You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3156 lines
87KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meaningless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @section asplit
  169. Pass on the input audio to two outputs. Both outputs are identical to
  170. the input audio.
  171. For example:
  172. @example
  173. [in] asplit[out0], showaudio[out1]
  174. @end example
  175. will create two separate outputs from the same input, one cropped and
  176. one padded.
  177. @section earwax
  178. Make audio easier to listen to on headphones.
  179. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  180. so that when listened to on headphones the stereo image is moved from
  181. inside your head (standard for headphones) to outside and in front of
  182. the listener (standard for speakers).
  183. Ported from SoX.
  184. @section pan
  185. Mix channels with specific gain levels. The filter accepts the output
  186. channel layout followed by a set of channels definitions.
  187. The filter accepts parameters of the form:
  188. "@var{l}:@var{outdef}:@var{outdef}:..."
  189. @table @option
  190. @item l
  191. output channel layout or number of channels
  192. @item outdef
  193. output channel specification, of the form:
  194. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  195. @item out_name
  196. output channel to define, either a channel name (FL, FR, etc.) or a channel
  197. number (c0, c1, etc.)
  198. @item gain
  199. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  200. @item in_name
  201. input channel to use, see out_name for details; it is not possible to mix
  202. named and numbered input channels
  203. @end table
  204. If the `=' in a channel specification is replaced by `<', then the gains for
  205. that specification will be renormalized so that the total is 1, thus
  206. avoiding clipping noise.
  207. For example, if you want to down-mix from stereo to mono, but with a bigger
  208. factor for the left channel:
  209. @example
  210. pan=1:c0=0.9*c0+0.1*c1
  211. @end example
  212. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  213. 7-channels surround:
  214. @example
  215. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  216. @end example
  217. Note that @file{ffmpeg} integrates a default down-mix (and up-mix) system
  218. that should be preferred (see "-ac" option) unless you have very specific
  219. needs.
  220. @section volume
  221. Adjust the input audio volume.
  222. The filter accepts exactly one parameter @var{vol}, which expresses
  223. how the audio volume will be increased or decreased.
  224. Output values are clipped to the maximum value.
  225. If @var{vol} is expressed as a decimal number, and the output audio
  226. volume is given by the relation:
  227. @example
  228. @var{output_volume} = @var{vol} * @var{input_volume}
  229. @end example
  230. If @var{vol} is expressed as a decimal number followed by the string
  231. "dB", the value represents the requested change in decibels of the
  232. input audio power, and the output audio volume is given by the
  233. relation:
  234. @example
  235. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  236. @end example
  237. Otherwise @var{vol} is considered an expression and its evaluated
  238. value is used for computing the output audio volume according to the
  239. first relation.
  240. Default value for @var{vol} is 1.0.
  241. @subsection Examples
  242. @itemize
  243. @item
  244. Half the input audio volume:
  245. @example
  246. volume=0.5
  247. @end example
  248. The above example is equivalent to:
  249. @example
  250. volume=1/2
  251. @end example
  252. @item
  253. Decrease input audio power by 12 decibels:
  254. @example
  255. volume=-12dB
  256. @end example
  257. @end itemize
  258. @c man end AUDIO FILTERS
  259. @chapter Audio Sources
  260. @c man begin AUDIO SOURCES
  261. Below is a description of the currently available audio sources.
  262. @section abuffer
  263. Buffer audio frames, and make them available to the filter chain.
  264. This source is mainly intended for a programmatic use, in particular
  265. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  266. It accepts the following mandatory parameters:
  267. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  268. @table @option
  269. @item sample_rate
  270. The sample rate of the incoming audio buffers.
  271. @item sample_fmt
  272. The sample format of the incoming audio buffers.
  273. Either a sample format name or its corresponging integer representation from
  274. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  275. @item channel_layout
  276. The channel layout of the incoming audio buffers.
  277. Either a channel layout name from channel_layout_map in
  278. @file{libavutil/audioconvert.c} or its corresponding integer representation
  279. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  280. @item packing
  281. Either "packed" or "planar", or their integer representation: 0 or 1
  282. respectively.
  283. @end table
  284. For example:
  285. @example
  286. abuffer=44100:s16:stereo:planar
  287. @end example
  288. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  289. Since the sample format with name "s16" corresponds to the number
  290. 1 and the "stereo" channel layout corresponds to the value 3, this is
  291. equivalent to:
  292. @example
  293. abuffer=44100:1:3:1
  294. @end example
  295. @section aevalsrc
  296. Generate an audio signal specified by an expression.
  297. This source accepts in input one or more expressions (one for each
  298. channel), which are evaluated and used to generate a corresponding
  299. audio signal.
  300. It accepts the syntax: @var{exprs}[::@var{options}].
  301. @var{exprs} is a list of expressions separated by ":", one for each
  302. separate channel. The output channel layout depends on the number of
  303. provided expressions, up to 8 channels are supported.
  304. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  305. separated by ":".
  306. The description of the accepted options follows.
  307. @table @option
  308. @item duration, d
  309. Set the minimum duration of the sourced audio. See the function
  310. @code{av_parse_time()} for the accepted format.
  311. Note that the resulting duration may be greater than the specified
  312. duration, as the generated audio is always cut at the end of a
  313. complete frame.
  314. If not specified, or the expressed duration is negative, the audio is
  315. supposed to be generated forever.
  316. @item nb_samples, n
  317. Set the number of samples per channel per each output frame,
  318. default to 1024.
  319. @item sample_rate, s
  320. Specify the sample rate, default to 44100.
  321. @end table
  322. Each expression in @var{exprs} can contain the following constants:
  323. @table @option
  324. @item n
  325. number of the evaluated sample, starting from 0
  326. @item t
  327. time of the evaluated sample expressed in seconds, starting from 0
  328. @item s
  329. sample rate
  330. @end table
  331. @subsection Examples
  332. @itemize
  333. @item
  334. Generate silence:
  335. @example
  336. aevalsrc=0
  337. @end example
  338. @item
  339. Generate a sin signal with frequency of 440 Hz, set sample rate to
  340. 8000 Hz:
  341. @example
  342. aevalsrc="sin(440*2*PI*t)::s=8000"
  343. @end example
  344. @item
  345. Generate white noise:
  346. @example
  347. aevalsrc="-2+random(0)"
  348. @end example
  349. @item
  350. Generate an amplitude modulated signal:
  351. @example
  352. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  353. @end example
  354. @item
  355. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  356. @example
  357. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  358. @end example
  359. @end itemize
  360. @section amovie
  361. Read an audio stream from a movie container.
  362. It accepts the syntax: @var{movie_name}[:@var{options}] where
  363. @var{movie_name} is the name of the resource to read (not necessarily
  364. a file but also a device or a stream accessed through some protocol),
  365. and @var{options} is an optional sequence of @var{key}=@var{value}
  366. pairs, separated by ":".
  367. The description of the accepted options follows.
  368. @table @option
  369. @item format_name, f
  370. Specify the format assumed for the movie to read, and can be either
  371. the name of a container or an input device. If not specified the
  372. format is guessed from @var{movie_name} or by probing.
  373. @item seek_point, sp
  374. Specify the seek point in seconds, the frames will be output
  375. starting from this seek point, the parameter is evaluated with
  376. @code{av_strtod} so the numerical value may be suffixed by an IS
  377. postfix. Default value is "0".
  378. @item stream_index, si
  379. Specify the index of the audio stream to read. If the value is -1,
  380. the best suited audio stream will be automatically selected. Default
  381. value is "-1".
  382. @end table
  383. @section anullsrc
  384. Null audio source, return unprocessed audio frames. It is mainly useful
  385. as a template and to be employed in analysis / debugging tools, or as
  386. the source for filters which ignore the input data (for example the sox
  387. synth filter).
  388. It accepts an optional sequence of @var{key}=@var{value} pairs,
  389. separated by ":".
  390. The description of the accepted options follows.
  391. @table @option
  392. @item sample_rate, s
  393. Specify the sample rate, and defaults to 44100.
  394. @item channel_layout, cl
  395. Specify the channel layout, and can be either an integer or a string
  396. representing a channel layout. The default value of @var{channel_layout}
  397. is "stereo".
  398. Check the channel_layout_map definition in
  399. @file{libavcodec/audioconvert.c} for the mapping between strings and
  400. channel layout values.
  401. @item nb_samples, n
  402. Set the number of samples per requested frames.
  403. @end table
  404. Follow some examples:
  405. @example
  406. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  407. anullsrc=r=48000:cl=4
  408. # same as
  409. anullsrc=r=48000:cl=mono
  410. @end example
  411. @c man end AUDIO SOURCES
  412. @chapter Audio Sinks
  413. @c man begin AUDIO SINKS
  414. Below is a description of the currently available audio sinks.
  415. @section abuffersink
  416. Buffer audio frames, and make them available to the end of filter chain.
  417. This sink is mainly intended for programmatic use, in particular
  418. through the interface defined in @file{libavfilter/buffersink.h}.
  419. It requires a pointer to an AVABufferSinkContext structure, which
  420. defines the incoming buffers' formats, to be passed as the opaque
  421. parameter to @code{avfilter_init_filter} for initialization.
  422. @section anullsink
  423. Null audio sink, do absolutely nothing with the input audio. It is
  424. mainly useful as a template and to be employed in analysis / debugging
  425. tools.
  426. @c man end AUDIO SINKS
  427. @chapter Video Filters
  428. @c man begin VIDEO FILTERS
  429. When you configure your FFmpeg build, you can disable any of the
  430. existing filters using --disable-filters.
  431. The configure output will show the video filters included in your
  432. build.
  433. Below is a description of the currently available video filters.
  434. @section ass
  435. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  436. using the libass library.
  437. To enable compilation of this filter you need to configure FFmpeg with
  438. @code{--enable-libass}.
  439. This filter accepts in input the name of the ass file to render.
  440. For example, to render the file @file{sub.ass} on top of the input
  441. video, use the command:
  442. @example
  443. ass=sub.ass
  444. @end example
  445. @section blackframe
  446. Detect frames that are (almost) completely black. Can be useful to
  447. detect chapter transitions or commercials. Output lines consist of
  448. the frame number of the detected frame, the percentage of blackness,
  449. the position in the file if known or -1 and the timestamp in seconds.
  450. In order to display the output lines, you need to set the loglevel at
  451. least to the AV_LOG_INFO value.
  452. The filter accepts the syntax:
  453. @example
  454. blackframe[=@var{amount}:[@var{threshold}]]
  455. @end example
  456. @var{amount} is the percentage of the pixels that have to be below the
  457. threshold, and defaults to 98.
  458. @var{threshold} is the threshold below which a pixel value is
  459. considered black, and defaults to 32.
  460. @section boxblur
  461. Apply boxblur algorithm to the input video.
  462. This filter accepts the parameters:
  463. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  464. Chroma and alpha parameters are optional, if not specified they default
  465. to the corresponding values set for @var{luma_radius} and
  466. @var{luma_power}.
  467. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  468. the radius in pixels of the box used for blurring the corresponding
  469. input plane. They are expressions, and can contain the following
  470. constants:
  471. @table @option
  472. @item w, h
  473. the input width and height in pixels
  474. @item cw, ch
  475. the input chroma image width and height in pixels
  476. @item hsub, vsub
  477. horizontal and vertical chroma subsample values. For example for the
  478. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  479. @end table
  480. The radius must be a non-negative number, and must not be greater than
  481. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  482. and of @code{min(cw,ch)/2} for the chroma planes.
  483. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  484. how many times the boxblur filter is applied to the corresponding
  485. plane.
  486. Some examples follow:
  487. @itemize
  488. @item
  489. Apply a boxblur filter with luma, chroma, and alpha radius
  490. set to 2:
  491. @example
  492. boxblur=2:1
  493. @end example
  494. @item
  495. Set luma radius to 2, alpha and chroma radius to 0
  496. @example
  497. boxblur=2:1:0:0:0:0
  498. @end example
  499. @item
  500. Set luma and chroma radius to a fraction of the video dimension
  501. @example
  502. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  503. @end example
  504. @end itemize
  505. @section copy
  506. Copy the input source unchanged to the output. Mainly useful for
  507. testing purposes.
  508. @section crop
  509. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  510. The parameters are expressions containing the following constants:
  511. @table @option
  512. @item x, y
  513. the computed values for @var{x} and @var{y}. They are evaluated for
  514. each new frame.
  515. @item in_w, in_h
  516. the input width and height
  517. @item iw, ih
  518. same as @var{in_w} and @var{in_h}
  519. @item out_w, out_h
  520. the output (cropped) width and height
  521. @item ow, oh
  522. same as @var{out_w} and @var{out_h}
  523. @item a
  524. same as @var{iw} / @var{ih}
  525. @item sar
  526. input sample aspect ratio
  527. @item dar
  528. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  529. @item hsub, vsub
  530. horizontal and vertical chroma subsample values. For example for the
  531. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  532. @item n
  533. the number of input frame, starting from 0
  534. @item pos
  535. the position in the file of the input frame, NAN if unknown
  536. @item t
  537. timestamp expressed in seconds, NAN if the input timestamp is unknown
  538. @end table
  539. The @var{out_w} and @var{out_h} parameters specify the expressions for
  540. the width and height of the output (cropped) video. They are
  541. evaluated just at the configuration of the filter.
  542. The default value of @var{out_w} is "in_w", and the default value of
  543. @var{out_h} is "in_h".
  544. The expression for @var{out_w} may depend on the value of @var{out_h},
  545. and the expression for @var{out_h} may depend on @var{out_w}, but they
  546. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  547. evaluated after @var{out_w} and @var{out_h}.
  548. The @var{x} and @var{y} parameters specify the expressions for the
  549. position of the top-left corner of the output (non-cropped) area. They
  550. are evaluated for each frame. If the evaluated value is not valid, it
  551. is approximated to the nearest valid value.
  552. The default value of @var{x} is "(in_w-out_w)/2", and the default
  553. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  554. the center of the input image.
  555. The expression for @var{x} may depend on @var{y}, and the expression
  556. for @var{y} may depend on @var{x}.
  557. Follow some examples:
  558. @example
  559. # crop the central input area with size 100x100
  560. crop=100:100
  561. # crop the central input area with size 2/3 of the input video
  562. "crop=2/3*in_w:2/3*in_h"
  563. # crop the input video central square
  564. crop=in_h
  565. # delimit the rectangle with the top-left corner placed at position
  566. # 100:100 and the right-bottom corner corresponding to the right-bottom
  567. # corner of the input image.
  568. crop=in_w-100:in_h-100:100:100
  569. # crop 10 pixels from the left and right borders, and 20 pixels from
  570. # the top and bottom borders
  571. "crop=in_w-2*10:in_h-2*20"
  572. # keep only the bottom right quarter of the input image
  573. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  574. # crop height for getting Greek harmony
  575. "crop=in_w:1/PHI*in_w"
  576. # trembling effect
  577. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  578. # erratic camera effect depending on timestamp
  579. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  580. # set x depending on the value of y
  581. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  582. @end example
  583. @section cropdetect
  584. Auto-detect crop size.
  585. Calculate necessary cropping parameters and prints the recommended
  586. parameters through the logging system. The detected dimensions
  587. correspond to the non-black area of the input video.
  588. It accepts the syntax:
  589. @example
  590. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  591. @end example
  592. @table @option
  593. @item limit
  594. Threshold, which can be optionally specified from nothing (0) to
  595. everything (255), defaults to 24.
  596. @item round
  597. Value which the width/height should be divisible by, defaults to
  598. 16. The offset is automatically adjusted to center the video. Use 2 to
  599. get only even dimensions (needed for 4:2:2 video). 16 is best when
  600. encoding to most video codecs.
  601. @item reset
  602. Counter that determines after how many frames cropdetect will reset
  603. the previously detected largest video area and start over to detect
  604. the current optimal crop area. Defaults to 0.
  605. This can be useful when channel logos distort the video area. 0
  606. indicates never reset and return the largest area encountered during
  607. playback.
  608. @end table
  609. @section delogo
  610. Suppress a TV station logo by a simple interpolation of the surrounding
  611. pixels. Just set a rectangle covering the logo and watch it disappear
  612. (and sometimes something even uglier appear - your mileage may vary).
  613. The filter accepts parameters as a string of the form
  614. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  615. @var{key}=@var{value} pairs, separated by ":".
  616. The description of the accepted parameters follows.
  617. @table @option
  618. @item x, y
  619. Specify the top left corner coordinates of the logo. They must be
  620. specified.
  621. @item w, h
  622. Specify the width and height of the logo to clear. They must be
  623. specified.
  624. @item band, t
  625. Specify the thickness of the fuzzy edge of the rectangle (added to
  626. @var{w} and @var{h}). The default value is 4.
  627. @item show
  628. When set to 1, a green rectangle is drawn on the screen to simplify
  629. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  630. @var{band} is set to 4. The default value is 0.
  631. @end table
  632. Some examples follow.
  633. @itemize
  634. @item
  635. Set a rectangle covering the area with top left corner coordinates 0,0
  636. and size 100x77, setting a band of size 10:
  637. @example
  638. delogo=0:0:100:77:10
  639. @end example
  640. @item
  641. As the previous example, but use named options:
  642. @example
  643. delogo=x=0:y=0:w=100:h=77:band=10
  644. @end example
  645. @end itemize
  646. @section deshake
  647. Attempt to fix small changes in horizontal and/or vertical shift. This
  648. filter helps remove camera shake from hand-holding a camera, bumping a
  649. tripod, moving on a vehicle, etc.
  650. The filter accepts parameters as a string of the form
  651. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  652. A description of the accepted parameters follows.
  653. @table @option
  654. @item x, y, w, h
  655. Specify a rectangular area where to limit the search for motion
  656. vectors.
  657. If desired the search for motion vectors can be limited to a
  658. rectangular area of the frame defined by its top left corner, width
  659. and height. These parameters have the same meaning as the drawbox
  660. filter which can be used to visualise the position of the bounding
  661. box.
  662. This is useful when simultaneous movement of subjects within the frame
  663. might be confused for camera motion by the motion vector search.
  664. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  665. then the full frame is used. This allows later options to be set
  666. without specifying the bounding box for the motion vector search.
  667. Default - search the whole frame.
  668. @item rx, ry
  669. Specify the maximum extent of movement in x and y directions in the
  670. range 0-64 pixels. Default 16.
  671. @item edge
  672. Specify how to generate pixels to fill blanks at the edge of the
  673. frame. An integer from 0 to 3 as follows:
  674. @table @option
  675. @item 0
  676. Fill zeroes at blank locations
  677. @item 1
  678. Original image at blank locations
  679. @item 2
  680. Extruded edge value at blank locations
  681. @item 3
  682. Mirrored edge at blank locations
  683. @end table
  684. The default setting is mirror edge at blank locations.
  685. @item blocksize
  686. Specify the blocksize to use for motion search. Range 4-128 pixels,
  687. default 8.
  688. @item contrast
  689. Specify the contrast threshold for blocks. Only blocks with more than
  690. the specified contrast (difference between darkest and lightest
  691. pixels) will be considered. Range 1-255, default 125.
  692. @item search
  693. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  694. search. Default - exhaustive search.
  695. @item filename
  696. If set then a detailed log of the motion search is written to the
  697. specified file.
  698. @end table
  699. @section drawbox
  700. Draw a colored box on the input image.
  701. It accepts the syntax:
  702. @example
  703. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  704. @end example
  705. @table @option
  706. @item x, y
  707. Specify the top left corner coordinates of the box. Default to 0.
  708. @item width, height
  709. Specify the width and height of the box, if 0 they are interpreted as
  710. the input width and height. Default to 0.
  711. @item color
  712. Specify the color of the box to write, it can be the name of a color
  713. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  714. @end table
  715. Follow some examples:
  716. @example
  717. # draw a black box around the edge of the input image
  718. drawbox
  719. # draw a box with color red and an opacity of 50%
  720. drawbox=10:20:200:60:red@@0.5"
  721. @end example
  722. @section drawtext
  723. Draw text string or text from specified file on top of video using the
  724. libfreetype library.
  725. To enable compilation of this filter you need to configure FFmpeg with
  726. @code{--enable-libfreetype}.
  727. The filter also recognizes strftime() sequences in the provided text
  728. and expands them accordingly. Check the documentation of strftime().
  729. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  730. separated by ":".
  731. The description of the accepted parameters follows.
  732. @table @option
  733. @item fontfile
  734. The font file to be used for drawing text. Path must be included.
  735. This parameter is mandatory.
  736. @item text
  737. The text string to be drawn. The text must be a sequence of UTF-8
  738. encoded characters.
  739. This parameter is mandatory if no file is specified with the parameter
  740. @var{textfile}.
  741. @item textfile
  742. A text file containing text to be drawn. The text must be a sequence
  743. of UTF-8 encoded characters.
  744. This parameter is mandatory if no text string is specified with the
  745. parameter @var{text}.
  746. If both text and textfile are specified, an error is thrown.
  747. @item x, y
  748. The expressions which specify the offsets where text will be drawn
  749. within the video frame. They are relative to the top/left border of the
  750. output image.
  751. The default value of @var{x} and @var{y} is "0".
  752. See below for the list of accepted constants.
  753. @item fontsize
  754. The font size to be used for drawing text.
  755. The default value of @var{fontsize} is 16.
  756. @item fontcolor
  757. The color to be used for drawing fonts.
  758. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  759. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  760. The default value of @var{fontcolor} is "black".
  761. @item boxcolor
  762. The color to be used for drawing box around text.
  763. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  764. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  765. The default value of @var{boxcolor} is "white".
  766. @item box
  767. Used to draw a box around text using background color.
  768. Value should be either 1 (enable) or 0 (disable).
  769. The default value of @var{box} is 0.
  770. @item shadowx, shadowy
  771. The x and y offsets for the text shadow position with respect to the
  772. position of the text. They can be either positive or negative
  773. values. Default value for both is "0".
  774. @item shadowcolor
  775. The color to be used for drawing a shadow behind the drawn text. It
  776. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  777. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  778. The default value of @var{shadowcolor} is "black".
  779. @item ft_load_flags
  780. Flags to be used for loading the fonts.
  781. The flags map the corresponding flags supported by libfreetype, and are
  782. a combination of the following values:
  783. @table @var
  784. @item default
  785. @item no_scale
  786. @item no_hinting
  787. @item render
  788. @item no_bitmap
  789. @item vertical_layout
  790. @item force_autohint
  791. @item crop_bitmap
  792. @item pedantic
  793. @item ignore_global_advance_width
  794. @item no_recurse
  795. @item ignore_transform
  796. @item monochrome
  797. @item linear_design
  798. @item no_autohint
  799. @item end table
  800. @end table
  801. Default value is "render".
  802. For more information consult the documentation for the FT_LOAD_*
  803. libfreetype flags.
  804. @item tabsize
  805. The size in number of spaces to use for rendering the tab.
  806. Default value is 4.
  807. @end table
  808. The parameters for @var{x} and @var{y} are expressions containing the
  809. following constants:
  810. @table @option
  811. @item W, H
  812. the input width and height
  813. @item tw, text_w
  814. the width of the rendered text
  815. @item th, text_h
  816. the height of the rendered text
  817. @item lh, line_h
  818. the height of each text line
  819. @item sar
  820. input sample aspect ratio
  821. @item dar
  822. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  823. @item hsub, vsub
  824. horizontal and vertical chroma subsample values. For example for the
  825. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  826. @item max_glyph_w
  827. maximum glyph width, that is the maximum width for all the glyphs
  828. contained in the rendered text
  829. @item max_glyph_h
  830. maximum glyph height, that is the maximum height for all the glyphs
  831. contained in the rendered text, it is equivalent to @var{ascent} -
  832. @var{descent}.
  833. @item max_glyph_a, ascent
  834. the maximum distance from the baseline to the highest/upper grid
  835. coordinate used to place a glyph outline point, for all the rendered
  836. glyphs.
  837. It is a positive value, due to the grid's orientation with the Y axis
  838. upwards.
  839. @item max_glyph_d, descent
  840. the maximum distance from the baseline to the lowest grid coordinate
  841. used to place a glyph outline point, for all the rendered glyphs.
  842. This is a negative value, due to the grid's orientation, with the Y axis
  843. upwards.
  844. @item n
  845. the number of input frame, starting from 0
  846. @item t
  847. timestamp expressed in seconds, NAN if the input timestamp is unknown
  848. @item timecode
  849. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  850. with or without text parameter. @var{rate} option must be specified
  851. @item r, rate
  852. frame rate (timecode only)
  853. @end table
  854. Some examples follow.
  855. @itemize
  856. @item
  857. Draw "Test Text" with font FreeSerif, using the default values for the
  858. optional parameters.
  859. @example
  860. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  861. @end example
  862. @item
  863. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  864. and y=50 (counting from the top-left corner of the screen), text is
  865. yellow with a red box around it. Both the text and the box have an
  866. opacity of 20%.
  867. @example
  868. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  869. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  870. @end example
  871. Note that the double quotes are not necessary if spaces are not used
  872. within the parameter list.
  873. @item
  874. Show the text at the center of the video frame:
  875. @example
  876. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  877. @end example
  878. @item
  879. Show a text line sliding from right to left in the last row of the video
  880. frame. The file @file{LONG_LINE} is assumed to contain a single line
  881. with no newlines.
  882. @example
  883. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  884. @end example
  885. @item
  886. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  887. @example
  888. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  889. @end example
  890. @item
  891. Draw a single green letter "g", at the center of the input video.
  892. The glyph baseline is placed at half screen height.
  893. @example
  894. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  895. @end example
  896. @end itemize
  897. For more information about libfreetype, check:
  898. @url{http://www.freetype.org/}.
  899. @section fade
  900. Apply fade-in/out effect to input video.
  901. It accepts the parameters:
  902. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  903. @var{type} specifies if the effect type, can be either "in" for
  904. fade-in, or "out" for a fade-out effect.
  905. @var{start_frame} specifies the number of the start frame for starting
  906. to apply the fade effect.
  907. @var{nb_frames} specifies the number of frames for which the fade
  908. effect has to last. At the end of the fade-in effect the output video
  909. will have the same intensity as the input video, at the end of the
  910. fade-out transition the output video will be completely black.
  911. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  912. separated by ":". The description of the accepted options follows.
  913. @table @option
  914. @item type, t
  915. See @var{type}.
  916. @item start_frame, s
  917. See @var{start_frame}.
  918. @item nb_frames, n
  919. See @var{nb_frames}.
  920. @item alpha
  921. If set to 1, fade only alpha channel, if one exists on the input.
  922. Default value is 0.
  923. @end table
  924. A few usage examples follow, usable too as test scenarios.
  925. @example
  926. # fade in first 30 frames of video
  927. fade=in:0:30
  928. # fade out last 45 frames of a 200-frame video
  929. fade=out:155:45
  930. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  931. fade=in:0:25, fade=out:975:25
  932. # make first 5 frames black, then fade in from frame 5-24
  933. fade=in:5:20
  934. # fade in alpha over first 25 frames of video
  935. fade=in:0:25:alpha=1
  936. @end example
  937. @section fieldorder
  938. Transform the field order of the input video.
  939. It accepts one parameter which specifies the required field order that
  940. the input interlaced video will be transformed to. The parameter can
  941. assume one of the following values:
  942. @table @option
  943. @item 0 or bff
  944. output bottom field first
  945. @item 1 or tff
  946. output top field first
  947. @end table
  948. Default value is "tff".
  949. Transformation is achieved by shifting the picture content up or down
  950. by one line, and filling the remaining line with appropriate picture content.
  951. This method is consistent with most broadcast field order converters.
  952. If the input video is not flagged as being interlaced, or it is already
  953. flagged as being of the required output field order then this filter does
  954. not alter the incoming video.
  955. This filter is very useful when converting to or from PAL DV material,
  956. which is bottom field first.
  957. For example:
  958. @example
  959. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  960. @end example
  961. @section fifo
  962. Buffer input images and send them when they are requested.
  963. This filter is mainly useful when auto-inserted by the libavfilter
  964. framework.
  965. The filter does not take parameters.
  966. @section format
  967. Convert the input video to one of the specified pixel formats.
  968. Libavfilter will try to pick one that is supported for the input to
  969. the next filter.
  970. The filter accepts a list of pixel format names, separated by ":",
  971. for example "yuv420p:monow:rgb24".
  972. Some examples follow:
  973. @example
  974. # convert the input video to the format "yuv420p"
  975. format=yuv420p
  976. # convert the input video to any of the formats in the list
  977. format=yuv420p:yuv444p:yuv410p
  978. @end example
  979. @anchor{frei0r}
  980. @section frei0r
  981. Apply a frei0r effect to the input video.
  982. To enable compilation of this filter you need to install the frei0r
  983. header and configure FFmpeg with --enable-frei0r.
  984. The filter supports the syntax:
  985. @example
  986. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  987. @end example
  988. @var{filter_name} is the name to the frei0r effect to load. If the
  989. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  990. is searched in each one of the directories specified by the colon
  991. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  992. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  993. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  994. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  995. for the frei0r effect.
  996. A frei0r effect parameter can be a boolean (whose values are specified
  997. with "y" and "n"), a double, a color (specified by the syntax
  998. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  999. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1000. description), a position (specified by the syntax @var{X}/@var{Y},
  1001. @var{X} and @var{Y} being float numbers) and a string.
  1002. The number and kind of parameters depend on the loaded effect. If an
  1003. effect parameter is not specified the default value is set.
  1004. Some examples follow:
  1005. @example
  1006. # apply the distort0r effect, set the first two double parameters
  1007. frei0r=distort0r:0.5:0.01
  1008. # apply the colordistance effect, takes a color as first parameter
  1009. frei0r=colordistance:0.2/0.3/0.4
  1010. frei0r=colordistance:violet
  1011. frei0r=colordistance:0x112233
  1012. # apply the perspective effect, specify the top left and top right
  1013. # image positions
  1014. frei0r=perspective:0.2/0.2:0.8/0.2
  1015. @end example
  1016. For more information see:
  1017. @url{http://piksel.org/frei0r}
  1018. @section gradfun
  1019. Fix the banding artifacts that are sometimes introduced into nearly flat
  1020. regions by truncation to 8bit color depth.
  1021. Interpolate the gradients that should go where the bands are, and
  1022. dither them.
  1023. This filter is designed for playback only. Do not use it prior to
  1024. lossy compression, because compression tends to lose the dither and
  1025. bring back the bands.
  1026. The filter takes two optional parameters, separated by ':':
  1027. @var{strength}:@var{radius}
  1028. @var{strength} is the maximum amount by which the filter will change
  1029. any one pixel. Also the threshold for detecting nearly flat
  1030. regions. Acceptable values range from .51 to 255, default value is
  1031. 1.2, out-of-range values will be clipped to the valid range.
  1032. @var{radius} is the neighborhood to fit the gradient to. A larger
  1033. radius makes for smoother gradients, but also prevents the filter from
  1034. modifying the pixels near detailed regions. Acceptable values are
  1035. 8-32, default value is 16, out-of-range values will be clipped to the
  1036. valid range.
  1037. @example
  1038. # default parameters
  1039. gradfun=1.2:16
  1040. # omitting radius
  1041. gradfun=1.2
  1042. @end example
  1043. @section hflip
  1044. Flip the input video horizontally.
  1045. For example to horizontally flip the input video with @command{ffmpeg}:
  1046. @example
  1047. ffmpeg -i in.avi -vf "hflip" out.avi
  1048. @end example
  1049. @section hqdn3d
  1050. High precision/quality 3d denoise filter. This filter aims to reduce
  1051. image noise producing smooth images and making still images really
  1052. still. It should enhance compressibility.
  1053. It accepts the following optional parameters:
  1054. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1055. @table @option
  1056. @item luma_spatial
  1057. a non-negative float number which specifies spatial luma strength,
  1058. defaults to 4.0
  1059. @item chroma_spatial
  1060. a non-negative float number which specifies spatial chroma strength,
  1061. defaults to 3.0*@var{luma_spatial}/4.0
  1062. @item luma_tmp
  1063. a float number which specifies luma temporal strength, defaults to
  1064. 6.0*@var{luma_spatial}/4.0
  1065. @item chroma_tmp
  1066. a float number which specifies chroma temporal strength, defaults to
  1067. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1068. @end table
  1069. @section lut, lutrgb, lutyuv
  1070. Compute a look-up table for binding each pixel component input value
  1071. to an output value, and apply it to input video.
  1072. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1073. to an RGB input video.
  1074. These filters accept in input a ":"-separated list of options, which
  1075. specify the expressions used for computing the lookup table for the
  1076. corresponding pixel component values.
  1077. The @var{lut} filter requires either YUV or RGB pixel formats in
  1078. input, and accepts the options:
  1079. @table @option
  1080. @item c0
  1081. first pixel component
  1082. @item c1
  1083. second pixel component
  1084. @item c2
  1085. third pixel component
  1086. @item c3
  1087. fourth pixel component, corresponds to the alpha component
  1088. @end table
  1089. The exact component associated to each option depends on the format in
  1090. input.
  1091. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1092. accepts the options:
  1093. @table @option
  1094. @item r
  1095. red component
  1096. @item g
  1097. green component
  1098. @item b
  1099. blue component
  1100. @item a
  1101. alpha component
  1102. @end table
  1103. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1104. accepts the options:
  1105. @table @option
  1106. @item y
  1107. Y/luminance component
  1108. @item u
  1109. U/Cb component
  1110. @item v
  1111. V/Cr component
  1112. @item a
  1113. alpha component
  1114. @end table
  1115. The expressions can contain the following constants and functions:
  1116. @table @option
  1117. @item w, h
  1118. the input width and height
  1119. @item val
  1120. input value for the pixel component
  1121. @item clipval
  1122. the input value clipped in the @var{minval}-@var{maxval} range
  1123. @item maxval
  1124. maximum value for the pixel component
  1125. @item minval
  1126. minimum value for the pixel component
  1127. @item negval
  1128. the negated value for the pixel component value clipped in the
  1129. @var{minval}-@var{maxval} range , it corresponds to the expression
  1130. "maxval-clipval+minval"
  1131. @item clip(val)
  1132. the computed value in @var{val} clipped in the
  1133. @var{minval}-@var{maxval} range
  1134. @item gammaval(gamma)
  1135. the computed gamma correction value of the pixel component value
  1136. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1137. expression
  1138. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1139. @end table
  1140. All expressions default to "val".
  1141. Some examples follow:
  1142. @example
  1143. # negate input video
  1144. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1145. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1146. # the above is the same as
  1147. lutrgb="r=negval:g=negval:b=negval"
  1148. lutyuv="y=negval:u=negval:v=negval"
  1149. # negate luminance
  1150. lutyuv=y=negval
  1151. # remove chroma components, turns the video into a graytone image
  1152. lutyuv="u=128:v=128"
  1153. # apply a luma burning effect
  1154. lutyuv="y=2*val"
  1155. # remove green and blue components
  1156. lutrgb="g=0:b=0"
  1157. # set a constant alpha channel value on input
  1158. format=rgba,lutrgb=a="maxval-minval/2"
  1159. # correct luminance gamma by a 0.5 factor
  1160. lutyuv=y=gammaval(0.5)
  1161. @end example
  1162. @section mp
  1163. Apply an MPlayer filter to the input video.
  1164. This filter provides a wrapper around most of the filters of
  1165. MPlayer/MEncoder.
  1166. This wrapper is considered experimental. Some of the wrapped filters
  1167. may not work properly and we may drop support for them, as they will
  1168. be implemented natively into FFmpeg. Thus you should avoid
  1169. depending on them when writing portable scripts.
  1170. The filters accepts the parameters:
  1171. @var{filter_name}[:=]@var{filter_params}
  1172. @var{filter_name} is the name of a supported MPlayer filter,
  1173. @var{filter_params} is a string containing the parameters accepted by
  1174. the named filter.
  1175. The list of the currently supported filters follows:
  1176. @table @var
  1177. @item 2xsai
  1178. @item decimate
  1179. @item denoise3d
  1180. @item detc
  1181. @item dint
  1182. @item divtc
  1183. @item down3dright
  1184. @item dsize
  1185. @item eq2
  1186. @item eq
  1187. @item field
  1188. @item fil
  1189. @item fixpts
  1190. @item framestep
  1191. @item fspp
  1192. @item geq
  1193. @item harddup
  1194. @item hqdn3d
  1195. @item hue
  1196. @item il
  1197. @item ilpack
  1198. @item ivtc
  1199. @item kerndeint
  1200. @item mcdeint
  1201. @item mirror
  1202. @item noise
  1203. @item ow
  1204. @item palette
  1205. @item perspective
  1206. @item phase
  1207. @item pp7
  1208. @item pullup
  1209. @item qp
  1210. @item rectangle
  1211. @item remove-logo
  1212. @item rotate
  1213. @item sab
  1214. @item screenshot
  1215. @item smartblur
  1216. @item softpulldown
  1217. @item softskip
  1218. @item spp
  1219. @item swapuv
  1220. @item telecine
  1221. @item tile
  1222. @item tinterlace
  1223. @item unsharp
  1224. @item uspp
  1225. @item yuvcsp
  1226. @item yvu9
  1227. @end table
  1228. The parameter syntax and behavior for the listed filters are the same
  1229. of the corresponding MPlayer filters. For detailed instructions check
  1230. the "VIDEO FILTERS" section in the MPlayer manual.
  1231. Some examples follow:
  1232. @example
  1233. # remove a logo by interpolating the surrounding pixels
  1234. mp=delogo=200:200:80:20:1
  1235. # adjust gamma, brightness, contrast
  1236. mp=eq2=1.0:2:0.5
  1237. # tweak hue and saturation
  1238. mp=hue=100:-10
  1239. @end example
  1240. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1241. @section negate
  1242. Negate input video.
  1243. This filter accepts an integer in input, if non-zero it negates the
  1244. alpha component (if available). The default value in input is 0.
  1245. @section noformat
  1246. Force libavfilter not to use any of the specified pixel formats for the
  1247. input to the next filter.
  1248. The filter accepts a list of pixel format names, separated by ":",
  1249. for example "yuv420p:monow:rgb24".
  1250. Some examples follow:
  1251. @example
  1252. # force libavfilter to use a format different from "yuv420p" for the
  1253. # input to the vflip filter
  1254. noformat=yuv420p,vflip
  1255. # convert the input video to any of the formats not contained in the list
  1256. noformat=yuv420p:yuv444p:yuv410p
  1257. @end example
  1258. @section null
  1259. Pass the video source unchanged to the output.
  1260. @section ocv
  1261. Apply video transform using libopencv.
  1262. To enable this filter install libopencv library and headers and
  1263. configure FFmpeg with --enable-libopencv.
  1264. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1265. @var{filter_name} is the name of the libopencv filter to apply.
  1266. @var{filter_params} specifies the parameters to pass to the libopencv
  1267. filter. If not specified the default values are assumed.
  1268. Refer to the official libopencv documentation for more precise
  1269. information:
  1270. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1271. Follows the list of supported libopencv filters.
  1272. @anchor{dilate}
  1273. @subsection dilate
  1274. Dilate an image by using a specific structuring element.
  1275. This filter corresponds to the libopencv function @code{cvDilate}.
  1276. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1277. @var{struct_el} represents a structuring element, and has the syntax:
  1278. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1279. @var{cols} and @var{rows} represent the number of columns and rows of
  1280. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1281. point, and @var{shape} the shape for the structuring element, and
  1282. can be one of the values "rect", "cross", "ellipse", "custom".
  1283. If the value for @var{shape} is "custom", it must be followed by a
  1284. string of the form "=@var{filename}". The file with name
  1285. @var{filename} is assumed to represent a binary image, with each
  1286. printable character corresponding to a bright pixel. When a custom
  1287. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1288. or columns and rows of the read file are assumed instead.
  1289. The default value for @var{struct_el} is "3x3+0x0/rect".
  1290. @var{nb_iterations} specifies the number of times the transform is
  1291. applied to the image, and defaults to 1.
  1292. Follow some example:
  1293. @example
  1294. # use the default values
  1295. ocv=dilate
  1296. # dilate using a structuring element with a 5x5 cross, iterate two times
  1297. ocv=dilate=5x5+2x2/cross:2
  1298. # read the shape from the file diamond.shape, iterate two times
  1299. # the file diamond.shape may contain a pattern of characters like this:
  1300. # *
  1301. # ***
  1302. # *****
  1303. # ***
  1304. # *
  1305. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1306. ocv=0x0+2x2/custom=diamond.shape:2
  1307. @end example
  1308. @subsection erode
  1309. Erode an image by using a specific structuring element.
  1310. This filter corresponds to the libopencv function @code{cvErode}.
  1311. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1312. with the same syntax and semantics as the @ref{dilate} filter.
  1313. @subsection smooth
  1314. Smooth the input video.
  1315. The filter takes the following parameters:
  1316. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1317. @var{type} is the type of smooth filter to apply, and can be one of
  1318. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1319. "bilateral". The default value is "gaussian".
  1320. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1321. parameters whose meanings depend on smooth type. @var{param1} and
  1322. @var{param2} accept integer positive values or 0, @var{param3} and
  1323. @var{param4} accept float values.
  1324. The default value for @var{param1} is 3, the default value for the
  1325. other parameters is 0.
  1326. These parameters correspond to the parameters assigned to the
  1327. libopencv function @code{cvSmooth}.
  1328. @anchor{overlay}
  1329. @section overlay
  1330. Overlay one video on top of another.
  1331. It takes two inputs and one output, the first input is the "main"
  1332. video on which the second input is overlayed.
  1333. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1334. @var{x} is the x coordinate of the overlayed video on the main video,
  1335. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1336. the following parameters:
  1337. @table @option
  1338. @item main_w, main_h
  1339. main input width and height
  1340. @item W, H
  1341. same as @var{main_w} and @var{main_h}
  1342. @item overlay_w, overlay_h
  1343. overlay input width and height
  1344. @item w, h
  1345. same as @var{overlay_w} and @var{overlay_h}
  1346. @end table
  1347. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1348. separated by ":".
  1349. The description of the accepted options follows.
  1350. @table @option
  1351. @item rgb
  1352. If set to 1, force the filter to accept inputs in the RGB
  1353. color space. Default value is 0.
  1354. @end table
  1355. Be aware that frames are taken from each input video in timestamp
  1356. order, hence, if their initial timestamps differ, it is a a good idea
  1357. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1358. have them begin in the same zero timestamp, as it does the example for
  1359. the @var{movie} filter.
  1360. Follow some examples:
  1361. @example
  1362. # draw the overlay at 10 pixels from the bottom right
  1363. # corner of the main video.
  1364. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1365. # insert a transparent PNG logo in the bottom left corner of the input
  1366. movie=logo.png [logo];
  1367. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1368. # insert 2 different transparent PNG logos (second logo on bottom
  1369. # right corner):
  1370. movie=logo1.png [logo1];
  1371. movie=logo2.png [logo2];
  1372. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1373. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1374. # add a transparent color layer on top of the main video,
  1375. # WxH specifies the size of the main input to the overlay filter
  1376. color=red@.3:WxH [over]; [in][over] overlay [out]
  1377. @end example
  1378. You can chain together more overlays but the efficiency of such
  1379. approach is yet to be tested.
  1380. @section pad
  1381. Add paddings to the input image, and places the original input at the
  1382. given coordinates @var{x}, @var{y}.
  1383. It accepts the following parameters:
  1384. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1385. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1386. expressions containing the following constants:
  1387. @table @option
  1388. @item in_w, in_h
  1389. the input video width and height
  1390. @item iw, ih
  1391. same as @var{in_w} and @var{in_h}
  1392. @item out_w, out_h
  1393. the output width and height, that is the size of the padded area as
  1394. specified by the @var{width} and @var{height} expressions
  1395. @item ow, oh
  1396. same as @var{out_w} and @var{out_h}
  1397. @item x, y
  1398. x and y offsets as specified by the @var{x} and @var{y}
  1399. expressions, or NAN if not yet specified
  1400. @item a
  1401. same as @var{iw} / @var{ih}
  1402. @item sar
  1403. input sample aspect ratio
  1404. @item dar
  1405. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1406. @item hsub, vsub
  1407. horizontal and vertical chroma subsample values. For example for the
  1408. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1409. @end table
  1410. Follows the description of the accepted parameters.
  1411. @table @option
  1412. @item width, height
  1413. Specify the size of the output image with the paddings added. If the
  1414. value for @var{width} or @var{height} is 0, the corresponding input size
  1415. is used for the output.
  1416. The @var{width} expression can reference the value set by the
  1417. @var{height} expression, and vice versa.
  1418. The default value of @var{width} and @var{height} is 0.
  1419. @item x, y
  1420. Specify the offsets where to place the input image in the padded area
  1421. with respect to the top/left border of the output image.
  1422. The @var{x} expression can reference the value set by the @var{y}
  1423. expression, and vice versa.
  1424. The default value of @var{x} and @var{y} is 0.
  1425. @item color
  1426. Specify the color of the padded area, it can be the name of a color
  1427. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1428. The default value of @var{color} is "black".
  1429. @end table
  1430. Some examples follow:
  1431. @example
  1432. # Add paddings with color "violet" to the input video. Output video
  1433. # size is 640x480, the top-left corner of the input video is placed at
  1434. # column 0, row 40.
  1435. pad=640:480:0:40:violet
  1436. # pad the input to get an output with dimensions increased bt 3/2,
  1437. # and put the input video at the center of the padded area
  1438. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1439. # pad the input to get a squared output with size equal to the maximum
  1440. # value between the input width and height, and put the input video at
  1441. # the center of the padded area
  1442. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1443. # pad the input to get a final w/h ratio of 16:9
  1444. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1445. # for anamorphic video, in order to set the output display aspect ratio,
  1446. # it is necessary to use sar in the expression, according to the relation:
  1447. # (ih * X / ih) * sar = output_dar
  1448. # X = output_dar / sar
  1449. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1450. # double output size and put the input video in the bottom-right
  1451. # corner of the output padded area
  1452. pad="2*iw:2*ih:ow-iw:oh-ih"
  1453. @end example
  1454. @section pixdesctest
  1455. Pixel format descriptor test filter, mainly useful for internal
  1456. testing. The output video should be equal to the input video.
  1457. For example:
  1458. @example
  1459. format=monow, pixdesctest
  1460. @end example
  1461. can be used to test the monowhite pixel format descriptor definition.
  1462. @section scale
  1463. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1464. The parameters @var{width} and @var{height} are expressions containing
  1465. the following constants:
  1466. @table @option
  1467. @item in_w, in_h
  1468. the input width and height
  1469. @item iw, ih
  1470. same as @var{in_w} and @var{in_h}
  1471. @item out_w, out_h
  1472. the output (cropped) width and height
  1473. @item ow, oh
  1474. same as @var{out_w} and @var{out_h}
  1475. @item a
  1476. same as @var{iw} / @var{ih}
  1477. @item sar
  1478. input sample aspect ratio
  1479. @item dar
  1480. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1481. @item sar
  1482. input sample aspect ratio
  1483. @item hsub, vsub
  1484. horizontal and vertical chroma subsample values. For example for the
  1485. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1486. @end table
  1487. If the input image format is different from the format requested by
  1488. the next filter, the scale filter will convert the input to the
  1489. requested format.
  1490. If the value for @var{width} or @var{height} is 0, the respective input
  1491. size is used for the output.
  1492. If the value for @var{width} or @var{height} is -1, the scale filter will
  1493. use, for the respective output size, a value that maintains the aspect
  1494. ratio of the input image.
  1495. The default value of @var{width} and @var{height} is 0.
  1496. Valid values for the optional parameter @var{interl} are:
  1497. @table @option
  1498. @item 1
  1499. force interlaced aware scaling
  1500. @item -1
  1501. select interlaced aware scaling depending on whether the source frames
  1502. are flagged as interlaced or not
  1503. @end table
  1504. Some examples follow:
  1505. @example
  1506. # scale the input video to a size of 200x100.
  1507. scale=200:100
  1508. # scale the input to 2x
  1509. scale=2*iw:2*ih
  1510. # the above is the same as
  1511. scale=2*in_w:2*in_h
  1512. # scale the input to half size
  1513. scale=iw/2:ih/2
  1514. # increase the width, and set the height to the same size
  1515. scale=3/2*iw:ow
  1516. # seek for Greek harmony
  1517. scale=iw:1/PHI*iw
  1518. scale=ih*PHI:ih
  1519. # increase the height, and set the width to 3/2 of the height
  1520. scale=3/2*oh:3/5*ih
  1521. # increase the size, but make the size a multiple of the chroma
  1522. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1523. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1524. scale='min(500\, iw*3/2):-1'
  1525. @end example
  1526. @section select
  1527. Select frames to pass in output.
  1528. It accepts in input an expression, which is evaluated for each input
  1529. frame. If the expression is evaluated to a non-zero value, the frame
  1530. is selected and passed to the output, otherwise it is discarded.
  1531. The expression can contain the following constants:
  1532. @table @option
  1533. @item n
  1534. the sequential number of the filtered frame, starting from 0
  1535. @item selected_n
  1536. the sequential number of the selected frame, starting from 0
  1537. @item prev_selected_n
  1538. the sequential number of the last selected frame, NAN if undefined
  1539. @item TB
  1540. timebase of the input timestamps
  1541. @item pts
  1542. the PTS (Presentation TimeStamp) of the filtered video frame,
  1543. expressed in @var{TB} units, NAN if undefined
  1544. @item t
  1545. the PTS (Presentation TimeStamp) of the filtered video frame,
  1546. expressed in seconds, NAN if undefined
  1547. @item prev_pts
  1548. the PTS of the previously filtered video frame, NAN if undefined
  1549. @item prev_selected_pts
  1550. the PTS of the last previously filtered video frame, NAN if undefined
  1551. @item prev_selected_t
  1552. the PTS of the last previously selected video frame, NAN if undefined
  1553. @item start_pts
  1554. the PTS of the first video frame in the video, NAN if undefined
  1555. @item start_t
  1556. the time of the first video frame in the video, NAN if undefined
  1557. @item pict_type
  1558. the type of the filtered frame, can assume one of the following
  1559. values:
  1560. @table @option
  1561. @item I
  1562. @item P
  1563. @item B
  1564. @item S
  1565. @item SI
  1566. @item SP
  1567. @item BI
  1568. @end table
  1569. @item interlace_type
  1570. the frame interlace type, can assume one of the following values:
  1571. @table @option
  1572. @item PROGRESSIVE
  1573. the frame is progressive (not interlaced)
  1574. @item TOPFIRST
  1575. the frame is top-field-first
  1576. @item BOTTOMFIRST
  1577. the frame is bottom-field-first
  1578. @end table
  1579. @item key
  1580. 1 if the filtered frame is a key-frame, 0 otherwise
  1581. @item pos
  1582. the position in the file of the filtered frame, -1 if the information
  1583. is not available (e.g. for synthetic video)
  1584. @end table
  1585. The default value of the select expression is "1".
  1586. Some examples follow:
  1587. @example
  1588. # select all frames in input
  1589. select
  1590. # the above is the same as:
  1591. select=1
  1592. # skip all frames:
  1593. select=0
  1594. # select only I-frames
  1595. select='eq(pict_type\,I)'
  1596. # select one frame every 100
  1597. select='not(mod(n\,100))'
  1598. # select only frames contained in the 10-20 time interval
  1599. select='gte(t\,10)*lte(t\,20)'
  1600. # select only I frames contained in the 10-20 time interval
  1601. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1602. # select frames with a minimum distance of 10 seconds
  1603. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1604. @end example
  1605. @anchor{setdar}
  1606. @section setdar
  1607. Set the Display Aspect Ratio for the filter output video.
  1608. This is done by changing the specified Sample (aka Pixel) Aspect
  1609. Ratio, according to the following equation:
  1610. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1611. Keep in mind that this filter does not modify the pixel dimensions of
  1612. the video frame. Also the display aspect ratio set by this filter may
  1613. be changed by later filters in the filterchain, e.g. in case of
  1614. scaling or if another "setdar" or a "setsar" filter is applied.
  1615. The filter accepts a parameter string which represents the wanted
  1616. display aspect ratio.
  1617. The parameter can be a floating point number string, or an expression
  1618. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1619. numerator and denominator of the aspect ratio.
  1620. If the parameter is not specified, it is assumed the value "0:1".
  1621. For example to change the display aspect ratio to 16:9, specify:
  1622. @example
  1623. setdar=16:9
  1624. # the above is equivalent to
  1625. setdar=1.77777
  1626. @end example
  1627. See also the @ref{setsar} filter documentation.
  1628. @section setpts
  1629. Change the PTS (presentation timestamp) of the input video frames.
  1630. Accept in input an expression evaluated through the eval API, which
  1631. can contain the following constants:
  1632. @table @option
  1633. @item PTS
  1634. the presentation timestamp in input
  1635. @item N
  1636. the count of the input frame, starting from 0.
  1637. @item STARTPTS
  1638. the PTS of the first video frame
  1639. @item INTERLACED
  1640. tell if the current frame is interlaced
  1641. @item POS
  1642. original position in the file of the frame, or undefined if undefined
  1643. for the current frame
  1644. @item PREV_INPTS
  1645. previous input PTS
  1646. @item PREV_OUTPTS
  1647. previous output PTS
  1648. @end table
  1649. Some examples follow:
  1650. @example
  1651. # start counting PTS from zero
  1652. setpts=PTS-STARTPTS
  1653. # fast motion
  1654. setpts=0.5*PTS
  1655. # slow motion
  1656. setpts=2.0*PTS
  1657. # fixed rate 25 fps
  1658. setpts=N/(25*TB)
  1659. # fixed rate 25 fps with some jitter
  1660. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1661. @end example
  1662. @anchor{setsar}
  1663. @section setsar
  1664. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1665. Note that as a consequence of the application of this filter, the
  1666. output display aspect ratio will change according to the following
  1667. equation:
  1668. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1669. Keep in mind that the sample aspect ratio set by this filter may be
  1670. changed by later filters in the filterchain, e.g. if another "setsar"
  1671. or a "setdar" filter is applied.
  1672. The filter accepts a parameter string which represents the wanted
  1673. sample aspect ratio.
  1674. The parameter can be a floating point number string, or an expression
  1675. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1676. numerator and denominator of the aspect ratio.
  1677. If the parameter is not specified, it is assumed the value "0:1".
  1678. For example to change the sample aspect ratio to 10:11, specify:
  1679. @example
  1680. setsar=10:11
  1681. @end example
  1682. @section settb
  1683. Set the timebase to use for the output frames timestamps.
  1684. It is mainly useful for testing timebase configuration.
  1685. It accepts in input an arithmetic expression representing a rational.
  1686. The expression can contain the constants "AVTB" (the
  1687. default timebase), and "intb" (the input timebase).
  1688. The default value for the input is "intb".
  1689. Follow some examples.
  1690. @example
  1691. # set the timebase to 1/25
  1692. settb=1/25
  1693. # set the timebase to 1/10
  1694. settb=0.1
  1695. #set the timebase to 1001/1000
  1696. settb=1+0.001
  1697. #set the timebase to 2*intb
  1698. settb=2*intb
  1699. #set the default timebase value
  1700. settb=AVTB
  1701. @end example
  1702. @section showinfo
  1703. Show a line containing various information for each input video frame.
  1704. The input video is not modified.
  1705. The shown line contains a sequence of key/value pairs of the form
  1706. @var{key}:@var{value}.
  1707. A description of each shown parameter follows:
  1708. @table @option
  1709. @item n
  1710. sequential number of the input frame, starting from 0
  1711. @item pts
  1712. Presentation TimeStamp of the input frame, expressed as a number of
  1713. time base units. The time base unit depends on the filter input pad.
  1714. @item pts_time
  1715. Presentation TimeStamp of the input frame, expressed as a number of
  1716. seconds
  1717. @item pos
  1718. position of the frame in the input stream, -1 if this information in
  1719. unavailable and/or meaningless (for example in case of synthetic video)
  1720. @item fmt
  1721. pixel format name
  1722. @item sar
  1723. sample aspect ratio of the input frame, expressed in the form
  1724. @var{num}/@var{den}
  1725. @item s
  1726. size of the input frame, expressed in the form
  1727. @var{width}x@var{height}
  1728. @item i
  1729. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1730. for bottom field first)
  1731. @item iskey
  1732. 1 if the frame is a key frame, 0 otherwise
  1733. @item type
  1734. picture type of the input frame ("I" for an I-frame, "P" for a
  1735. P-frame, "B" for a B-frame, "?" for unknown type).
  1736. Check also the documentation of the @code{AVPictureType} enum and of
  1737. the @code{av_get_picture_type_char} function defined in
  1738. @file{libavutil/avutil.h}.
  1739. @item checksum
  1740. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1741. @item plane_checksum
  1742. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1743. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1744. @end table
  1745. @section slicify
  1746. Pass the images of input video on to next video filter as multiple
  1747. slices.
  1748. @example
  1749. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1750. @end example
  1751. The filter accepts the slice height as parameter. If the parameter is
  1752. not specified it will use the default value of 16.
  1753. Adding this in the beginning of filter chains should make filtering
  1754. faster due to better use of the memory cache.
  1755. @section split
  1756. Pass on the input video to two outputs. Both outputs are identical to
  1757. the input video.
  1758. For example:
  1759. @example
  1760. [in] split [splitout1][splitout2];
  1761. [splitout1] crop=100:100:0:0 [cropout];
  1762. [splitout2] pad=200:200:100:100 [padout];
  1763. @end example
  1764. will create two separate outputs from the same input, one cropped and
  1765. one padded.
  1766. @section thumbnail
  1767. Select the most representative frame in a given sequence of consecutive frames.
  1768. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1769. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1770. the next batch of @var{N} frames until the end.
  1771. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1772. value will result in a higher memory usage, so a high value is not recommended.
  1773. The following example extract one picture each 50 frames:
  1774. @example
  1775. thumbnail=50
  1776. @end example
  1777. Complete example of a thumbnail creation with @command{ffmpeg}:
  1778. @example
  1779. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1780. @end example
  1781. @section transpose
  1782. Transpose rows with columns in the input video and optionally flip it.
  1783. It accepts a parameter representing an integer, which can assume the
  1784. values:
  1785. @table @samp
  1786. @item 0
  1787. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1788. @example
  1789. L.R L.l
  1790. . . -> . .
  1791. l.r R.r
  1792. @end example
  1793. @item 1
  1794. Rotate by 90 degrees clockwise, that is:
  1795. @example
  1796. L.R l.L
  1797. . . -> . .
  1798. l.r r.R
  1799. @end example
  1800. @item 2
  1801. Rotate by 90 degrees counterclockwise, that is:
  1802. @example
  1803. L.R R.r
  1804. . . -> . .
  1805. l.r L.l
  1806. @end example
  1807. @item 3
  1808. Rotate by 90 degrees clockwise and vertically flip, that is:
  1809. @example
  1810. L.R r.R
  1811. . . -> . .
  1812. l.r l.L
  1813. @end example
  1814. @end table
  1815. @section unsharp
  1816. Sharpen or blur the input video.
  1817. It accepts the following parameters:
  1818. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1819. Negative values for the amount will blur the input video, while positive
  1820. values will sharpen. All parameters are optional and default to the
  1821. equivalent of the string '5:5:1.0:5:5:0.0'.
  1822. @table @option
  1823. @item luma_msize_x
  1824. Set the luma matrix horizontal size. It can be an integer between 3
  1825. and 13, default value is 5.
  1826. @item luma_msize_y
  1827. Set the luma matrix vertical size. It can be an integer between 3
  1828. and 13, default value is 5.
  1829. @item luma_amount
  1830. Set the luma effect strength. It can be a float number between -2.0
  1831. and 5.0, default value is 1.0.
  1832. @item chroma_msize_x
  1833. Set the chroma matrix horizontal size. It can be an integer between 3
  1834. and 13, default value is 5.
  1835. @item chroma_msize_y
  1836. Set the chroma matrix vertical size. It can be an integer between 3
  1837. and 13, default value is 5.
  1838. @item chroma_amount
  1839. Set the chroma effect strength. It can be a float number between -2.0
  1840. and 5.0, default value is 0.0.
  1841. @end table
  1842. @example
  1843. # Strong luma sharpen effect parameters
  1844. unsharp=7:7:2.5
  1845. # Strong blur of both luma and chroma parameters
  1846. unsharp=7:7:-2:7:7:-2
  1847. # Use the default values with @command{ffmpeg}
  1848. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1849. @end example
  1850. @section vflip
  1851. Flip the input video vertically.
  1852. @example
  1853. ffmpeg -i in.avi -vf "vflip" out.avi
  1854. @end example
  1855. @section yadif
  1856. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1857. filter").
  1858. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1859. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1860. following values:
  1861. @table @option
  1862. @item 0
  1863. output 1 frame for each frame
  1864. @item 1
  1865. output 1 frame for each field
  1866. @item 2
  1867. like 0 but skips spatial interlacing check
  1868. @item 3
  1869. like 1 but skips spatial interlacing check
  1870. @end table
  1871. Default value is 0.
  1872. @var{parity} specifies the picture field parity assumed for the input
  1873. interlaced video, accepts one of the following values:
  1874. @table @option
  1875. @item 0
  1876. assume top field first
  1877. @item 1
  1878. assume bottom field first
  1879. @item -1
  1880. enable automatic detection
  1881. @end table
  1882. Default value is -1.
  1883. If interlacing is unknown or decoder does not export this information,
  1884. top field first will be assumed.
  1885. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1886. and only deinterlace frames marked as interlaced
  1887. @table @option
  1888. @item 0
  1889. deinterlace all frames
  1890. @item 1
  1891. only deinterlace frames marked as interlaced
  1892. @end table
  1893. Default value is 0.
  1894. @c man end VIDEO FILTERS
  1895. @chapter Video Sources
  1896. @c man begin VIDEO SOURCES
  1897. Below is a description of the currently available video sources.
  1898. @section buffer
  1899. Buffer video frames, and make them available to the filter chain.
  1900. This source is mainly intended for a programmatic use, in particular
  1901. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1902. It accepts the following parameters:
  1903. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1904. All the parameters but @var{scale_params} need to be explicitly
  1905. defined.
  1906. Follows the list of the accepted parameters.
  1907. @table @option
  1908. @item width, height
  1909. Specify the width and height of the buffered video frames.
  1910. @item pix_fmt_string
  1911. A string representing the pixel format of the buffered video frames.
  1912. It may be a number corresponding to a pixel format, or a pixel format
  1913. name.
  1914. @item timebase_num, timebase_den
  1915. Specify numerator and denomitor of the timebase assumed by the
  1916. timestamps of the buffered frames.
  1917. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1918. Specify numerator and denominator of the sample aspect ratio assumed
  1919. by the video frames.
  1920. @item scale_params
  1921. Specify the optional parameters to be used for the scale filter which
  1922. is automatically inserted when an input change is detected in the
  1923. input size or format.
  1924. @end table
  1925. For example:
  1926. @example
  1927. buffer=320:240:yuv410p:1:24:1:1
  1928. @end example
  1929. will instruct the source to accept video frames with size 320x240 and
  1930. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1931. square pixels (1:1 sample aspect ratio).
  1932. Since the pixel format with name "yuv410p" corresponds to the number 6
  1933. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1934. this example corresponds to:
  1935. @example
  1936. buffer=320:240:6:1:24:1:1
  1937. @end example
  1938. @section cellauto
  1939. Create a pattern generated by an elementary cellular automaton.
  1940. The initial state of the cellular automaton can be defined through the
  1941. @option{filename}, and @option{pattern} options. If such options are
  1942. not specified an initial state is created randomly.
  1943. At each new frame a new row in the video is filled with the result of
  1944. the cellular automaton next generation. The behavior when the whole
  1945. frame is filled is defined by the @option{scroll} option.
  1946. This source accepts a list of options in the form of
  1947. @var{key}=@var{value} pairs separated by ":". A description of the
  1948. accepted options follows.
  1949. @table @option
  1950. @item filename, f
  1951. Read the initial cellular automaton state, i.e. the starting row, from
  1952. the specified file.
  1953. In the file, each non-whitespace character is considered an alive
  1954. cell, a newline will terminate the row, and further characters in the
  1955. file will be ignored.
  1956. @item pattern, p
  1957. Read the initial cellular automaton state, i.e. the starting row, from
  1958. the specified string.
  1959. Each non-whitespace character in the string is considered an alive
  1960. cell, a newline will terminate the row, and further characters in the
  1961. string will be ignored.
  1962. @item rate, r
  1963. Set the video rate, that is the number of frames generated per second.
  1964. Default is 25.
  1965. @item random_fill_ratio, ratio
  1966. Set the random fill ratio for the initial cellular automaton row. It
  1967. is a floating point number value ranging from 0 to 1, defaults to
  1968. 1/PHI.
  1969. This option is ignored when a file or a pattern is specified.
  1970. @item random_seed, seed
  1971. Set the seed for filling randomly the initial row, must be an integer
  1972. included between 0 and UINT32_MAX. If not specified, or if explicitly
  1973. set to -1, the filter will try to use a good random seed on a best
  1974. effort basis.
  1975. @item rule
  1976. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  1977. Default value is 110.
  1978. @item size, s
  1979. Set the size of the output video.
  1980. If @option{filename} or @option{pattern} is specified, the size is set
  1981. by default to the width of the specified initial state row, and the
  1982. height is set to @var{width} * PHI.
  1983. If @option{size} is set, it must contain the width of the specified
  1984. pattern string, and the specified pattern will be centered in the
  1985. larger row.
  1986. If a filename or a pattern string is not specified, the size value
  1987. defaults to "320x518" (used for a randomly generated initial state).
  1988. @item scroll
  1989. If set to 1, scroll the output upward when all the rows in the output
  1990. have been already filled. If set to 0, the new generated row will be
  1991. written over the top row just after the bottom row is filled.
  1992. Defaults to 1.
  1993. @item start_full, full
  1994. If set to 1, completely fill the output with generated rows before
  1995. outputting the first frame.
  1996. This is the default behavior, for disabling set the value to 0.
  1997. @item stitch
  1998. If set to 1, stitch the left and right row edges together.
  1999. This is the default behavior, for disabling set the value to 0.
  2000. @end table
  2001. @subsection Examples
  2002. @itemize
  2003. @item
  2004. Read the initial state from @file{pattern}, and specify an output of
  2005. size 200x400.
  2006. @example
  2007. cellauto=f=pattern:s=200x400
  2008. @end example
  2009. @item
  2010. Generate a random initial row with a width of 200 cells, with a fill
  2011. ratio of 2/3:
  2012. @example
  2013. cellauto=ratio=2/3:s=200x200
  2014. @end example
  2015. @item
  2016. Create a pattern generated by rule 18 starting by a single alive cell
  2017. centered on an initial row with width 100:
  2018. @example
  2019. cellauto=p=@@:s=100x400:full=0:rule=18
  2020. @end example
  2021. @item
  2022. Specify a more elaborated initial pattern:
  2023. @example
  2024. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2025. @end example
  2026. @end itemize
  2027. @section color
  2028. Provide an uniformly colored input.
  2029. It accepts the following parameters:
  2030. @var{color}:@var{frame_size}:@var{frame_rate}
  2031. Follows the description of the accepted parameters.
  2032. @table @option
  2033. @item color
  2034. Specify the color of the source. It can be the name of a color (case
  2035. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2036. alpha specifier. The default value is "black".
  2037. @item frame_size
  2038. Specify the size of the sourced video, it may be a string of the form
  2039. @var{width}x@var{height}, or the name of a size abbreviation. The
  2040. default value is "320x240".
  2041. @item frame_rate
  2042. Specify the frame rate of the sourced video, as the number of frames
  2043. generated per second. It has to be a string in the format
  2044. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2045. number or a valid video frame rate abbreviation. The default value is
  2046. "25".
  2047. @end table
  2048. For example the following graph description will generate a red source
  2049. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2050. frames per second, which will be overlayed over the source connected
  2051. to the pad with identifier "in".
  2052. @example
  2053. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2054. @end example
  2055. @section movie
  2056. Read a video stream from a movie container.
  2057. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2058. @var{movie_name} is the name of the resource to read (not necessarily
  2059. a file but also a device or a stream accessed through some protocol),
  2060. and @var{options} is an optional sequence of @var{key}=@var{value}
  2061. pairs, separated by ":".
  2062. The description of the accepted options follows.
  2063. @table @option
  2064. @item format_name, f
  2065. Specifies the format assumed for the movie to read, and can be either
  2066. the name of a container or an input device. If not specified the
  2067. format is guessed from @var{movie_name} or by probing.
  2068. @item seek_point, sp
  2069. Specifies the seek point in seconds, the frames will be output
  2070. starting from this seek point, the parameter is evaluated with
  2071. @code{av_strtod} so the numerical value may be suffixed by an IS
  2072. postfix. Default value is "0".
  2073. @item stream_index, si
  2074. Specifies the index of the video stream to read. If the value is -1,
  2075. the best suited video stream will be automatically selected. Default
  2076. value is "-1".
  2077. @end table
  2078. This filter allows to overlay a second video on top of main input of
  2079. a filtergraph as shown in this graph:
  2080. @example
  2081. input -----------> deltapts0 --> overlay --> output
  2082. ^
  2083. |
  2084. movie --> scale--> deltapts1 -------+
  2085. @end example
  2086. Some examples follow:
  2087. @example
  2088. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2089. # on top of the input labelled as "in".
  2090. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2091. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2092. # read from a video4linux2 device, and overlay it on top of the input
  2093. # labelled as "in"
  2094. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2095. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2096. @end example
  2097. @section mptestsrc
  2098. Generate various test patterns, as generated by the MPlayer test filter.
  2099. The size of the generated video is fixed, and is 256x256.
  2100. This source is useful in particular for testing encoding features.
  2101. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2102. separated by ":". The description of the accepted options follows.
  2103. @table @option
  2104. @item rate, r
  2105. Specify the frame rate of the sourced video, as the number of frames
  2106. generated per second. It has to be a string in the format
  2107. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2108. number or a valid video frame rate abbreviation. The default value is
  2109. "25".
  2110. @item duration, d
  2111. Set the video duration of the sourced video. The accepted syntax is:
  2112. @example
  2113. [-]HH[:MM[:SS[.m...]]]
  2114. [-]S+[.m...]
  2115. @end example
  2116. See also the function @code{av_parse_time()}.
  2117. If not specified, or the expressed duration is negative, the video is
  2118. supposed to be generated forever.
  2119. @item test, t
  2120. Set the number or the name of the test to perform. Supported tests are:
  2121. @table @option
  2122. @item dc_luma
  2123. @item dc_chroma
  2124. @item freq_luma
  2125. @item freq_chroma
  2126. @item amp_luma
  2127. @item amp_chroma
  2128. @item cbp
  2129. @item mv
  2130. @item ring1
  2131. @item ring2
  2132. @item all
  2133. @end table
  2134. Default value is "all", which will cycle through the list of all tests.
  2135. @end table
  2136. For example the following:
  2137. @example
  2138. testsrc=t=dc_luma
  2139. @end example
  2140. will generate a "dc_luma" test pattern.
  2141. @section frei0r_src
  2142. Provide a frei0r source.
  2143. To enable compilation of this filter you need to install the frei0r
  2144. header and configure FFmpeg with --enable-frei0r.
  2145. The source supports the syntax:
  2146. @example
  2147. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2148. @end example
  2149. @var{size} is the size of the video to generate, may be a string of the
  2150. form @var{width}x@var{height} or a frame size abbreviation.
  2151. @var{rate} is the rate of the video to generate, may be a string of
  2152. the form @var{num}/@var{den} or a frame rate abbreviation.
  2153. @var{src_name} is the name to the frei0r source to load. For more
  2154. information regarding frei0r and how to set the parameters read the
  2155. section @ref{frei0r} in the description of the video filters.
  2156. Some examples follow:
  2157. @example
  2158. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2159. # which is overlayed on the overlay filter main input
  2160. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2161. @end example
  2162. @section life
  2163. Generate a life pattern.
  2164. This source is based on a generalization of John Conway's life game.
  2165. The sourced input represents a life grid, each pixel represents a cell
  2166. which can be in one of two possible states, alive or dead. Every cell
  2167. interacts with its eight neighbours, which are the cells that are
  2168. horizontally, vertically, or diagonally adjacent.
  2169. At each interaction the grid evolves according to the adopted rule,
  2170. which specifies the number of neighbor alive cells which will make a
  2171. cell stay alive or born. The @option{rule} option allows to specify
  2172. the rule to adopt.
  2173. This source accepts a list of options in the form of
  2174. @var{key}=@var{value} pairs separated by ":". A description of the
  2175. accepted options follows.
  2176. @table @option
  2177. @item filename, f
  2178. Set the file from which to read the initial grid state. In the file,
  2179. each non-whitespace character is considered an alive cell, and newline
  2180. is used to delimit the end of each row.
  2181. If this option is not specified, the initial grid is generated
  2182. randomly.
  2183. @item rate, r
  2184. Set the video rate, that is the number of frames generated per second.
  2185. Default is 25.
  2186. @item random_fill_ratio, ratio
  2187. Set the random fill ratio for the initial random grid. It is a
  2188. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2189. It is ignored when a file is specified.
  2190. @item random_seed, seed
  2191. Set the seed for filling the initial random grid, must be an integer
  2192. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2193. set to -1, the filter will try to use a good random seed on a best
  2194. effort basis.
  2195. @item rule
  2196. Set the life rule.
  2197. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2198. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2199. @var{NS} specifies the number of alive neighbor cells which make a
  2200. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2201. which make a dead cell to become alive (i.e. to "born").
  2202. "s" and "b" can be used in place of "S" and "B", respectively.
  2203. Alternatively a rule can be specified by an 18-bits integer. The 9
  2204. high order bits are used to encode the next cell state if it is alive
  2205. for each number of neighbor alive cells, the low order bits specify
  2206. the rule for "borning" new cells. Higher order bits encode for an
  2207. higher number of neighbor cells.
  2208. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2209. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2210. Default value is "S23/B3", which is the original Conway's game of life
  2211. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2212. cells, and will born a new cell if there are three alive cells around
  2213. a dead cell.
  2214. @item size, s
  2215. Set the size of the output video.
  2216. If @option{filename} is specified, the size is set by default to the
  2217. same size of the input file. If @option{size} is set, it must contain
  2218. the size specified in the input file, and the initial grid defined in
  2219. that file is centered in the larger resulting area.
  2220. If a filename is not specified, the size value defaults to "320x240"
  2221. (used for a randomly generated initial grid).
  2222. @item stitch
  2223. If set to 1, stitch the left and right grid edges together, and the
  2224. top and bottom edges also. Defaults to 1.
  2225. @item mold
  2226. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2227. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2228. value from 0 to 255.
  2229. @item life_color
  2230. Set the color of living (or new born) cells.
  2231. @item death_color
  2232. Set the color of dead cells. If @option{mold} is set, this is the first color
  2233. used to represent a dead cell.
  2234. @item mold_color
  2235. Set mold color, for definitely dead and moldy cells.
  2236. @end table
  2237. @subsection Examples
  2238. @itemize
  2239. @item
  2240. Read a grid from @file{pattern}, and center it on a grid of size
  2241. 300x300 pixels:
  2242. @example
  2243. life=f=pattern:s=300x300
  2244. @end example
  2245. @item
  2246. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2247. @example
  2248. life=ratio=2/3:s=200x200
  2249. @end example
  2250. @item
  2251. Specify a custom rule for evolving a randomly generated grid:
  2252. @example
  2253. life=rule=S14/B34
  2254. @end example
  2255. @item
  2256. Full example with slow death effect (mold) using @command{ffplay}:
  2257. @example
  2258. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2259. @end example
  2260. @end itemize
  2261. @section nullsrc, rgbtestsrc, testsrc
  2262. The @code{nullsrc} source returns unprocessed video frames. It is
  2263. mainly useful to be employed in analysis / debugging tools, or as the
  2264. source for filters which ignore the input data.
  2265. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2266. detecting RGB vs BGR issues. You should see a red, green and blue
  2267. stripe from top to bottom.
  2268. The @code{testsrc} source generates a test video pattern, showing a
  2269. color pattern, a scrolling gradient and a timestamp. This is mainly
  2270. intended for testing purposes.
  2271. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2272. separated by ":". The description of the accepted options follows.
  2273. @table @option
  2274. @item size, s
  2275. Specify the size of the sourced video, it may be a string of the form
  2276. @var{width}x@var{height}, or the name of a size abbreviation. The
  2277. default value is "320x240".
  2278. @item rate, r
  2279. Specify the frame rate of the sourced video, as the number of frames
  2280. generated per second. It has to be a string in the format
  2281. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2282. number or a valid video frame rate abbreviation. The default value is
  2283. "25".
  2284. @item sar
  2285. Set the sample aspect ratio of the sourced video.
  2286. @item duration
  2287. Set the video duration of the sourced video. The accepted syntax is:
  2288. @example
  2289. [-]HH[:MM[:SS[.m...]]]
  2290. [-]S+[.m...]
  2291. @end example
  2292. See also the function @code{av_parse_time()}.
  2293. If not specified, or the expressed duration is negative, the video is
  2294. supposed to be generated forever.
  2295. @end table
  2296. For example the following:
  2297. @example
  2298. testsrc=duration=5.3:size=qcif:rate=10
  2299. @end example
  2300. will generate a video with a duration of 5.3 seconds, with size
  2301. 176x144 and a frame rate of 10 frames per second.
  2302. If the input content is to be ignored, @code{nullsrc} can be used. The
  2303. following command generates noise in the luminance plane by employing
  2304. the @code{mp=geq} filter:
  2305. @example
  2306. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2307. @end example
  2308. @c man end VIDEO SOURCES
  2309. @chapter Video Sinks
  2310. @c man begin VIDEO SINKS
  2311. Below is a description of the currently available video sinks.
  2312. @section buffersink
  2313. Buffer video frames, and make them available to the end of the filter
  2314. graph.
  2315. This sink is mainly intended for a programmatic use, in particular
  2316. through the interface defined in @file{libavfilter/buffersink.h}.
  2317. It does not require a string parameter in input, but you need to
  2318. specify a pointer to a list of supported pixel formats terminated by
  2319. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2320. when initializing this sink.
  2321. @section nullsink
  2322. Null video sink, do absolutely nothing with the input video. It is
  2323. mainly useful as a template and to be employed in analysis / debugging
  2324. tools.
  2325. @c man end VIDEO SINKS