;
  2443. x = mx >> 4;
  2444. ref += y * ref_stride + x;
  2445. mx &= 15;
  2446. my &= 15;
  2447. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2448. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2449. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2450. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2451. // the longest loopfilter of the next sbrow
  2452. th = (y + refbh_m1 + 4 + 7) >> 6;
  2453. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2454. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2455. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2456. ref - 3 * ref_stride - 3,
  2457. 144, ref_stride,
  2458. refbw_m1 + 8, refbh_m1 + 8,
  2459. x - 3, y - 3, w, h);
  2460. ref = s->edge_emu_buffer + 3 * 144 + 3;
  2461. ref_stride = 144;
  2462. }
  2463. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2464. }
  2465. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2466. uint8_t *dst_u, uint8_t *dst_v,
  2467. ptrdiff_t dst_stride,
  2468. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2469. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2470. ThreadFrame *ref_frame,
  2471. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2472. int bw, int bh, int w, int h,
  2473. const uint16_t *scale, const uint8_t *step)
  2474. {
  2475. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2476. int mx = scale_mv(mv->x << !s->ss_h, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2477. int my = scale_mv(mv->y << !s->ss_v, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2478. #undef scale_mv
  2479. int refbw_m1, refbh_m1;
  2480. int th;
  2481. y = my >> 4;
  2482. x = mx >> 4;
  2483. ref_u += y * src_stride_u + x;
  2484. ref_v += y * src_stride_v + x;
  2485. mx &= 15;
  2486. my &= 15;
  2487. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2488. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2489. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2490. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2491. // the longest loopfilter of the next sbrow
  2492. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2493. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2494. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2495. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2496. ref_u - 3 * src_stride_u - 3,
  2497. 144, src_stride_u,
  2498. refbw_m1 + 8, refbh_m1 + 8,
  2499. x - 3, y - 3, w, h);
  2500. ref_u = s->edge_emu_buffer + 3 * 144 + 3;
  2501. smc(dst_u, dst_stride, ref_u, 144, bh, mx, my, step[0], step[1]);
  2502. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2503. ref_v - 3 * src_stride_v - 3,
  2504. 144, src_stride_v,
  2505. refbw_m1 + 8, refbh_m1 + 8,
  2506. x - 3, y - 3, w, h);
  2507. ref_v = s->edge_emu_buffer + 3 * 144 + 3;
  2508. smc(dst_v, dst_stride, ref_v, 144, bh, mx, my, step[0], step[1]);
  2509. } else {
  2510. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2511. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2512. }
  2513. }
  2514. #define FN(x) x##_scaled
  2515. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \
  2516. mc_luma_scaled(s, s->dsp.s##mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2517. mv, bw, bh, w, h, s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2518. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2519. row, col, mv, bw, bh, w, h, i) \
  2520. mc_chroma_scaled(s, s->dsp.s##mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2521. row, col, mv, bw, bh, w, h, s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2522. #include "vp9_mc_template.c"
  2523. #undef mc_luma_dir
  2524. #undef mc_chroma_dir
  2525. #undef FN
  2526. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2527. uint8_t *dst, ptrdiff_t dst_stride,
  2528. const uint8_t *ref, ptrdiff_t ref_stride,
  2529. ThreadFrame *ref_frame,
  2530. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2531. int bw, int bh, int w, int h)
  2532. {
  2533. int mx = mv->x, my = mv->y, th;
  2534. y += my >> 3;
  2535. x += mx >> 3;
  2536. ref += y * ref_stride + x;
  2537. mx &= 7;
  2538. my &= 7;
  2539. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2540. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2541. // the longest loopfilter of the next sbrow
  2542. th = (y + bh + 4 * !!my + 7) >> 6;
  2543. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2544. if (x < !!mx * 3 || y < !!my * 3 ||
  2545. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2546. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2547. ref - !!my * 3 * ref_stride - !!mx * 3,
  2548. 80, ref_stride,
  2549. bw + !!mx * 7, bh + !!my * 7,
  2550. x - !!mx * 3, y - !!my * 3, w, h);
  2551. ref = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
  2552. ref_stride = 80;
  2553. }
  2554. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2555. }
  2556. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2557. uint8_t *dst_u, uint8_t *dst_v,
  2558. ptrdiff_t dst_stride,
  2559. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2560. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2561. ThreadFrame *ref_frame,
  2562. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2563. int bw, int bh, int w, int h)
  2564. {
  2565. int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th;
  2566. y += my >> 4;
  2567. x += mx >> 4;
  2568. ref_u += y * src_stride_u + x;
  2569. ref_v += y * src_stride_v + x;
  2570. mx &= 15;
  2571. my &= 15;
  2572. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2573. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2574. // the longest loopfilter of the next sbrow
  2575. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2576. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2577. if (x < !!mx * 3 || y < !!my * 3 ||
  2578. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2579. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2580. ref_u - !!my * 3 * src_stride_u - !!mx * 3,
  2581. 80, src_stride_u,
  2582. bw + !!mx * 7, bh + !!my * 7,
  2583. x - !!mx * 3, y - !!my * 3, w, h);
  2584. ref_u = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
  2585. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 80, bh, mx, my);
  2586. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2587. ref_v - !!my * 3 * src_stride_v - !!mx * 3,
  2588. 80, src_stride_v,
  2589. bw + !!mx * 7, bh + !!my * 7,
  2590. x - !!mx * 3, y - !!my * 3, w, h);
  2591. ref_v = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
  2592. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 80, bh, mx, my);
  2593. } else {
  2594. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2595. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2596. }
  2597. }
  2598. #define FN(x) x
  2599. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \
  2600. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2601. mv, bw, bh, w, h)
  2602. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2603. row, col, mv, bw, bh, w, h, i) \
  2604. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2605. row, col, mv, bw, bh, w, h)
  2606. #include "vp9_mc_template.c"
  2607. #undef mc_luma_dir_dir
  2608. #undef mc_chroma_dir_dir
  2609. #undef FN
  2610. static void inter_recon(AVCodecContext *ctx)
  2611. {
  2612. VP9Context *s = ctx->priv_data;
  2613. VP9Block *b = s->b;
  2614. int row = s->row, col = s->col;
  2615. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2616. inter_pred_scaled(ctx);
  2617. } else {
  2618. inter_pred(ctx);
  2619. }
  2620. if (!b->skip) {
  2621. /* mostly copied intra_recon() */
  2622. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2623. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2624. int end_x = FFMIN(2 * (s->cols - col), w4);
  2625. int end_y = FFMIN(2 * (s->rows - row), h4);
  2626. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2627. int uvstep1d = 1 << b->uvtx, p;
  2628. uint8_t *dst = s->dst[0];
  2629. // y itxfm add
  2630. for (n = 0, y = 0; y < end_y; y += step1d) {
  2631. uint8_t *ptr = dst;
  2632. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d, n += step) {
  2633. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2634. if (eob)
  2635. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2636. s->block + 16 * n, eob);
  2637. }
  2638. dst += 4 * s->y_stride * step1d;
  2639. }
  2640. // uv itxfm add
  2641. end_x >>= s->ss_h;
  2642. end_y >>= s->ss_v;
  2643. step = 1 << (b->uvtx * 2);
  2644. for (p = 0; p < 2; p++) {
  2645. dst = s->dst[p + 1];
  2646. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2647. uint8_t *ptr = dst;
  2648. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d, n += step) {
  2649. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2650. if (eob)
  2651. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2652. s->uvblock[p] + 16 * n, eob);
  2653. }
  2654. dst += 4 * uvstep1d * s->uv_stride;
  2655. }
  2656. }
  2657. }
  2658. }
  2659. static av_always_inline void mask_edges(struct VP9Filter *lflvl, int is_uv,
  2660. int row_and_7, int col_and_7,
  2661. int w, int h, int col_end, int row_end,
  2662. enum TxfmMode tx, int skip_inter)
  2663. {
  2664. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2665. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2666. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2667. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2668. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2669. // edges. This means that for UV, we work on two subsampled blocks at
  2670. // a time, and we only use the topleft block's mode information to set
  2671. // things like block strength. Thus, for any block size smaller than
  2672. // 16x16, ignore the odd portion of the block.
  2673. if (tx == TX_4X4 && is_uv) {
  2674. if (h == 1) {
  2675. if (row_and_7 & 1)
  2676. return;
  2677. if (!row_end)
  2678. h += 1;
  2679. }
  2680. if (w == 1) {
  2681. if (col_and_7 & 1)
  2682. return;
  2683. if (!col_end)
  2684. w += 1;
  2685. }
  2686. }
  2687. if (tx == TX_4X4 && !skip_inter) {
  2688. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2689. int m_col_odd = (t << (w - 1)) - t;
  2690. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2691. if (is_uv) {
  2692. int m_row_8 = m_col & 0x01, m_row_4 = m_col - m_row_8;
  2693. for (y = row_and_7; y < h + row_and_7; y++) {
  2694. int col_mask_id = 2 - !(y & 7);
  2695. lflvl->mask[is_uv][0][y][1] |= m_row_8;
  2696. lflvl->mask[is_uv][0][y][2] |= m_row_4;
  2697. // for odd lines, if the odd col is not being filtered,
  2698. // skip odd row also:
  2699. // .---. <-- a
  2700. // | |
  2701. // |___| <-- b
  2702. // ^ ^
  2703. // c d
  2704. //
  2705. // if a/c are even row/col and b/d are odd, and d is skipped,
  2706. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2707. if ((col_end & 1) && (y & 1)) {
  2708. lflvl->mask[is_uv][1][y][col_mask_id] |= m_col_odd;
  2709. } else {
  2710. lflvl->mask[is_uv][1][y][col_mask_id] |= m_col;
  2711. }
  2712. }
  2713. } else {
  2714. int m_row_8 = m_col & 0x11, m_row_4 = m_col - m_row_8;
  2715. for (y = row_and_7; y < h + row_and_7; y++) {
  2716. int col_mask_id = 2 - !(y & 3);
  2717. lflvl->mask[is_uv][0][y][1] |= m_row_8; // row edge
  2718. lflvl->mask[is_uv][0][y][2] |= m_row_4;
  2719. lflvl->mask[is_uv][1][y][col_mask_id] |= m_col; // col edge
  2720. lflvl->mask[is_uv][0][y][3] |= m_col;
  2721. lflvl->mask[is_uv][1][y][3] |= m_col;
  2722. }
  2723. }
  2724. } else {
  2725. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2726. if (!skip_inter) {
  2727. int mask_id = (tx == TX_8X8);
  2728. int l2 = tx + is_uv - 1, step1d = 1 << l2;
  2729. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2730. int m_row = m_col & masks[l2];
  2731. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2732. // 8wd loopfilter to prevent going off the visible edge.
  2733. if (is_uv && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2734. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2735. int m_row_8 = m_row - m_row_16;
  2736. for (y = row_and_7; y < h + row_and_7; y++) {
  2737. lflvl->mask[is_uv][0][y][0] |= m_row_16;
  2738. lflvl->mask[is_uv][0][y][1] |= m_row_8;
  2739. }
  2740. } else {
  2741. for (y = row_and_7; y < h + row_and_7; y++)
  2742. lflvl->mask[is_uv][0][y][mask_id] |= m_row;
  2743. }
  2744. if (is_uv && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2745. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2746. lflvl->mask[is_uv][1][y][0] |= m_col;
  2747. if (y - row_and_7 == h - 1)
  2748. lflvl->mask[is_uv][1][y][1] |= m_col;
  2749. } else {
  2750. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2751. lflvl->mask[is_uv][1][y][mask_id] |= m_col;
  2752. }
  2753. } else if (tx != TX_4X4) {
  2754. int mask_id;
  2755. mask_id = (tx == TX_8X8) || (is_uv && h == 1);
  2756. lflvl->mask[is_uv][1][row_and_7][mask_id] |= m_col;
  2757. mask_id = (tx == TX_8X8) || (is_uv && w == 1);
  2758. for (y = row_and_7; y < h + row_and_7; y++)
  2759. lflvl->mask[is_uv][0][y][mask_id] |= t;
  2760. } else if (is_uv) {
  2761. int t8 = t & 0x01, t4 = t - t8;
  2762. for (y = row_and_7; y < h + row_and_7; y++) {
  2763. lflvl->mask[is_uv][0][y][2] |= t4;
  2764. lflvl->mask[is_uv][0][y][1] |= t8;
  2765. }
  2766. lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 7)] |= m_col;
  2767. } else {
  2768. int t8 = t & 0x11, t4 = t - t8;
  2769. for (y = row_and_7; y < h + row_and_7; y++) {
  2770. lflvl->mask[is_uv][0][y][2] |= t4;
  2771. lflvl->mask[is_uv][0][y][1] |= t8;
  2772. }
  2773. lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 3)] |= m_col;
  2774. }
  2775. }
  2776. }
  2777. static void decode_b(AVCodecContext *ctx, int row, int col,
  2778. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2779. enum BlockLevel bl, enum BlockPartition bp)
  2780. {
  2781. VP9Context *s = ctx->priv_data;
  2782. VP9Block *b = s->b;
  2783. enum BlockSize bs = bl * 3 + bp;
  2784. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2785. int emu[2];
  2786. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  2787. s->row = row;
  2788. s->row7 = row & 7;
  2789. s->col = col;
  2790. s->col7 = col & 7;
  2791. s->min_mv.x = -(128 + col * 64);
  2792. s->min_mv.y = -(128 + row * 64);
  2793. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  2794. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  2795. if (s->pass < 2) {
  2796. b->bs = bs;
  2797. b->bl = bl;
  2798. b->bp = bp;
  2799. decode_mode(ctx);
  2800. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  2801. (s->ss_v && h4 * 2 == (1 << b->tx)));
  2802. if (!b->skip) {
  2803. decode_coeffs(ctx);
  2804. } else {
  2805. int row7 = s->row7;
  2806. #define SPLAT_ZERO_CTX(v, n) \
  2807. switch (n) { \
  2808. case 1: v = 0; break; \
  2809. case 2: AV_ZERO16(&v); break; \
  2810. case 4: AV_ZERO32(&v); break; \
  2811. case 8: AV_ZERO64(&v); break; \
  2812. case 16: AV_ZERO128(&v); break; \
  2813. }
  2814. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  2815. do { \
  2816. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  2817. if (s->ss_##dir2) { \
  2818. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  2819. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  2820. } else { \
  2821. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  2822. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  2823. } \
  2824. } while (0)
  2825. switch (w4) {
  2826. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  2827. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  2828. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  2829. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  2830. }
  2831. switch (h4) {
  2832. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  2833. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  2834. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  2835. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  2836. }
  2837. }
  2838. if (s->pass == 1) {
  2839. s->b++;
  2840. s->block += w4 * h4 * 64;
  2841. s->uvblock[0] += w4 * h4 * 64 >> (s->ss_h + s->ss_v);
  2842. s->uvblock[1] += w4 * h4 * 64 >> (s->ss_h + s->ss_v);
  2843. s->eob += 4 * w4 * h4;
  2844. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  2845. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  2846. return;
  2847. }
  2848. }
  2849. // emulated overhangs if the stride of the target buffer can't hold. This
  2850. // allows to support emu-edge and so on even if we have large block
  2851. // overhangs
  2852. emu[0] = (col + w4) * 8 > f->linesize[0] ||
  2853. (row + h4) > s->rows;
  2854. emu[1] = (col + w4) * 4 > f->linesize[1] ||
  2855. (row + h4) > s->rows;
  2856. if (emu[0]) {
  2857. s->dst[0] = s->tmp_y;
  2858. s->y_stride = 64;
  2859. } else {
  2860. s->dst[0] = f->data[0] + yoff;
  2861. s->y_stride = f->linesize[0];
  2862. }
  2863. if (emu[1]) {
  2864. s->dst[1] = s->tmp_uv[0];
  2865. s->dst[2] = s->tmp_uv[1];
  2866. s->uv_stride = 32;
  2867. } else {
  2868. s->dst[1] = f->data[1] + uvoff;
  2869. s->dst[2] = f->data[2] + uvoff;
  2870. s->uv_stride = f->linesize[1];
  2871. }
  2872. if (b->intra) {
  2873. intra_recon(ctx, yoff, uvoff);
  2874. } else {
  2875. inter_recon(ctx);
  2876. }
  2877. if (emu[0]) {
  2878. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  2879. for (n = 0; o < w; n++) {
  2880. int bw = 64 >> n;
  2881. av_assert2(n <= 4);
  2882. if (w & bw) {
  2883. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
  2884. s->tmp_y + o, 64, h, 0, 0);
  2885. o += bw;
  2886. }
  2887. }
  2888. }
  2889. if (emu[1]) {
  2890. int w = FFMIN(s->cols - col, w4) * 4, h = FFMIN(s->rows - row, h4) * 4, n, o = 0;
  2891. for (n = 1; o < w; n++) {
  2892. int bw = 64 >> n;
  2893. av_assert2(n <= 4);
  2894. if (w & bw) {
  2895. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
  2896. s->tmp_uv[0] + o, 32, h, 0, 0);
  2897. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
  2898. s->tmp_uv[1] + o, 32, h, 0, 0);
  2899. o += bw;
  2900. }
  2901. }
  2902. }
  2903. // pick filter level and find edges to apply filter to
  2904. if (s->filter.level &&
  2905. (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  2906. [b->mode[3] != ZEROMV]) > 0) {
  2907. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  2908. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  2909. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  2910. mask_edges(lflvl, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  2911. mask_edges(lflvl, 1, row7, col7, x_end, y_end,
  2912. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  2913. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  2914. b->uvtx, skip_inter);
  2915. if (!s->filter.lim_lut[lvl]) {
  2916. int sharp = s->filter.sharpness;
  2917. int limit = lvl;
  2918. if (sharp > 0) {
  2919. limit >>= (sharp + 3) >> 2;
  2920. limit = FFMIN(limit, 9 - sharp);
  2921. }
  2922. limit = FFMAX(limit, 1);
  2923. s->filter.lim_lut[lvl] = limit;
  2924. s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  2925. }
  2926. }
  2927. if (s->pass == 2) {
  2928. s->b++;
  2929. s->block += w4 * h4 * 64;
  2930. s->uvblock[0] += w4 * h4 * 64 >> (s->ss_v + s->ss_h);
  2931. s->uvblock[1] += w4 * h4 * 64 >> (s->ss_v + s->ss_h);
  2932. s->eob += 4 * w4 * h4;
  2933. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  2934. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  2935. }
  2936. }
  2937. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  2938. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  2939. {
  2940. VP9Context *s = ctx->priv_data;
  2941. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  2942. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  2943. const uint8_t *p = s->keyframe || s->intraonly ? vp9_default_kf_partition_probs[bl][c] :
  2944. s->prob.p.partition[bl][c];
  2945. enum BlockPartition bp;
  2946. ptrdiff_t hbs = 4 >> bl;
  2947. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  2948. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  2949. if (bl == BL_8X8) {
  2950. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  2951. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  2952. } else if (col + hbs < s->cols) { // FIXME why not <=?
  2953. if (row + hbs < s->rows) { // FIXME why not <=?
  2954. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  2955. switch (bp) {
  2956. case PARTITION_NONE:
  2957. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  2958. break;
  2959. case PARTITION_H:
  2960. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  2961. yoff += hbs * 8 * y_stride;
  2962. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  2963. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  2964. break;
  2965. case PARTITION_V:
  2966. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  2967. yoff += hbs * 8;
  2968. uvoff += hbs * 8 >> s->ss_h;
  2969. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  2970. break;
  2971. case PARTITION_SPLIT:
  2972. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  2973. decode_sb(ctx, row, col + hbs, lflvl,
  2974. yoff + 8 * hbs, uvoff + (8 * hbs >> s->ss_h), bl + 1);
  2975. yoff += hbs * 8 * y_stride;
  2976. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  2977. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  2978. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  2979. yoff + 8 * hbs, uvoff + (8 * hbs >> s->ss_h), bl + 1);
  2980. break;
  2981. default:
  2982. av_assert0(0);
  2983. }
  2984. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  2985. bp = PARTITION_SPLIT;
  2986. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  2987. decode_sb(ctx, row, col + hbs, lflvl,
  2988. yoff + 8 * hbs, uvoff + (8 * hbs >> s->ss_h), bl + 1);
  2989. } else {
  2990. bp = PARTITION_H;
  2991. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  2992. }
  2993. } else if (row + hbs < s->rows) { // FIXME why not <=?
  2994. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  2995. bp = PARTITION_SPLIT;
  2996. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  2997. yoff += hbs * 8 * y_stride;
  2998. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  2999. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3000. } else {
  3001. bp = PARTITION_V;
  3002. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3003. }
  3004. } else {
  3005. bp = PARTITION_SPLIT;
  3006. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3007. }
  3008. s->counts.partition[bl][c][bp]++;
  3009. }
  3010. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3011. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3012. {
  3013. VP9Context *s = ctx->priv_data;
  3014. VP9Block *b = s->b;
  3015. ptrdiff_t hbs = 4 >> bl;
  3016. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3017. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3018. if (bl == BL_8X8) {
  3019. av_assert2(b->bl == BL_8X8);
  3020. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3021. } else if (s->b->bl == bl) {
  3022. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3023. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3024. yoff += hbs * 8 * y_stride;
  3025. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3026. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3027. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3028. yoff += hbs * 8;
  3029. uvoff += hbs * 8 >> s->ss_h;
  3030. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3031. }
  3032. } else {
  3033. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3034. if (col + hbs < s->cols) { // FIXME why not <=?
  3035. if (row + hbs < s->rows) {
  3036. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs,
  3037. uvoff + (8 * hbs >> s->ss_h), bl + 1);
  3038. yoff += hbs * 8 * y_stride;
  3039. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3040. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3041. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3042. yoff + 8 * hbs, uvoff + (8 * hbs >> s->ss_h), bl + 1);
  3043. } else {
  3044. yoff += hbs * 8;
  3045. uvoff += hbs * 8 >> s->ss_h;
  3046. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3047. }
  3048. } else if (row + hbs < s->rows) {
  3049. yoff += hbs * 8 * y_stride;
  3050. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3051. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3052. }
  3053. }
  3054. }
  3055. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3056. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3057. {
  3058. VP9Context *s = ctx->priv_data;
  3059. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3060. uint8_t *dst = f->data[0] + yoff, *lvl = lflvl->level;
  3061. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3062. int y, x, p;
  3063. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3064. // if you think of them as acting on a 8x8 block max, we can interleave
  3065. // each v/h within the single x loop, but that only works if we work on
  3066. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3067. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3068. // filter edges between columns, Y plane (e.g. block1 | block2)
  3069. for (y = 0; y < 8; y += 2, dst += 16 * ls_y, lvl += 16) {
  3070. uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[0][0][y];
  3071. uint8_t *hmask2 = lflvl->mask[0][0][y + 1];
  3072. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3073. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3074. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3075. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8, l++) {
  3076. if (col || x > 1) {
  3077. if (hm1 & x) {
  3078. int L = *l, H = L >> 4;
  3079. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3080. if (hmask1[0] & x) {
  3081. if (hmask2[0] & x) {
  3082. av_assert2(l[8] == L);
  3083. s->dsp.loop_filter_16[0](ptr, ls_y, E, I, H);
  3084. } else {
  3085. s->dsp.loop_filter_8[2][0](ptr, ls_y, E, I, H);
  3086. }
  3087. } else if (hm2 & x) {
  3088. L = l[8];
  3089. H |= (L >> 4) << 8;
  3090. E |= s->filter.mblim_lut[L] << 8;
  3091. I |= s->filter.lim_lut[L] << 8;
  3092. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3093. [!!(hmask2[1] & x)]
  3094. [0](ptr, ls_y, E, I, H);
  3095. } else {
  3096. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3097. [0](ptr, ls_y, E, I, H);
  3098. }
  3099. } else if (hm2 & x) {
  3100. int L = l[8], H = L >> 4;
  3101. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3102. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3103. [0](ptr + 8 * ls_y, ls_y, E, I, H);
  3104. }
  3105. }
  3106. if (hm13 & x) {
  3107. int L = *l, H = L >> 4;
  3108. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3109. if (hm23 & x) {
  3110. L = l[8];
  3111. H |= (L >> 4) << 8;
  3112. E |= s->filter.mblim_lut[L] << 8;
  3113. I |= s->filter.lim_lut[L] << 8;
  3114. s->dsp.loop_filter_mix2[0][0][0](ptr + 4, ls_y, E, I, H);
  3115. } else {
  3116. s->dsp.loop_filter_8[0][0](ptr + 4, ls_y, E, I, H);
  3117. }
  3118. } else if (hm23 & x) {
  3119. int L = l[8], H = L >> 4;
  3120. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3121. s->dsp.loop_filter_8[0][0](ptr + 8 * ls_y + 4, ls_y, E, I, H);
  3122. }
  3123. }
  3124. }
  3125. // block1
  3126. // filter edges between rows, Y plane (e.g. ------)
  3127. // block2
  3128. dst = f->data[0] + yoff;
  3129. lvl = lflvl->level;
  3130. for (y = 0; y < 8; y++, dst += 8 * ls_y, lvl += 8) {
  3131. uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[0][1][y];
  3132. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3133. for (x = 1; vm & ~(x - 1); x <<= 2, ptr += 16, l += 2) {
  3134. if (row || y) {
  3135. if (vm & x) {
  3136. int L = *l, H = L >> 4;
  3137. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3138. if (vmask[0] & x) {
  3139. if (vmask[0] & (x << 1)) {
  3140. av_assert2(l[1] == L);
  3141. s->dsp.loop_filter_16[1](ptr, ls_y, E, I, H);
  3142. } else {
  3143. s->dsp.loop_filter_8[2][1](ptr, ls_y, E, I, H);
  3144. }
  3145. } else if (vm & (x << 1)) {
  3146. L = l[1];
  3147. H |= (L >> 4) << 8;
  3148. E |= s->filter.mblim_lut[L] << 8;
  3149. I |= s->filter.lim_lut[L] << 8;
  3150. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3151. [!!(vmask[1] & (x << 1))]
  3152. [1](ptr, ls_y, E, I, H);
  3153. } else {
  3154. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3155. [1](ptr, ls_y, E, I, H);
  3156. }
  3157. } else if (vm & (x << 1)) {
  3158. int L = l[1], H = L >> 4;
  3159. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3160. s->dsp.loop_filter_8[!!(vmask[1] & (x << 1))]
  3161. [1](ptr + 8, ls_y, E, I, H);
  3162. }
  3163. }
  3164. if (vm3 & x) {
  3165. int L = *l, H = L >> 4;
  3166. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3167. if (vm3 & (x << 1)) {
  3168. L = l[1];
  3169. H |= (L >> 4) << 8;
  3170. E |= s->filter.mblim_lut[L] << 8;
  3171. I |= s->filter.lim_lut[L] << 8;
  3172. s->dsp.loop_filter_mix2[0][0][1](ptr + ls_y * 4, ls_y, E, I, H);
  3173. } else {
  3174. s->dsp.loop_filter_8[0][1](ptr + ls_y * 4, ls_y, E, I, H);
  3175. }
  3176. } else if (vm3 & (x << 1)) {
  3177. int L = l[1], H = L >> 4;
  3178. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3179. s->dsp.loop_filter_8[0][1](ptr + ls_y * 4 + 8, ls_y, E, I, H);
  3180. }
  3181. }
  3182. }
  3183. // same principle but for U/V planes
  3184. for (p = 0; p < 2; p++) {
  3185. lvl = lflvl->level;
  3186. dst = f->data[1 + p] + uvoff;
  3187. for (y = 0; y < 8; y += 4, dst += 16 * ls_uv, lvl += 32) {
  3188. uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[1][0][y];
  3189. uint8_t *hmask2 = lflvl->mask[1][0][y + 2];
  3190. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2];
  3191. unsigned hm2 = hmask2[1] | hmask2[2], hm = hm1 | hm2;
  3192. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 4) {
  3193. if (col || x > 1) {
  3194. if (hm1 & x) {
  3195. int L = *l, H = L >> 4;
  3196. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3197. if (hmask1[0] & x) {
  3198. if (hmask2[0] & x) {
  3199. av_assert2(l[16] == L);
  3200. s->dsp.loop_filter_16[0](ptr, ls_uv, E, I, H);
  3201. } else {
  3202. s->dsp.loop_filter_8[2][0](ptr, ls_uv, E, I, H);
  3203. }
  3204. } else if (hm2 & x) {
  3205. L = l[16];
  3206. H |= (L >> 4) << 8;
  3207. E |= s->filter.mblim_lut[L] << 8;
  3208. I |= s->filter.lim_lut[L] << 8;
  3209. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3210. [!!(hmask2[1] & x)]
  3211. [0](ptr, ls_uv, E, I, H);
  3212. } else {
  3213. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3214. [0](ptr, ls_uv, E, I, H);
  3215. }
  3216. } else if (hm2 & x) {
  3217. int L = l[16], H = L >> 4;
  3218. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3219. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3220. [0](ptr + 8 * ls_uv, ls_uv, E, I, H);
  3221. }
  3222. }
  3223. if (x & 0xAA)
  3224. l += 2;
  3225. }
  3226. }
  3227. lvl = lflvl->level;
  3228. dst = f->data[1 + p] + uvoff;
  3229. for (y = 0; y < 8; y++, dst += 4 * ls_uv) {
  3230. uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[1][1][y];
  3231. unsigned vm = vmask[0] | vmask[1] | vmask[2];
  3232. for (x = 1; vm & ~(x - 1); x <<= 4, ptr += 16, l += 4) {
  3233. if (row || y) {
  3234. if (vm & x) {
  3235. int L = *l, H = L >> 4;
  3236. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3237. if (vmask[0] & x) {
  3238. if (vmask[0] & (x << 2)) {
  3239. av_assert2(l[2] == L);
  3240. s->dsp.loop_filter_16[1](ptr, ls_uv, E, I, H);
  3241. } else {
  3242. s->dsp.loop_filter_8[2][1](ptr, ls_uv, E, I, H);
  3243. }
  3244. } else if (vm & (x << 2)) {
  3245. L = l[2];
  3246. H |= (L >> 4) << 8;
  3247. E |= s->filter.mblim_lut[L] << 8;
  3248. I |= s->filter.lim_lut[L] << 8;
  3249. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3250. [!!(vmask[1] & (x << 2))]
  3251. [1](ptr, ls_uv, E, I, H);
  3252. } else {
  3253. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3254. [1](ptr, ls_uv, E, I, H);
  3255. }
  3256. } else if (vm & (x << 2)) {
  3257. int L = l[2], H = L >> 4;
  3258. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3259. s->dsp.loop_filter_8[!!(vmask[1] & (x << 2))]
  3260. [1](ptr + 8, ls_uv, E, I, H);
  3261. }
  3262. }
  3263. }
  3264. if (y & 1)
  3265. lvl += 16;
  3266. }
  3267. }
  3268. }
  3269. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3270. {
  3271. int sb_start = ( idx * n) >> log2_n;
  3272. int sb_end = ((idx + 1) * n) >> log2_n;
  3273. *start = FFMIN(sb_start, n) << 3;
  3274. *end = FFMIN(sb_end, n) << 3;
  3275. }
  3276. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3277. int max_count, int update_factor)
  3278. {
  3279. unsigned ct = ct0 + ct1, p2, p1;
  3280. if (!ct)
  3281. return;
  3282. p1 = *p;
  3283. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3284. p2 = av_clip(p2, 1, 255);
  3285. ct = FFMIN(ct, max_count);
  3286. update_factor = FASTDIV(update_factor * ct, max_count);
  3287. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3288. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3289. }
  3290. static void adapt_probs(VP9Context *s)
  3291. {
  3292. int i, j, k, l, m;
  3293. prob_context *p = &s->prob_ctx[s->framectxid].p;
  3294. int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
  3295. // coefficients
  3296. for (i = 0; i < 4; i++)
  3297. for (j = 0; j < 2; j++)
  3298. for (k = 0; k < 2; k++)
  3299. for (l = 0; l < 6; l++)
  3300. for (m = 0; m < 6; m++) {
  3301. uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
  3302. unsigned *e = s->counts.eob[i][j][k][l][m];
  3303. unsigned *c = s->counts.coef[i][j][k][l][m];
  3304. if (l == 0 && m >= 3) // dc only has 3 pt
  3305. break;
  3306. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3307. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3308. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3309. }
  3310. if (s->keyframe || s->intraonly) {
  3311. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3312. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3313. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3314. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3315. return;
  3316. }
  3317. // skip flag
  3318. for (i = 0; i < 3; i++)
  3319. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3320. // intra/inter flag
  3321. for (i = 0; i < 4; i++)
  3322. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3323. // comppred flag
  3324. if (s->comppredmode == PRED_SWITCHABLE) {
  3325. for (i = 0; i < 5; i++)
  3326. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3327. }
  3328. // reference frames
  3329. if (s->comppredmode != PRED_SINGLEREF) {
  3330. for (i = 0; i < 5; i++)
  3331. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3332. s->counts.comp_ref[i][1], 20, 128);
  3333. }
  3334. if (s->comppredmode != PRED_COMPREF) {
  3335. for (i = 0; i < 5; i++) {
  3336. uint8_t *pp = p->single_ref[i];
  3337. unsigned (*c)[2] = s->counts.single_ref[i];
  3338. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3339. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3340. }
  3341. }
  3342. // block partitioning
  3343. for (i = 0; i < 4; i++)
  3344. for (j = 0; j < 4; j++) {
  3345. uint8_t *pp = p->partition[i][j];
  3346. unsigned *c = s->counts.partition[i][j];
  3347. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3348. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3349. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3350. }
  3351. // tx size
  3352. if (s->txfmmode == TX_SWITCHABLE) {
  3353. for (i = 0; i < 2; i++) {
  3354. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3355. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3356. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3357. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3358. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3359. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3360. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3361. }
  3362. }
  3363. // interpolation filter
  3364. if (s->filtermode == FILTER_SWITCHABLE) {
  3365. for (i = 0; i < 4; i++) {
  3366. uint8_t *pp = p->filter[i];
  3367. unsigned *c = s->counts.filter[i];
  3368. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3369. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3370. }
  3371. }
  3372. // inter modes
  3373. for (i = 0; i < 7; i++) {
  3374. uint8_t *pp = p->mv_mode[i];
  3375. unsigned *c = s->counts.mv_mode[i];
  3376. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3377. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3378. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3379. }
  3380. // mv joints
  3381. {
  3382. uint8_t *pp = p->mv_joint;
  3383. unsigned *c = s->counts.mv_joint;
  3384. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3385. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3386. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3387. }
  3388. // mv components
  3389. for (i = 0; i < 2; i++) {
  3390. uint8_t *pp;
  3391. unsigned *c, (*c2)[2], sum;
  3392. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3393. s->counts.mv_comp[i].sign[1], 20, 128);
  3394. pp = p->mv_comp[i].classes;
  3395. c = s->counts.mv_comp[i].classes;
  3396. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3397. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3398. sum -= c[1];
  3399. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3400. sum -= c[2] + c[3];
  3401. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3402. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3403. sum -= c[4] + c[5];
  3404. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3405. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3406. sum -= c[6];
  3407. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3408. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3409. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3410. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3411. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3412. s->counts.mv_comp[i].class0[1], 20, 128);
  3413. pp = p->mv_comp[i].bits;
  3414. c2 = s->counts.mv_comp[i].bits;
  3415. for (j = 0; j < 10; j++)
  3416. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3417. for (j = 0; j < 2; j++) {
  3418. pp = p->mv_comp[i].class0_fp[j];
  3419. c = s->counts.mv_comp[i].class0_fp[j];
  3420. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3421. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3422. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3423. }
  3424. pp = p->mv_comp[i].fp;
  3425. c = s->counts.mv_comp[i].fp;
  3426. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3427. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3428. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3429. if (s->highprecisionmvs) {
  3430. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3431. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3432. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3433. s->counts.mv_comp[i].hp[1], 20, 128);
  3434. }
  3435. }
  3436. // y intra modes
  3437. for (i = 0; i < 4; i++) {
  3438. uint8_t *pp = p->y_mode[i];
  3439. unsigned *c = s->counts.y_mode[i], sum, s2;
  3440. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3441. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3442. sum -= c[TM_VP8_PRED];
  3443. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3444. sum -= c[VERT_PRED];
  3445. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3446. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3447. sum -= s2;
  3448. adapt_prob(&pp[3], s2, sum, 20, 128);
  3449. s2 -= c[HOR_PRED];
  3450. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3451. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3452. sum -= c[DIAG_DOWN_LEFT_PRED];
  3453. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3454. sum -= c[VERT_LEFT_PRED];
  3455. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3456. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3457. }
  3458. // uv intra modes
  3459. for (i = 0; i < 10; i++) {
  3460. uint8_t *pp = p->uv_mode[i];
  3461. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3462. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3463. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3464. sum -= c[TM_VP8_PRED];
  3465. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3466. sum -= c[VERT_PRED];
  3467. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3468. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3469. sum -= s2;
  3470. adapt_prob(&pp[3], s2, sum, 20, 128);
  3471. s2 -= c[HOR_PRED];
  3472. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3473. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3474. sum -= c[DIAG_DOWN_LEFT_PRED];
  3475. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3476. sum -= c[VERT_LEFT_PRED];
  3477. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3478. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3479. }
  3480. }
  3481. static void free_buffers(VP9Context *s)
  3482. {
  3483. av_freep(&s->intra_pred_data[0]);
  3484. av_freep(&s->b_base);
  3485. av_freep(&s->block_base);
  3486. }
  3487. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3488. {
  3489. VP9Context *s = ctx->priv_data;
  3490. int i;
  3491. for (i = 0; i < 3; i++) {
  3492. if (s->frames[i].tf.f->data[0])
  3493. vp9_unref_frame(ctx, &s->frames[i]);
  3494. av_frame_free(&s->frames[i].tf.f);
  3495. }
  3496. for (i = 0; i < 8; i++) {
  3497. if (s->refs[i].f->data[0])
  3498. ff_thread_release_buffer(ctx, &s->refs[i]);
  3499. av_frame_free(&s->refs[i].f);
  3500. if (s->next_refs[i].f->data[0])
  3501. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3502. av_frame_free(&s->next_refs[i].f);
  3503. }
  3504. free_buffers(s);
  3505. av_freep(&s->c_b);
  3506. s->c_b_size = 0;
  3507. return 0;
  3508. }
  3509. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3510. int *got_frame, AVPacket *pkt)
  3511. {
  3512. const uint8_t *data = pkt->data;
  3513. int size = pkt->size;
  3514. VP9Context *s = ctx->priv_data;
  3515. int res, tile_row, tile_col, i, ref, row, col;
  3516. int retain_segmap_ref = s->segmentation.enabled && !s->segmentation.update_map;
  3517. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3518. AVFrame *f;
  3519. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3520. return res;
  3521. } else if (res == 0) {
  3522. if (!s->refs[ref].f->data[0]) {
  3523. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3524. return AVERROR_INVALIDDATA;
  3525. }
  3526. if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
  3527. return res;
  3528. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3529. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3530. for (i = 0; i < 8; i++) {
  3531. if (s->next_refs[i].f->data[0])
  3532. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3533. if (s->refs[i].f->data[0] &&
  3534. (res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i])) < 0)
  3535. return res;
  3536. }
  3537. *got_frame = 1;
  3538. return pkt->size;
  3539. }
  3540. data += res;
  3541. size -= res;
  3542. if (!retain_segmap_ref) {
  3543. if (s->frames[REF_FRAME_SEGMAP].tf.f->data[0])
  3544. vp9_unref_frame(ctx, &s->frames[REF_FRAME_SEGMAP]);
  3545. if (!s->keyframe && !s->intraonly && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3546. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_SEGMAP], &s->frames[CUR_FRAME])) < 0)
  3547. return res;
  3548. }
  3549. if (s->frames[REF_FRAME_MVPAIR].tf.f->data[0])
  3550. vp9_unref_frame(ctx, &s->frames[REF_FRAME_MVPAIR]);
  3551. if (!s->intraonly && !s->keyframe && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3552. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_MVPAIR], &s->frames[CUR_FRAME])) < 0)
  3553. return res;
  3554. if (s->frames[CUR_FRAME].tf.f->data[0])
  3555. vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
  3556. if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
  3557. return res;
  3558. f = s->frames[CUR_FRAME].tf.f;
  3559. f->key_frame = s->keyframe;
  3560. f->pict_type = (s->keyframe || s->intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3561. ls_y = f->linesize[0];
  3562. ls_uv =f->linesize[1];
  3563. // ref frame setup
  3564. for (i = 0; i < 8; i++) {
  3565. if (s->next_refs[i].f->data[0])
  3566. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3567. if (s->refreshrefmask & (1 << i)) {
  3568. res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
  3569. } else if (s->refs[i].f->data[0]) {
  3570. res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
  3571. }
  3572. if (res < 0)
  3573. return res;
  3574. }
  3575. // main tile decode loop
  3576. memset(s->above_partition_ctx, 0, s->cols);
  3577. memset(s->above_skip_ctx, 0, s->cols);
  3578. if (s->keyframe || s->intraonly) {
  3579. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3580. } else {
  3581. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3582. }
  3583. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3584. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3585. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3586. memset(s->above_segpred_ctx, 0, s->cols);
  3587. s->pass = s->frames[CUR_FRAME].uses_2pass =
  3588. ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
  3589. if ((res = update_block_buffers(ctx)) < 0) {
  3590. av_log(ctx, AV_LOG_ERROR,
  3591. "Failed to allocate block buffers\n");
  3592. return res;
  3593. }
  3594. if (s->refreshctx && s->parallelmode) {
  3595. int j, k, l, m;
  3596. for (i = 0; i < 4; i++) {
  3597. for (j = 0; j < 2; j++)
  3598. for (k = 0; k < 2; k++)
  3599. for (l = 0; l < 6; l++)
  3600. for (m = 0; m < 6; m++)
  3601. memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
  3602. s->prob.coef[i][j][k][l][m], 3);
  3603. if (s->txfmmode == i)
  3604. break;
  3605. }
  3606. s->prob_ctx[s->framectxid].p = s->prob.p;
  3607. ff_thread_finish_setup(ctx);
  3608. } else if (!s->refreshctx) {
  3609. ff_thread_finish_setup(ctx);
  3610. }
  3611. do {
  3612. yoff = uvoff = 0;
  3613. s->b = s->b_base;
  3614. s->block = s->block_base;
  3615. s->uvblock[0] = s->uvblock_base[0];
  3616. s->uvblock[1] = s->uvblock_base[1];
  3617. s->eob = s->eob_base;
  3618. s->uveob[0] = s->uveob_base[0];
  3619. s->uveob[1] = s->uveob_base[1];
  3620. for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
  3621. set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
  3622. tile_row, s->tiling.log2_tile_rows, s->sb_rows);
  3623. if (s->pass != 2) {
  3624. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3625. unsigned tile_size;
  3626. if (tile_col == s->tiling.tile_cols - 1 &&
  3627. tile_row == s->tiling.tile_rows - 1) {
  3628. tile_size = size;
  3629. } else {
  3630. tile_size = AV_RB32(data);
  3631. data += 4;
  3632. size -= 4;
  3633. }
  3634. if (tile_size > size) {
  3635. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3636. return AVERROR_INVALIDDATA;
  3637. }
  3638. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3639. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3640. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3641. return AVERROR_INVALIDDATA;
  3642. }
  3643. data += tile_size;
  3644. size -= tile_size;
  3645. }
  3646. }
  3647. for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
  3648. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3649. struct VP9Filter *lflvl_ptr = s->lflvl;
  3650. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3651. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3652. set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
  3653. tile_col, s->tiling.log2_tile_cols, s->sb_cols);
  3654. if (s->pass != 2) {
  3655. memset(s->left_partition_ctx, 0, 8);
  3656. memset(s->left_skip_ctx, 0, 8);
  3657. if (s->keyframe || s->intraonly) {
  3658. memset(s->left_mode_ctx, DC_PRED, 16);
  3659. } else {
  3660. memset(s->left_mode_ctx, NEARESTMV, 8);
  3661. }
  3662. memset(s->left_y_nnz_ctx, 0, 16);
  3663. memset(s->left_uv_nnz_ctx, 0, 32);
  3664. memset(s->left_segpred_ctx, 0, 8);
  3665. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3666. }
  3667. for (col = s->tiling.tile_col_start;
  3668. col < s->tiling.tile_col_end;
  3669. col += 8, yoff2 += 64, uvoff2 += 64 >> s->ss_h, lflvl_ptr++) {
  3670. // FIXME integrate with lf code (i.e. zero after each
  3671. // use, similar to invtxfm coefficients, or similar)
  3672. if (s->pass != 1) {
  3673. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3674. }
  3675. if (s->pass == 2) {
  3676. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3677. yoff2, uvoff2, BL_64X64);
  3678. } else {
  3679. decode_sb(ctx, row, col, lflvl_ptr,
  3680. yoff2, uvoff2, BL_64X64);
  3681. }
  3682. }
  3683. if (s->pass != 2) {
  3684. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3685. }
  3686. }
  3687. if (s->pass == 1) {
  3688. continue;
  3689. }
  3690. // backup pre-loopfilter reconstruction data for intra
  3691. // prediction of next row of sb64s
  3692. if (row + 8 < s->rows) {
  3693. memcpy(s->intra_pred_data[0],
  3694. f->data[0] + yoff + 63 * ls_y,
  3695. 8 * s->cols);
  3696. memcpy(s->intra_pred_data[1],
  3697. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3698. 8 * s->cols >> s->ss_h);
  3699. memcpy(s->intra_pred_data[2],
  3700. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3701. 8 * s->cols >> s->ss_h);
  3702. }
  3703. // loopfilter one row
  3704. if (s->filter.level) {
  3705. yoff2 = yoff;
  3706. uvoff2 = uvoff;
  3707. lflvl_ptr = s->lflvl;
  3708. for (col = 0; col < s->cols;
  3709. col += 8, yoff2 += 64, uvoff2 += 64 >> s->ss_h, lflvl_ptr++) {
  3710. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3711. }
  3712. }
  3713. // FIXME maybe we can make this more finegrained by running the
  3714. // loopfilter per-block instead of after each sbrow
  3715. // In fact that would also make intra pred left preparation easier?
  3716. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
  3717. }
  3718. }
  3719. if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
  3720. adapt_probs(s);
  3721. ff_thread_finish_setup(ctx);
  3722. }
  3723. } while (s->pass++ == 1);
  3724. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3725. // ref frame setup
  3726. for (i = 0; i < 8; i++) {
  3727. if (s->refs[i].f->data[0])
  3728. ff_thread_release_buffer(ctx, &s->refs[i]);
  3729. ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
  3730. }
  3731. if (!s->invisible) {
  3732. if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
  3733. return res;
  3734. *got_frame = 1;
  3735. }
  3736. return pkt->size;
  3737. }
  3738. static void vp9_decode_flush(AVCodecContext *ctx)
  3739. {
  3740. VP9Context *s = ctx->priv_data;
  3741. int i;
  3742. for (i = 0; i < 3; i++)
  3743. vp9_unref_frame(ctx, &s->frames[i]);
  3744. for (i = 0; i < 8; i++)
  3745. ff_thread_release_buffer(ctx, &s->refs[i]);
  3746. }
  3747. static int init_frames(AVCodecContext *ctx)
  3748. {
  3749. VP9Context *s = ctx->priv_data;
  3750. int i;
  3751. for (i = 0; i < 3; i++) {
  3752. s->frames[i].tf.f = av_frame_alloc();
  3753. if (!s->frames[i].tf.f) {
  3754. vp9_decode_free(ctx);
  3755. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3756. return AVERROR(ENOMEM);
  3757. }
  3758. }
  3759. for (i = 0; i < 8; i++) {
  3760. s->refs[i].f = av_frame_alloc();
  3761. s->next_refs[i].f = av_frame_alloc();
  3762. if (!s->refs[i].f || !s->next_refs[i].f) {
  3763. vp9_decode_free(ctx);
  3764. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3765. return AVERROR(ENOMEM);
  3766. }
  3767. }
  3768. return 0;
  3769. }
  3770. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3771. {
  3772. VP9Context *s = ctx->priv_data;
  3773. ctx->internal->allocate_progress = 1;
  3774. ff_vp9dsp_init(&s->dsp);
  3775. ff_videodsp_init(&s->vdsp, 8);
  3776. s->filter.sharpness = -1;
  3777. return init_frames(ctx);
  3778. }
  3779. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3780. {
  3781. return init_frames(avctx);
  3782. }
  3783. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3784. {
  3785. int i, res;
  3786. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3787. // detect size changes in other threads
  3788. if (s->intra_pred_data[0] &&
  3789. (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) {
  3790. free_buffers(s);
  3791. }
  3792. for (i = 0; i < 3; i++) {
  3793. if (s->frames[i].tf.f->data[0])
  3794. vp9_unref_frame(dst, &s->frames[i]);
  3795. if (ssrc->frames[i].tf.f->data[0]) {
  3796. if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
  3797. return res;
  3798. }
  3799. }
  3800. for (i = 0; i < 8; i++) {
  3801. if (s->refs[i].f->data[0])
  3802. ff_thread_release_buffer(dst, &s->refs[i]);
  3803. if (ssrc->next_refs[i].f->data[0]) {
  3804. if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
  3805. return res;
  3806. }
  3807. }
  3808. s->invisible = ssrc->invisible;
  3809. s->keyframe = ssrc->keyframe;
  3810. s->ss_v = ssrc->ss_v;
  3811. s->ss_h = ssrc->ss_h;
  3812. s->segmentation.enabled = ssrc->segmentation.enabled;
  3813. s->segmentation.update_map = ssrc->segmentation.update_map;
  3814. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  3815. memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
  3816. if (ssrc->segmentation.enabled) {
  3817. memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
  3818. sizeof(s->segmentation.feat));
  3819. }
  3820. return 0;
  3821. }
  3822. AVCodec ff_vp9_decoder = {
  3823. .name = "vp9",
  3824. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  3825. .type = AVMEDIA_TYPE_VIDEO,
  3826. .id = AV_CODEC_ID_VP9,
  3827. .priv_data_size = sizeof(VP9Context),
  3828. .init = vp9_decode_init,
  3829. .close = vp9_decode_free,
  3830. .decode = vp9_decode_frame,
  3831. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  3832. .flush = vp9_decode_flush,
  3833. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  3834. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  3835. };