You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2964 lines
116KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. /***********************************************************************/
  44. /**
  45. * @name VC-1 Bitplane decoding
  46. * @see 8.7, p56
  47. * @{
  48. */
  49. static inline void init_block_index(VC1Context *v)
  50. {
  51. MpegEncContext *s = &v->s;
  52. ff_init_block_index(s);
  53. if (v->field_mode && !(v->second_field ^ v->tff)) {
  54. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  55. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  56. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  57. }
  58. }
  59. /** @} */ //Bitplane group
  60. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  61. {
  62. MpegEncContext *s = &v->s;
  63. int topleft_mb_pos, top_mb_pos;
  64. int stride_y, fieldtx = 0;
  65. int v_dist;
  66. /* The put pixels loop is always one MB row behind the decoding loop,
  67. * because we can only put pixels when overlap filtering is done, and
  68. * for filtering of the bottom edge of a MB, we need the next MB row
  69. * present as well.
  70. * Within the row, the put pixels loop is also one MB col behind the
  71. * decoding loop. The reason for this is again, because for filtering
  72. * of the right MB edge, we need the next MB present. */
  73. if (!s->first_slice_line) {
  74. if (s->mb_x) {
  75. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  76. if (v->fcm == ILACE_FRAME)
  77. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  78. stride_y = s->linesize << fieldtx;
  79. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  80. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  81. s->dest[0] - 16 * s->linesize - 16,
  82. stride_y);
  83. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  84. s->dest[0] - 16 * s->linesize - 8,
  85. stride_y);
  86. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  87. s->dest[0] - v_dist * s->linesize - 16,
  88. stride_y);
  89. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  90. s->dest[0] - v_dist * s->linesize - 8,
  91. stride_y);
  92. if (!CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
  93. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  94. s->dest[1] - 8 * s->uvlinesize - 8,
  95. s->uvlinesize);
  96. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  97. s->dest[2] - 8 * s->uvlinesize - 8,
  98. s->uvlinesize);
  99. }
  100. }
  101. if (s->mb_x == s->mb_width - 1) {
  102. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  103. if (v->fcm == ILACE_FRAME)
  104. fieldtx = v->fieldtx_plane[top_mb_pos];
  105. stride_y = s->linesize << fieldtx;
  106. v_dist = fieldtx ? 15 : 8;
  107. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  108. s->dest[0] - 16 * s->linesize,
  109. stride_y);
  110. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  111. s->dest[0] - 16 * s->linesize + 8,
  112. stride_y);
  113. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  114. s->dest[0] - v_dist * s->linesize,
  115. stride_y);
  116. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  117. s->dest[0] - v_dist * s->linesize + 8,
  118. stride_y);
  119. if (!CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
  120. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  121. s->dest[1] - 8 * s->uvlinesize,
  122. s->uvlinesize);
  123. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  124. s->dest[2] - 8 * s->uvlinesize,
  125. s->uvlinesize);
  126. }
  127. }
  128. }
  129. #define inc_blk_idx(idx) do { \
  130. idx++; \
  131. if (idx >= v->n_allocated_blks) \
  132. idx = 0; \
  133. } while (0)
  134. inc_blk_idx(v->topleft_blk_idx);
  135. inc_blk_idx(v->top_blk_idx);
  136. inc_blk_idx(v->left_blk_idx);
  137. inc_blk_idx(v->cur_blk_idx);
  138. }
  139. /***********************************************************************/
  140. /**
  141. * @name VC-1 Block-level functions
  142. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  143. * @{
  144. */
  145. /**
  146. * @def GET_MQUANT
  147. * @brief Get macroblock-level quantizer scale
  148. */
  149. #define GET_MQUANT() \
  150. if (v->dquantfrm) { \
  151. int edges = 0; \
  152. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  153. if (v->dqbilevel) { \
  154. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  155. } else { \
  156. mqdiff = get_bits(gb, 3); \
  157. if (mqdiff != 7) \
  158. mquant = v->pq + mqdiff; \
  159. else \
  160. mquant = get_bits(gb, 5); \
  161. } \
  162. } \
  163. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  164. edges = 1 << v->dqsbedge; \
  165. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  166. edges = (3 << v->dqsbedge) % 15; \
  167. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  168. edges = 15; \
  169. if ((edges&1) && !s->mb_x) \
  170. mquant = v->altpq; \
  171. if ((edges&2) && s->first_slice_line) \
  172. mquant = v->altpq; \
  173. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  174. mquant = v->altpq; \
  175. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  176. mquant = v->altpq; \
  177. if (!mquant || mquant > 31) { \
  178. av_log(v->s.avctx, AV_LOG_ERROR, \
  179. "Overriding invalid mquant %d\n", mquant); \
  180. mquant = 1; \
  181. } \
  182. }
  183. /**
  184. * @def GET_MVDATA(_dmv_x, _dmv_y)
  185. * @brief Get MV differentials
  186. * @see MVDATA decoding from 8.3.5.2, p(1)20
  187. * @param _dmv_x Horizontal differential for decoded MV
  188. * @param _dmv_y Vertical differential for decoded MV
  189. */
  190. #define GET_MVDATA(_dmv_x, _dmv_y) \
  191. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  192. VC1_MV_DIFF_VLC_BITS, 2); \
  193. if (index > 36) { \
  194. mb_has_coeffs = 1; \
  195. index -= 37; \
  196. } else \
  197. mb_has_coeffs = 0; \
  198. s->mb_intra = 0; \
  199. if (!index) { \
  200. _dmv_x = _dmv_y = 0; \
  201. } else if (index == 35) { \
  202. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  203. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  204. } else if (index == 36) { \
  205. _dmv_x = 0; \
  206. _dmv_y = 0; \
  207. s->mb_intra = 1; \
  208. } else { \
  209. index1 = index % 6; \
  210. _dmv_x = offset_table[1][index1]; \
  211. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  212. if (val > 0) { \
  213. val = get_bits(gb, val); \
  214. sign = 0 - (val & 1); \
  215. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  216. } \
  217. \
  218. index1 = index / 6; \
  219. _dmv_y = offset_table[1][index1]; \
  220. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  221. if (val > 0) { \
  222. val = get_bits(gb, val); \
  223. sign = 0 - (val & 1); \
  224. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  225. } \
  226. }
  227. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  228. int *dmv_y, int *pred_flag)
  229. {
  230. int index, index1;
  231. int extend_x, extend_y;
  232. GetBitContext *gb = &v->s.gb;
  233. int bits, esc;
  234. int val, sign;
  235. if (v->numref) {
  236. bits = VC1_2REF_MVDATA_VLC_BITS;
  237. esc = 125;
  238. } else {
  239. bits = VC1_1REF_MVDATA_VLC_BITS;
  240. esc = 71;
  241. }
  242. extend_x = v->dmvrange & 1;
  243. extend_y = (v->dmvrange >> 1) & 1;
  244. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  245. if (index == esc) {
  246. *dmv_x = get_bits(gb, v->k_x);
  247. *dmv_y = get_bits(gb, v->k_y);
  248. if (v->numref) {
  249. if (pred_flag)
  250. *pred_flag = *dmv_y & 1;
  251. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  252. }
  253. }
  254. else {
  255. av_assert0(index < esc);
  256. index1 = (index + 1) % 9;
  257. if (index1 != 0) {
  258. val = get_bits(gb, index1 + extend_x);
  259. sign = 0 - (val & 1);
  260. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  261. } else
  262. *dmv_x = 0;
  263. index1 = (index + 1) / 9;
  264. if (index1 > v->numref) {
  265. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  266. sign = 0 - (val & 1);
  267. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  268. } else
  269. *dmv_y = 0;
  270. if (v->numref && pred_flag)
  271. *pred_flag = index1 & 1;
  272. }
  273. }
  274. /** Reconstruct motion vector for B-frame and do motion compensation
  275. */
  276. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  277. int direct, int mode)
  278. {
  279. if (direct) {
  280. ff_vc1_mc_1mv(v, 0);
  281. ff_vc1_interp_mc(v);
  282. return;
  283. }
  284. if (mode == BMV_TYPE_INTERPOLATED) {
  285. ff_vc1_mc_1mv(v, 0);
  286. ff_vc1_interp_mc(v);
  287. return;
  288. }
  289. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  290. }
  291. /** Get predicted DC value for I-frames only
  292. * prediction dir: left=0, top=1
  293. * @param s MpegEncContext
  294. * @param overlap flag indicating that overlap filtering is used
  295. * @param pq integer part of picture quantizer
  296. * @param[in] n block index in the current MB
  297. * @param dc_val_ptr Pointer to DC predictor
  298. * @param dir_ptr Prediction direction for use in AC prediction
  299. */
  300. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  301. int16_t **dc_val_ptr, int *dir_ptr)
  302. {
  303. int a, b, c, wrap, pred, scale;
  304. int16_t *dc_val;
  305. static const uint16_t dcpred[32] = {
  306. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  307. 114, 102, 93, 85, 79, 73, 68, 64,
  308. 60, 57, 54, 51, 49, 47, 45, 43,
  309. 41, 39, 38, 37, 35, 34, 33
  310. };
  311. /* find prediction - wmv3_dc_scale always used here in fact */
  312. if (n < 4) scale = s->y_dc_scale;
  313. else scale = s->c_dc_scale;
  314. wrap = s->block_wrap[n];
  315. dc_val = s->dc_val[0] + s->block_index[n];
  316. /* B A
  317. * C X
  318. */
  319. c = dc_val[ - 1];
  320. b = dc_val[ - 1 - wrap];
  321. a = dc_val[ - wrap];
  322. if (pq < 9 || !overlap) {
  323. /* Set outer values */
  324. if (s->first_slice_line && (n != 2 && n != 3))
  325. b = a = dcpred[scale];
  326. if (s->mb_x == 0 && (n != 1 && n != 3))
  327. b = c = dcpred[scale];
  328. } else {
  329. /* Set outer values */
  330. if (s->first_slice_line && (n != 2 && n != 3))
  331. b = a = 0;
  332. if (s->mb_x == 0 && (n != 1 && n != 3))
  333. b = c = 0;
  334. }
  335. if (abs(a - b) <= abs(b - c)) {
  336. pred = c;
  337. *dir_ptr = 1; // left
  338. } else {
  339. pred = a;
  340. *dir_ptr = 0; // top
  341. }
  342. /* update predictor */
  343. *dc_val_ptr = &dc_val[0];
  344. return pred;
  345. }
  346. /** Get predicted DC value
  347. * prediction dir: left=0, top=1
  348. * @param s MpegEncContext
  349. * @param overlap flag indicating that overlap filtering is used
  350. * @param pq integer part of picture quantizer
  351. * @param[in] n block index in the current MB
  352. * @param a_avail flag indicating top block availability
  353. * @param c_avail flag indicating left block availability
  354. * @param dc_val_ptr Pointer to DC predictor
  355. * @param dir_ptr Prediction direction for use in AC prediction
  356. */
  357. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  358. int a_avail, int c_avail,
  359. int16_t **dc_val_ptr, int *dir_ptr)
  360. {
  361. int a, b, c, wrap, pred;
  362. int16_t *dc_val;
  363. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  364. int q1, q2 = 0;
  365. int dqscale_index;
  366. /* scale predictors if needed */
  367. q1 = s->current_picture.qscale_table[mb_pos];
  368. dqscale_index = s->y_dc_scale_table[q1] - 1;
  369. if (dqscale_index < 0)
  370. return 0;
  371. wrap = s->block_wrap[n];
  372. dc_val = s->dc_val[0] + s->block_index[n];
  373. /* B A
  374. * C X
  375. */
  376. c = dc_val[ - 1];
  377. b = dc_val[ - 1 - wrap];
  378. a = dc_val[ - wrap];
  379. if (c_avail && (n != 1 && n != 3)) {
  380. q2 = s->current_picture.qscale_table[mb_pos - 1];
  381. if (q2 && q2 != q1)
  382. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  383. }
  384. if (a_avail && (n != 2 && n != 3)) {
  385. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  386. if (q2 && q2 != q1)
  387. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  388. }
  389. if (a_avail && c_avail && (n != 3)) {
  390. int off = mb_pos;
  391. if (n != 1)
  392. off--;
  393. if (n != 2)
  394. off -= s->mb_stride;
  395. q2 = s->current_picture.qscale_table[off];
  396. if (q2 && q2 != q1)
  397. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  398. }
  399. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  400. pred = c;
  401. *dir_ptr = 1; // left
  402. } else if (a_avail) {
  403. pred = a;
  404. *dir_ptr = 0; // top
  405. } else {
  406. pred = 0;
  407. *dir_ptr = 1; // left
  408. }
  409. /* update predictor */
  410. *dc_val_ptr = &dc_val[0];
  411. return pred;
  412. }
  413. /** @} */ // Block group
  414. /**
  415. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  416. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  417. * @{
  418. */
  419. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  420. uint8_t **coded_block_ptr)
  421. {
  422. int xy, wrap, pred, a, b, c;
  423. xy = s->block_index[n];
  424. wrap = s->b8_stride;
  425. /* B C
  426. * A X
  427. */
  428. a = s->coded_block[xy - 1 ];
  429. b = s->coded_block[xy - 1 - wrap];
  430. c = s->coded_block[xy - wrap];
  431. if (b == c) {
  432. pred = a;
  433. } else {
  434. pred = c;
  435. }
  436. /* store value */
  437. *coded_block_ptr = &s->coded_block[xy];
  438. return pred;
  439. }
  440. /**
  441. * Decode one AC coefficient
  442. * @param v The VC1 context
  443. * @param last Last coefficient
  444. * @param skip How much zero coefficients to skip
  445. * @param value Decoded AC coefficient value
  446. * @param codingset set of VLC to decode data
  447. * @see 8.1.3.4
  448. */
  449. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  450. int *value, int codingset)
  451. {
  452. GetBitContext *gb = &v->s.gb;
  453. int index, run, level, lst, sign;
  454. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  455. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  456. run = vc1_index_decode_table[codingset][index][0];
  457. level = vc1_index_decode_table[codingset][index][1];
  458. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  459. sign = get_bits1(gb);
  460. } else {
  461. int escape = decode210(gb);
  462. if (escape != 2) {
  463. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  464. run = vc1_index_decode_table[codingset][index][0];
  465. level = vc1_index_decode_table[codingset][index][1];
  466. lst = index >= vc1_last_decode_table[codingset];
  467. if (escape == 0) {
  468. if (lst)
  469. level += vc1_last_delta_level_table[codingset][run];
  470. else
  471. level += vc1_delta_level_table[codingset][run];
  472. } else {
  473. if (lst)
  474. run += vc1_last_delta_run_table[codingset][level] + 1;
  475. else
  476. run += vc1_delta_run_table[codingset][level] + 1;
  477. }
  478. sign = get_bits1(gb);
  479. } else {
  480. lst = get_bits1(gb);
  481. if (v->s.esc3_level_length == 0) {
  482. if (v->pq < 8 || v->dquantfrm) { // table 59
  483. v->s.esc3_level_length = get_bits(gb, 3);
  484. if (!v->s.esc3_level_length)
  485. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  486. } else { // table 60
  487. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  488. }
  489. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  490. }
  491. run = get_bits(gb, v->s.esc3_run_length);
  492. sign = get_bits1(gb);
  493. level = get_bits(gb, v->s.esc3_level_length);
  494. }
  495. }
  496. *last = lst;
  497. *skip = run;
  498. *value = (level ^ -sign) + sign;
  499. }
  500. /** Decode intra block in intra frames - should be faster than decode_intra_block
  501. * @param v VC1Context
  502. * @param block block to decode
  503. * @param[in] n subblock index
  504. * @param coded are AC coeffs present or not
  505. * @param codingset set of VLC to decode data
  506. */
  507. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  508. int coded, int codingset)
  509. {
  510. GetBitContext *gb = &v->s.gb;
  511. MpegEncContext *s = &v->s;
  512. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  513. int i;
  514. int16_t *dc_val;
  515. int16_t *ac_val, *ac_val2;
  516. int dcdiff, scale;
  517. /* Get DC differential */
  518. if (n < 4) {
  519. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  520. } else {
  521. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  522. }
  523. if (dcdiff < 0) {
  524. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  525. return -1;
  526. }
  527. if (dcdiff) {
  528. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  529. if (dcdiff == 119 /* ESC index value */) {
  530. dcdiff = get_bits(gb, 8 + m);
  531. } else {
  532. if (m)
  533. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  534. }
  535. if (get_bits1(gb))
  536. dcdiff = -dcdiff;
  537. }
  538. /* Prediction */
  539. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  540. *dc_val = dcdiff;
  541. /* Store the quantized DC coeff, used for prediction */
  542. if (n < 4)
  543. scale = s->y_dc_scale;
  544. else
  545. scale = s->c_dc_scale;
  546. block[0] = dcdiff * scale;
  547. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  548. ac_val2 = ac_val;
  549. if (dc_pred_dir) // left
  550. ac_val -= 16;
  551. else // top
  552. ac_val -= 16 * s->block_wrap[n];
  553. scale = v->pq * 2 + v->halfpq;
  554. //AC Decoding
  555. i = !!coded;
  556. if (coded) {
  557. int last = 0, skip, value;
  558. const uint8_t *zz_table;
  559. int k;
  560. if (v->s.ac_pred) {
  561. if (!dc_pred_dir)
  562. zz_table = v->zz_8x8[2];
  563. else
  564. zz_table = v->zz_8x8[3];
  565. } else
  566. zz_table = v->zz_8x8[1];
  567. while (!last) {
  568. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  569. i += skip;
  570. if (i > 63)
  571. break;
  572. block[zz_table[i++]] = value;
  573. }
  574. /* apply AC prediction if needed */
  575. if (s->ac_pred) {
  576. int sh;
  577. if (dc_pred_dir) { // left
  578. sh = v->left_blk_sh;
  579. } else { // top
  580. sh = v->top_blk_sh;
  581. ac_val += 8;
  582. }
  583. for (k = 1; k < 8; k++)
  584. block[k << sh] += ac_val[k];
  585. }
  586. /* save AC coeffs for further prediction */
  587. for (k = 1; k < 8; k++) {
  588. ac_val2[k] = block[k << v->left_blk_sh];
  589. ac_val2[k + 8] = block[k << v->top_blk_sh];
  590. }
  591. /* scale AC coeffs */
  592. for (k = 1; k < 64; k++)
  593. if (block[k]) {
  594. block[k] *= scale;
  595. if (!v->pquantizer)
  596. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  597. }
  598. } else {
  599. int k;
  600. memset(ac_val2, 0, 16 * 2);
  601. /* apply AC prediction if needed */
  602. if (s->ac_pred) {
  603. int sh;
  604. if (dc_pred_dir) { //left
  605. sh = v->left_blk_sh;
  606. } else { // top
  607. sh = v->top_blk_sh;
  608. ac_val += 8;
  609. ac_val2 += 8;
  610. }
  611. memcpy(ac_val2, ac_val, 8 * 2);
  612. for (k = 1; k < 8; k++) {
  613. block[k << sh] = ac_val[k] * scale;
  614. if (!v->pquantizer && block[k << sh])
  615. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  616. }
  617. }
  618. }
  619. if (s->ac_pred) i = 63;
  620. s->block_last_index[n] = i;
  621. return 0;
  622. }
  623. /** Decode intra block in intra frames - should be faster than decode_intra_block
  624. * @param v VC1Context
  625. * @param block block to decode
  626. * @param[in] n subblock number
  627. * @param coded are AC coeffs present or not
  628. * @param codingset set of VLC to decode data
  629. * @param mquant quantizer value for this macroblock
  630. */
  631. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  632. int coded, int codingset, int mquant)
  633. {
  634. GetBitContext *gb = &v->s.gb;
  635. MpegEncContext *s = &v->s;
  636. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  637. int i;
  638. int16_t *dc_val = NULL;
  639. int16_t *ac_val, *ac_val2;
  640. int dcdiff;
  641. int a_avail = v->a_avail, c_avail = v->c_avail;
  642. int use_pred = s->ac_pred;
  643. int scale;
  644. int q1, q2 = 0;
  645. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  646. /* Get DC differential */
  647. if (n < 4) {
  648. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  649. } else {
  650. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  651. }
  652. if (dcdiff < 0) {
  653. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  654. return -1;
  655. }
  656. if (dcdiff) {
  657. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  658. if (dcdiff == 119 /* ESC index value */) {
  659. dcdiff = get_bits(gb, 8 + m);
  660. } else {
  661. if (m)
  662. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  663. }
  664. if (get_bits1(gb))
  665. dcdiff = -dcdiff;
  666. }
  667. /* Prediction */
  668. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  669. *dc_val = dcdiff;
  670. /* Store the quantized DC coeff, used for prediction */
  671. if (n < 4)
  672. scale = s->y_dc_scale;
  673. else
  674. scale = s->c_dc_scale;
  675. block[0] = dcdiff * scale;
  676. /* check if AC is needed at all */
  677. if (!a_avail && !c_avail)
  678. use_pred = 0;
  679. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  680. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  681. ac_val2 = ac_val;
  682. if (dc_pred_dir) // left
  683. ac_val -= 16;
  684. else // top
  685. ac_val -= 16 * s->block_wrap[n];
  686. q1 = s->current_picture.qscale_table[mb_pos];
  687. if (n == 3)
  688. q2 = q1;
  689. else if (dc_pred_dir) {
  690. if (n == 1)
  691. q2 = q1;
  692. else if (c_avail && mb_pos)
  693. q2 = s->current_picture.qscale_table[mb_pos - 1];
  694. } else {
  695. if (n == 2)
  696. q2 = q1;
  697. else if (a_avail && mb_pos >= s->mb_stride)
  698. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  699. }
  700. //AC Decoding
  701. i = 1;
  702. if (coded) {
  703. int last = 0, skip, value;
  704. const uint8_t *zz_table;
  705. int k;
  706. if (v->s.ac_pred) {
  707. if (!use_pred && v->fcm == ILACE_FRAME) {
  708. zz_table = v->zzi_8x8;
  709. } else {
  710. if (!dc_pred_dir) // top
  711. zz_table = v->zz_8x8[2];
  712. else // left
  713. zz_table = v->zz_8x8[3];
  714. }
  715. } else {
  716. if (v->fcm != ILACE_FRAME)
  717. zz_table = v->zz_8x8[1];
  718. else
  719. zz_table = v->zzi_8x8;
  720. }
  721. while (!last) {
  722. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  723. i += skip;
  724. if (i > 63)
  725. break;
  726. block[zz_table[i++]] = value;
  727. }
  728. /* apply AC prediction if needed */
  729. if (use_pred) {
  730. int sh;
  731. if (dc_pred_dir) { // left
  732. sh = v->left_blk_sh;
  733. } else { // top
  734. sh = v->top_blk_sh;
  735. ac_val += 8;
  736. }
  737. /* scale predictors if needed*/
  738. if (q2 && q1 != q2) {
  739. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  740. if (q1 < 1)
  741. return AVERROR_INVALIDDATA;
  742. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  743. for (k = 1; k < 8; k++)
  744. block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  745. } else {
  746. for (k = 1; k < 8; k++)
  747. block[k << sh] += ac_val[k];
  748. }
  749. }
  750. /* save AC coeffs for further prediction */
  751. for (k = 1; k < 8; k++) {
  752. ac_val2[k ] = block[k << v->left_blk_sh];
  753. ac_val2[k + 8] = block[k << v->top_blk_sh];
  754. }
  755. /* scale AC coeffs */
  756. for (k = 1; k < 64; k++)
  757. if (block[k]) {
  758. block[k] *= scale;
  759. if (!v->pquantizer)
  760. block[k] += (block[k] < 0) ? -mquant : mquant;
  761. }
  762. } else { // no AC coeffs
  763. int k;
  764. memset(ac_val2, 0, 16 * 2);
  765. /* apply AC prediction if needed */
  766. if (use_pred) {
  767. int sh;
  768. if (dc_pred_dir) { // left
  769. sh = v->left_blk_sh;
  770. } else { // top
  771. sh = v->top_blk_sh;
  772. ac_val += 8;
  773. ac_val2 += 8;
  774. }
  775. memcpy(ac_val2, ac_val, 8 * 2);
  776. if (q2 && q1 != q2) {
  777. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  778. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  779. if (q1 < 1)
  780. return AVERROR_INVALIDDATA;
  781. for (k = 1; k < 8; k++)
  782. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  783. }
  784. for (k = 1; k < 8; k++) {
  785. block[k << sh] = ac_val2[k] * scale;
  786. if (!v->pquantizer && block[k << sh])
  787. block[k << sh] += (block[k << sh] < 0) ? -mquant : mquant;
  788. }
  789. }
  790. }
  791. if (use_pred) i = 63;
  792. s->block_last_index[n] = i;
  793. return 0;
  794. }
  795. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  796. * @param v VC1Context
  797. * @param block block to decode
  798. * @param[in] n subblock index
  799. * @param coded are AC coeffs present or not
  800. * @param mquant block quantizer
  801. * @param codingset set of VLC to decode data
  802. */
  803. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  804. int coded, int mquant, int codingset)
  805. {
  806. GetBitContext *gb = &v->s.gb;
  807. MpegEncContext *s = &v->s;
  808. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  809. int i;
  810. int16_t *dc_val = NULL;
  811. int16_t *ac_val, *ac_val2;
  812. int dcdiff;
  813. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  814. int a_avail = v->a_avail, c_avail = v->c_avail;
  815. int use_pred = s->ac_pred;
  816. int scale;
  817. int q1, q2 = 0;
  818. s->bdsp.clear_block(block);
  819. /* XXX: Guard against dumb values of mquant */
  820. mquant = av_clip_uintp2(mquant, 5);
  821. /* Set DC scale - y and c use the same */
  822. s->y_dc_scale = s->y_dc_scale_table[mquant];
  823. s->c_dc_scale = s->c_dc_scale_table[mquant];
  824. /* Get DC differential */
  825. if (n < 4) {
  826. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  827. } else {
  828. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  829. }
  830. if (dcdiff < 0) {
  831. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  832. return -1;
  833. }
  834. if (dcdiff) {
  835. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  836. if (dcdiff == 119 /* ESC index value */) {
  837. dcdiff = get_bits(gb, 8 + m);
  838. } else {
  839. if (m)
  840. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  841. }
  842. if (get_bits1(gb))
  843. dcdiff = -dcdiff;
  844. }
  845. /* Prediction */
  846. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  847. *dc_val = dcdiff;
  848. /* Store the quantized DC coeff, used for prediction */
  849. if (n < 4) {
  850. block[0] = dcdiff * s->y_dc_scale;
  851. } else {
  852. block[0] = dcdiff * s->c_dc_scale;
  853. }
  854. //AC Decoding
  855. i = 1;
  856. /* check if AC is needed at all and adjust direction if needed */
  857. if (!a_avail) dc_pred_dir = 1;
  858. if (!c_avail) dc_pred_dir = 0;
  859. if (!a_avail && !c_avail) use_pred = 0;
  860. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  861. ac_val2 = ac_val;
  862. scale = mquant * 2 + v->halfpq;
  863. if (dc_pred_dir) //left
  864. ac_val -= 16;
  865. else //top
  866. ac_val -= 16 * s->block_wrap[n];
  867. q1 = s->current_picture.qscale_table[mb_pos];
  868. if (dc_pred_dir && c_avail && mb_pos)
  869. q2 = s->current_picture.qscale_table[mb_pos - 1];
  870. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  871. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  872. if ( dc_pred_dir && n == 1)
  873. q2 = q1;
  874. if (!dc_pred_dir && n == 2)
  875. q2 = q1;
  876. if (n == 3) q2 = q1;
  877. if (coded) {
  878. int last = 0, skip, value;
  879. int k;
  880. while (!last) {
  881. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  882. i += skip;
  883. if (i > 63)
  884. break;
  885. if (v->fcm == PROGRESSIVE)
  886. block[v->zz_8x8[0][i++]] = value;
  887. else {
  888. if (use_pred && (v->fcm == ILACE_FRAME)) {
  889. if (!dc_pred_dir) // top
  890. block[v->zz_8x8[2][i++]] = value;
  891. else // left
  892. block[v->zz_8x8[3][i++]] = value;
  893. } else {
  894. block[v->zzi_8x8[i++]] = value;
  895. }
  896. }
  897. }
  898. /* apply AC prediction if needed */
  899. if (use_pred) {
  900. /* scale predictors if needed*/
  901. if (q2 && q1 != q2) {
  902. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  903. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  904. if (q1 < 1)
  905. return AVERROR_INVALIDDATA;
  906. if (dc_pred_dir) { // left
  907. for (k = 1; k < 8; k++)
  908. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  909. } else { //top
  910. for (k = 1; k < 8; k++)
  911. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  912. }
  913. } else {
  914. if (dc_pred_dir) { // left
  915. for (k = 1; k < 8; k++)
  916. block[k << v->left_blk_sh] += ac_val[k];
  917. } else { // top
  918. for (k = 1; k < 8; k++)
  919. block[k << v->top_blk_sh] += ac_val[k + 8];
  920. }
  921. }
  922. }
  923. /* save AC coeffs for further prediction */
  924. for (k = 1; k < 8; k++) {
  925. ac_val2[k ] = block[k << v->left_blk_sh];
  926. ac_val2[k + 8] = block[k << v->top_blk_sh];
  927. }
  928. /* scale AC coeffs */
  929. for (k = 1; k < 64; k++)
  930. if (block[k]) {
  931. block[k] *= scale;
  932. if (!v->pquantizer)
  933. block[k] += (block[k] < 0) ? -mquant : mquant;
  934. }
  935. if (use_pred) i = 63;
  936. } else { // no AC coeffs
  937. int k;
  938. memset(ac_val2, 0, 16 * 2);
  939. if (dc_pred_dir) { // left
  940. if (use_pred) {
  941. memcpy(ac_val2, ac_val, 8 * 2);
  942. if (q2 && q1 != q2) {
  943. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  944. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  945. if (q1 < 1)
  946. return AVERROR_INVALIDDATA;
  947. for (k = 1; k < 8; k++)
  948. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  949. }
  950. }
  951. } else { // top
  952. if (use_pred) {
  953. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  954. if (q2 && q1 != q2) {
  955. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  956. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  957. if (q1 < 1)
  958. return AVERROR_INVALIDDATA;
  959. for (k = 1; k < 8; k++)
  960. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  961. }
  962. }
  963. }
  964. /* apply AC prediction if needed */
  965. if (use_pred) {
  966. if (dc_pred_dir) { // left
  967. for (k = 1; k < 8; k++) {
  968. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  969. if (!v->pquantizer && block[k << v->left_blk_sh])
  970. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  971. }
  972. } else { // top
  973. for (k = 1; k < 8; k++) {
  974. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  975. if (!v->pquantizer && block[k << v->top_blk_sh])
  976. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  977. }
  978. }
  979. i = 63;
  980. }
  981. }
  982. s->block_last_index[n] = i;
  983. return 0;
  984. }
  985. /** Decode P block
  986. */
  987. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  988. int mquant, int ttmb, int first_block,
  989. uint8_t *dst, int linesize, int skip_block,
  990. int *ttmb_out)
  991. {
  992. MpegEncContext *s = &v->s;
  993. GetBitContext *gb = &s->gb;
  994. int i, j;
  995. int subblkpat = 0;
  996. int scale, off, idx, last, skip, value;
  997. int ttblk = ttmb & 7;
  998. int pat = 0;
  999. s->bdsp.clear_block(block);
  1000. if (ttmb == -1) {
  1001. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1002. }
  1003. if (ttblk == TT_4X4) {
  1004. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1005. }
  1006. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1007. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1008. || (!v->res_rtm_flag && !first_block))) {
  1009. subblkpat = decode012(gb);
  1010. if (subblkpat)
  1011. subblkpat ^= 3; // swap decoded pattern bits
  1012. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1013. ttblk = TT_8X4;
  1014. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1015. ttblk = TT_4X8;
  1016. }
  1017. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1018. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1019. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1020. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1021. ttblk = TT_8X4;
  1022. }
  1023. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1024. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1025. ttblk = TT_4X8;
  1026. }
  1027. switch (ttblk) {
  1028. case TT_8X8:
  1029. pat = 0xF;
  1030. i = 0;
  1031. last = 0;
  1032. while (!last) {
  1033. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1034. i += skip;
  1035. if (i > 63)
  1036. break;
  1037. if (!v->fcm)
  1038. idx = v->zz_8x8[0][i++];
  1039. else
  1040. idx = v->zzi_8x8[i++];
  1041. block[idx] = value * scale;
  1042. if (!v->pquantizer)
  1043. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1044. }
  1045. if (!skip_block) {
  1046. if (i == 1)
  1047. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1048. else {
  1049. v->vc1dsp.vc1_inv_trans_8x8(block);
  1050. s->idsp.add_pixels_clamped(block, dst, linesize);
  1051. }
  1052. }
  1053. break;
  1054. case TT_4X4:
  1055. pat = ~subblkpat & 0xF;
  1056. for (j = 0; j < 4; j++) {
  1057. last = subblkpat & (1 << (3 - j));
  1058. i = 0;
  1059. off = (j & 1) * 4 + (j & 2) * 16;
  1060. while (!last) {
  1061. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1062. i += skip;
  1063. if (i > 15)
  1064. break;
  1065. if (!v->fcm)
  1066. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1067. else
  1068. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1069. block[idx + off] = value * scale;
  1070. if (!v->pquantizer)
  1071. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1072. }
  1073. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1074. if (i == 1)
  1075. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1076. else
  1077. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1078. }
  1079. }
  1080. break;
  1081. case TT_8X4:
  1082. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1083. for (j = 0; j < 2; j++) {
  1084. last = subblkpat & (1 << (1 - j));
  1085. i = 0;
  1086. off = j * 32;
  1087. while (!last) {
  1088. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1089. i += skip;
  1090. if (i > 31)
  1091. break;
  1092. if (!v->fcm)
  1093. idx = v->zz_8x4[i++] + off;
  1094. else
  1095. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1096. block[idx] = value * scale;
  1097. if (!v->pquantizer)
  1098. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1099. }
  1100. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1101. if (i == 1)
  1102. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1103. else
  1104. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1105. }
  1106. }
  1107. break;
  1108. case TT_4X8:
  1109. pat = ~(subblkpat * 5) & 0xF;
  1110. for (j = 0; j < 2; j++) {
  1111. last = subblkpat & (1 << (1 - j));
  1112. i = 0;
  1113. off = j * 4;
  1114. while (!last) {
  1115. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1116. i += skip;
  1117. if (i > 31)
  1118. break;
  1119. if (!v->fcm)
  1120. idx = v->zz_4x8[i++] + off;
  1121. else
  1122. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1123. block[idx] = value * scale;
  1124. if (!v->pquantizer)
  1125. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1126. }
  1127. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1128. if (i == 1)
  1129. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1130. else
  1131. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1132. }
  1133. }
  1134. break;
  1135. }
  1136. if (ttmb_out)
  1137. *ttmb_out |= ttblk << (n * 4);
  1138. return pat;
  1139. }
  1140. /** @} */ // Macroblock group
  1141. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1142. /** Decode one P-frame MB
  1143. */
  1144. static int vc1_decode_p_mb(VC1Context *v)
  1145. {
  1146. MpegEncContext *s = &v->s;
  1147. GetBitContext *gb = &s->gb;
  1148. int i, j;
  1149. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1150. int cbp; /* cbp decoding stuff */
  1151. int mqdiff, mquant; /* MB quantization */
  1152. int ttmb = v->ttfrm; /* MB Transform type */
  1153. int mb_has_coeffs = 1; /* last_flag */
  1154. int dmv_x, dmv_y; /* Differential MV components */
  1155. int index, index1; /* LUT indexes */
  1156. int val, sign; /* temp values */
  1157. int first_block = 1;
  1158. int dst_idx, off;
  1159. int skipped, fourmv;
  1160. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1161. mquant = v->pq; /* lossy initialization */
  1162. if (v->mv_type_is_raw)
  1163. fourmv = get_bits1(gb);
  1164. else
  1165. fourmv = v->mv_type_mb_plane[mb_pos];
  1166. if (v->skip_is_raw)
  1167. skipped = get_bits1(gb);
  1168. else
  1169. skipped = v->s.mbskip_table[mb_pos];
  1170. if (!fourmv) { /* 1MV mode */
  1171. if (!skipped) {
  1172. GET_MVDATA(dmv_x, dmv_y);
  1173. if (s->mb_intra) {
  1174. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1175. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1176. }
  1177. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1178. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1179. /* FIXME Set DC val for inter block ? */
  1180. if (s->mb_intra && !mb_has_coeffs) {
  1181. GET_MQUANT();
  1182. s->ac_pred = get_bits1(gb);
  1183. cbp = 0;
  1184. } else if (mb_has_coeffs) {
  1185. if (s->mb_intra)
  1186. s->ac_pred = get_bits1(gb);
  1187. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1188. GET_MQUANT();
  1189. } else {
  1190. mquant = v->pq;
  1191. cbp = 0;
  1192. }
  1193. s->current_picture.qscale_table[mb_pos] = mquant;
  1194. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1195. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1196. VC1_TTMB_VLC_BITS, 2);
  1197. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1198. dst_idx = 0;
  1199. for (i = 0; i < 6; i++) {
  1200. s->dc_val[0][s->block_index[i]] = 0;
  1201. dst_idx += i >> 2;
  1202. val = ((cbp >> (5 - i)) & 1);
  1203. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1204. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1205. if (s->mb_intra) {
  1206. /* check if prediction blocks A and C are available */
  1207. v->a_avail = v->c_avail = 0;
  1208. if (i == 2 || i == 3 || !s->first_slice_line)
  1209. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1210. if (i == 1 || i == 3 || s->mb_x)
  1211. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1212. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1213. (i & 4) ? v->codingset2 : v->codingset);
  1214. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY))
  1215. continue;
  1216. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1217. if (v->rangeredfrm)
  1218. for (j = 0; j < 64; j++)
  1219. s->block[i][j] <<= 1;
  1220. s->idsp.put_signed_pixels_clamped(s->block[i],
  1221. s->dest[dst_idx] + off,
  1222. i & 4 ? s->uvlinesize
  1223. : s->linesize);
  1224. if (v->pq >= 9 && v->overlap) {
  1225. if (v->c_avail)
  1226. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1227. if (v->a_avail)
  1228. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1229. }
  1230. block_cbp |= 0xF << (i << 2);
  1231. block_intra |= 1 << i;
  1232. } else if (val) {
  1233. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  1234. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1235. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  1236. block_cbp |= pat << (i << 2);
  1237. if (!v->ttmbf && ttmb < 8)
  1238. ttmb = -1;
  1239. first_block = 0;
  1240. }
  1241. }
  1242. } else { // skipped
  1243. s->mb_intra = 0;
  1244. for (i = 0; i < 6; i++) {
  1245. v->mb_type[0][s->block_index[i]] = 0;
  1246. s->dc_val[0][s->block_index[i]] = 0;
  1247. }
  1248. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1249. s->current_picture.qscale_table[mb_pos] = 0;
  1250. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1251. ff_vc1_mc_1mv(v, 0);
  1252. }
  1253. } else { // 4MV mode
  1254. if (!skipped /* unskipped MB */) {
  1255. int intra_count = 0, coded_inter = 0;
  1256. int is_intra[6], is_coded[6];
  1257. /* Get CBPCY */
  1258. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1259. for (i = 0; i < 6; i++) {
  1260. val = ((cbp >> (5 - i)) & 1);
  1261. s->dc_val[0][s->block_index[i]] = 0;
  1262. s->mb_intra = 0;
  1263. if (i < 4) {
  1264. dmv_x = dmv_y = 0;
  1265. s->mb_intra = 0;
  1266. mb_has_coeffs = 0;
  1267. if (val) {
  1268. GET_MVDATA(dmv_x, dmv_y);
  1269. }
  1270. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1271. if (!s->mb_intra)
  1272. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1273. intra_count += s->mb_intra;
  1274. is_intra[i] = s->mb_intra;
  1275. is_coded[i] = mb_has_coeffs;
  1276. }
  1277. if (i & 4) {
  1278. is_intra[i] = (intra_count >= 3);
  1279. is_coded[i] = val;
  1280. }
  1281. if (i == 4)
  1282. ff_vc1_mc_4mv_chroma(v, 0);
  1283. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1284. if (!coded_inter)
  1285. coded_inter = !is_intra[i] & is_coded[i];
  1286. }
  1287. // if there are no coded blocks then don't do anything more
  1288. dst_idx = 0;
  1289. if (!intra_count && !coded_inter)
  1290. goto end;
  1291. GET_MQUANT();
  1292. s->current_picture.qscale_table[mb_pos] = mquant;
  1293. /* test if block is intra and has pred */
  1294. {
  1295. int intrapred = 0;
  1296. for (i = 0; i < 6; i++)
  1297. if (is_intra[i]) {
  1298. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1299. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1300. intrapred = 1;
  1301. break;
  1302. }
  1303. }
  1304. if (intrapred)
  1305. s->ac_pred = get_bits1(gb);
  1306. else
  1307. s->ac_pred = 0;
  1308. }
  1309. if (!v->ttmbf && coded_inter)
  1310. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1311. for (i = 0; i < 6; i++) {
  1312. dst_idx += i >> 2;
  1313. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1314. s->mb_intra = is_intra[i];
  1315. if (is_intra[i]) {
  1316. /* check if prediction blocks A and C are available */
  1317. v->a_avail = v->c_avail = 0;
  1318. if (i == 2 || i == 3 || !s->first_slice_line)
  1319. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1320. if (i == 1 || i == 3 || s->mb_x)
  1321. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1322. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  1323. (i & 4) ? v->codingset2 : v->codingset);
  1324. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY))
  1325. continue;
  1326. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1327. if (v->rangeredfrm)
  1328. for (j = 0; j < 64; j++)
  1329. s->block[i][j] <<= 1;
  1330. s->idsp.put_signed_pixels_clamped(s->block[i],
  1331. s->dest[dst_idx] + off,
  1332. (i & 4) ? s->uvlinesize
  1333. : s->linesize);
  1334. if (v->pq >= 9 && v->overlap) {
  1335. if (v->c_avail)
  1336. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1337. if (v->a_avail)
  1338. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1339. }
  1340. block_cbp |= 0xF << (i << 2);
  1341. block_intra |= 1 << i;
  1342. } else if (is_coded[i]) {
  1343. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1344. first_block, s->dest[dst_idx] + off,
  1345. (i & 4) ? s->uvlinesize : s->linesize,
  1346. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  1347. &block_tt);
  1348. block_cbp |= pat << (i << 2);
  1349. if (!v->ttmbf && ttmb < 8)
  1350. ttmb = -1;
  1351. first_block = 0;
  1352. }
  1353. }
  1354. } else { // skipped MB
  1355. s->mb_intra = 0;
  1356. s->current_picture.qscale_table[mb_pos] = 0;
  1357. for (i = 0; i < 6; i++) {
  1358. v->mb_type[0][s->block_index[i]] = 0;
  1359. s->dc_val[0][s->block_index[i]] = 0;
  1360. }
  1361. for (i = 0; i < 4; i++) {
  1362. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1363. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1364. }
  1365. ff_vc1_mc_4mv_chroma(v, 0);
  1366. s->current_picture.qscale_table[mb_pos] = 0;
  1367. }
  1368. }
  1369. end:
  1370. v->cbp[s->mb_x] = block_cbp;
  1371. v->ttblk[s->mb_x] = block_tt;
  1372. v->is_intra[s->mb_x] = block_intra;
  1373. return 0;
  1374. }
  1375. /* Decode one macroblock in an interlaced frame p picture */
  1376. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1377. {
  1378. MpegEncContext *s = &v->s;
  1379. GetBitContext *gb = &s->gb;
  1380. int i;
  1381. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1382. int cbp = 0; /* cbp decoding stuff */
  1383. int mqdiff, mquant; /* MB quantization */
  1384. int ttmb = v->ttfrm; /* MB Transform type */
  1385. int mb_has_coeffs = 1; /* last_flag */
  1386. int dmv_x, dmv_y; /* Differential MV components */
  1387. int val; /* temp value */
  1388. int first_block = 1;
  1389. int dst_idx, off;
  1390. int skipped, fourmv = 0, twomv = 0;
  1391. int block_cbp = 0, pat, block_tt = 0;
  1392. int idx_mbmode = 0, mvbp;
  1393. int stride_y, fieldtx;
  1394. mquant = v->pq; /* Lossy initialization */
  1395. if (v->skip_is_raw)
  1396. skipped = get_bits1(gb);
  1397. else
  1398. skipped = v->s.mbskip_table[mb_pos];
  1399. if (!skipped) {
  1400. if (v->fourmvswitch)
  1401. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1402. else
  1403. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1404. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1405. /* store the motion vector type in a flag (useful later) */
  1406. case MV_PMODE_INTFR_4MV:
  1407. fourmv = 1;
  1408. v->blk_mv_type[s->block_index[0]] = 0;
  1409. v->blk_mv_type[s->block_index[1]] = 0;
  1410. v->blk_mv_type[s->block_index[2]] = 0;
  1411. v->blk_mv_type[s->block_index[3]] = 0;
  1412. break;
  1413. case MV_PMODE_INTFR_4MV_FIELD:
  1414. fourmv = 1;
  1415. v->blk_mv_type[s->block_index[0]] = 1;
  1416. v->blk_mv_type[s->block_index[1]] = 1;
  1417. v->blk_mv_type[s->block_index[2]] = 1;
  1418. v->blk_mv_type[s->block_index[3]] = 1;
  1419. break;
  1420. case MV_PMODE_INTFR_2MV_FIELD:
  1421. twomv = 1;
  1422. v->blk_mv_type[s->block_index[0]] = 1;
  1423. v->blk_mv_type[s->block_index[1]] = 1;
  1424. v->blk_mv_type[s->block_index[2]] = 1;
  1425. v->blk_mv_type[s->block_index[3]] = 1;
  1426. break;
  1427. case MV_PMODE_INTFR_1MV:
  1428. v->blk_mv_type[s->block_index[0]] = 0;
  1429. v->blk_mv_type[s->block_index[1]] = 0;
  1430. v->blk_mv_type[s->block_index[2]] = 0;
  1431. v->blk_mv_type[s->block_index[3]] = 0;
  1432. break;
  1433. }
  1434. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1435. for (i = 0; i < 4; i++) {
  1436. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1437. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1438. }
  1439. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1440. s->mb_intra = 1;
  1441. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1442. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1443. mb_has_coeffs = get_bits1(gb);
  1444. if (mb_has_coeffs)
  1445. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1446. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1447. GET_MQUANT();
  1448. s->current_picture.qscale_table[mb_pos] = mquant;
  1449. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1450. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1451. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1452. dst_idx = 0;
  1453. for (i = 0; i < 6; i++) {
  1454. v->a_avail = v->c_avail = 0;
  1455. v->mb_type[0][s->block_index[i]] = 1;
  1456. s->dc_val[0][s->block_index[i]] = 0;
  1457. dst_idx += i >> 2;
  1458. val = ((cbp >> (5 - i)) & 1);
  1459. if (i == 2 || i == 3 || !s->first_slice_line)
  1460. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1461. if (i == 1 || i == 3 || s->mb_x)
  1462. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1463. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1464. (i & 4) ? v->codingset2 : v->codingset);
  1465. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  1466. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1467. if (i < 4) {
  1468. stride_y = s->linesize << fieldtx;
  1469. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1470. } else {
  1471. stride_y = s->uvlinesize;
  1472. off = 0;
  1473. }
  1474. s->idsp.put_signed_pixels_clamped(s->block[i],
  1475. s->dest[dst_idx] + off,
  1476. stride_y);
  1477. //TODO: loop filter
  1478. }
  1479. } else { // inter MB
  1480. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1481. if (mb_has_coeffs)
  1482. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1483. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1484. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1485. } else {
  1486. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1487. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1488. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1489. }
  1490. }
  1491. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1492. for (i = 0; i < 6; i++)
  1493. v->mb_type[0][s->block_index[i]] = 0;
  1494. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1495. /* for all motion vector read MVDATA and motion compensate each block */
  1496. dst_idx = 0;
  1497. if (fourmv) {
  1498. mvbp = v->fourmvbp;
  1499. for (i = 0; i < 4; i++) {
  1500. dmv_x = dmv_y = 0;
  1501. if (mvbp & (8 >> i))
  1502. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1503. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1504. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1505. }
  1506. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1507. } else if (twomv) {
  1508. mvbp = v->twomvbp;
  1509. dmv_x = dmv_y = 0;
  1510. if (mvbp & 2) {
  1511. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1512. }
  1513. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1514. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1515. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1516. dmv_x = dmv_y = 0;
  1517. if (mvbp & 1) {
  1518. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1519. }
  1520. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1521. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1522. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1523. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1524. } else {
  1525. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1526. dmv_x = dmv_y = 0;
  1527. if (mvbp) {
  1528. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1529. }
  1530. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1531. ff_vc1_mc_1mv(v, 0);
  1532. }
  1533. if (cbp)
  1534. GET_MQUANT(); // p. 227
  1535. s->current_picture.qscale_table[mb_pos] = mquant;
  1536. if (!v->ttmbf && cbp)
  1537. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1538. for (i = 0; i < 6; i++) {
  1539. s->dc_val[0][s->block_index[i]] = 0;
  1540. dst_idx += i >> 2;
  1541. val = ((cbp >> (5 - i)) & 1);
  1542. if (!fieldtx)
  1543. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1544. else
  1545. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1546. if (val) {
  1547. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1548. first_block, s->dest[dst_idx] + off,
  1549. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1550. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  1551. block_cbp |= pat << (i << 2);
  1552. if (!v->ttmbf && ttmb < 8)
  1553. ttmb = -1;
  1554. first_block = 0;
  1555. }
  1556. }
  1557. }
  1558. } else { // skipped
  1559. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1560. for (i = 0; i < 6; i++) {
  1561. v->mb_type[0][s->block_index[i]] = 0;
  1562. s->dc_val[0][s->block_index[i]] = 0;
  1563. }
  1564. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1565. s->current_picture.qscale_table[mb_pos] = 0;
  1566. v->blk_mv_type[s->block_index[0]] = 0;
  1567. v->blk_mv_type[s->block_index[1]] = 0;
  1568. v->blk_mv_type[s->block_index[2]] = 0;
  1569. v->blk_mv_type[s->block_index[3]] = 0;
  1570. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1571. ff_vc1_mc_1mv(v, 0);
  1572. }
  1573. if (s->mb_x == s->mb_width - 1)
  1574. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  1575. return 0;
  1576. }
  1577. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1578. {
  1579. MpegEncContext *s = &v->s;
  1580. GetBitContext *gb = &s->gb;
  1581. int i;
  1582. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1583. int cbp = 0; /* cbp decoding stuff */
  1584. int mqdiff, mquant; /* MB quantization */
  1585. int ttmb = v->ttfrm; /* MB Transform type */
  1586. int mb_has_coeffs = 1; /* last_flag */
  1587. int dmv_x, dmv_y; /* Differential MV components */
  1588. int val; /* temp values */
  1589. int first_block = 1;
  1590. int dst_idx, off;
  1591. int pred_flag = 0;
  1592. int block_cbp = 0, pat, block_tt = 0;
  1593. int idx_mbmode = 0;
  1594. mquant = v->pq; /* Lossy initialization */
  1595. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1596. if (idx_mbmode <= 1) { // intra MB
  1597. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1598. s->mb_intra = 1;
  1599. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1600. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1601. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1602. GET_MQUANT();
  1603. s->current_picture.qscale_table[mb_pos] = mquant;
  1604. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1605. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1606. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1607. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1608. mb_has_coeffs = idx_mbmode & 1;
  1609. if (mb_has_coeffs)
  1610. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1611. dst_idx = 0;
  1612. for (i = 0; i < 6; i++) {
  1613. v->a_avail = v->c_avail = 0;
  1614. v->mb_type[0][s->block_index[i]] = 1;
  1615. s->dc_val[0][s->block_index[i]] = 0;
  1616. dst_idx += i >> 2;
  1617. val = ((cbp >> (5 - i)) & 1);
  1618. if (i == 2 || i == 3 || !s->first_slice_line)
  1619. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1620. if (i == 1 || i == 3 || s->mb_x)
  1621. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1622. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1623. (i & 4) ? v->codingset2 : v->codingset);
  1624. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY))
  1625. continue;
  1626. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1627. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1628. s->idsp.put_signed_pixels_clamped(s->block[i],
  1629. s->dest[dst_idx] + off,
  1630. (i & 4) ? s->uvlinesize
  1631. : s->linesize);
  1632. // TODO: loop filter
  1633. }
  1634. } else {
  1635. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1636. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1637. for (i = 0; i < 6; i++)
  1638. v->mb_type[0][s->block_index[i]] = 0;
  1639. if (idx_mbmode <= 5) { // 1-MV
  1640. dmv_x = dmv_y = pred_flag = 0;
  1641. if (idx_mbmode & 1) {
  1642. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1643. }
  1644. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1645. ff_vc1_mc_1mv(v, 0);
  1646. mb_has_coeffs = !(idx_mbmode & 2);
  1647. } else { // 4-MV
  1648. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1649. for (i = 0; i < 4; i++) {
  1650. dmv_x = dmv_y = pred_flag = 0;
  1651. if (v->fourmvbp & (8 >> i))
  1652. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1653. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1654. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1655. }
  1656. ff_vc1_mc_4mv_chroma(v, 0);
  1657. mb_has_coeffs = idx_mbmode & 1;
  1658. }
  1659. if (mb_has_coeffs)
  1660. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1661. if (cbp) {
  1662. GET_MQUANT();
  1663. }
  1664. s->current_picture.qscale_table[mb_pos] = mquant;
  1665. if (!v->ttmbf && cbp) {
  1666. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1667. }
  1668. dst_idx = 0;
  1669. for (i = 0; i < 6; i++) {
  1670. s->dc_val[0][s->block_index[i]] = 0;
  1671. dst_idx += i >> 2;
  1672. val = ((cbp >> (5 - i)) & 1);
  1673. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1674. if (val) {
  1675. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1676. first_block, s->dest[dst_idx] + off,
  1677. (i & 4) ? s->uvlinesize : s->linesize,
  1678. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  1679. &block_tt);
  1680. block_cbp |= pat << (i << 2);
  1681. if (!v->ttmbf && ttmb < 8)
  1682. ttmb = -1;
  1683. first_block = 0;
  1684. }
  1685. }
  1686. }
  1687. if (s->mb_x == s->mb_width - 1)
  1688. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  1689. return 0;
  1690. }
  1691. /** Decode one B-frame MB (in Main profile)
  1692. */
  1693. static void vc1_decode_b_mb(VC1Context *v)
  1694. {
  1695. MpegEncContext *s = &v->s;
  1696. GetBitContext *gb = &s->gb;
  1697. int i, j;
  1698. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1699. int cbp = 0; /* cbp decoding stuff */
  1700. int mqdiff, mquant; /* MB quantization */
  1701. int ttmb = v->ttfrm; /* MB Transform type */
  1702. int mb_has_coeffs = 0; /* last_flag */
  1703. int index, index1; /* LUT indexes */
  1704. int val, sign; /* temp values */
  1705. int first_block = 1;
  1706. int dst_idx, off;
  1707. int skipped, direct;
  1708. int dmv_x[2], dmv_y[2];
  1709. int bmvtype = BMV_TYPE_BACKWARD;
  1710. mquant = v->pq; /* lossy initialization */
  1711. s->mb_intra = 0;
  1712. if (v->dmb_is_raw)
  1713. direct = get_bits1(gb);
  1714. else
  1715. direct = v->direct_mb_plane[mb_pos];
  1716. if (v->skip_is_raw)
  1717. skipped = get_bits1(gb);
  1718. else
  1719. skipped = v->s.mbskip_table[mb_pos];
  1720. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1721. for (i = 0; i < 6; i++) {
  1722. v->mb_type[0][s->block_index[i]] = 0;
  1723. s->dc_val[0][s->block_index[i]] = 0;
  1724. }
  1725. s->current_picture.qscale_table[mb_pos] = 0;
  1726. if (!direct) {
  1727. if (!skipped) {
  1728. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1729. dmv_x[1] = dmv_x[0];
  1730. dmv_y[1] = dmv_y[0];
  1731. }
  1732. if (skipped || !s->mb_intra) {
  1733. bmvtype = decode012(gb);
  1734. switch (bmvtype) {
  1735. case 0:
  1736. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1737. break;
  1738. case 1:
  1739. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1740. break;
  1741. case 2:
  1742. bmvtype = BMV_TYPE_INTERPOLATED;
  1743. dmv_x[0] = dmv_y[0] = 0;
  1744. }
  1745. }
  1746. }
  1747. for (i = 0; i < 6; i++)
  1748. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1749. if (skipped) {
  1750. if (direct)
  1751. bmvtype = BMV_TYPE_INTERPOLATED;
  1752. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1753. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1754. return;
  1755. }
  1756. if (direct) {
  1757. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1758. GET_MQUANT();
  1759. s->mb_intra = 0;
  1760. s->current_picture.qscale_table[mb_pos] = mquant;
  1761. if (!v->ttmbf)
  1762. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1763. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1764. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1765. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1766. } else {
  1767. if (!mb_has_coeffs && !s->mb_intra) {
  1768. /* no coded blocks - effectively skipped */
  1769. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1770. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1771. return;
  1772. }
  1773. if (s->mb_intra && !mb_has_coeffs) {
  1774. GET_MQUANT();
  1775. s->current_picture.qscale_table[mb_pos] = mquant;
  1776. s->ac_pred = get_bits1(gb);
  1777. cbp = 0;
  1778. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1779. } else {
  1780. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1781. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1782. if (!mb_has_coeffs) {
  1783. /* interpolated skipped block */
  1784. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1785. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1786. return;
  1787. }
  1788. }
  1789. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1790. if (!s->mb_intra) {
  1791. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1792. }
  1793. if (s->mb_intra)
  1794. s->ac_pred = get_bits1(gb);
  1795. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1796. GET_MQUANT();
  1797. s->current_picture.qscale_table[mb_pos] = mquant;
  1798. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1799. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1800. }
  1801. }
  1802. dst_idx = 0;
  1803. for (i = 0; i < 6; i++) {
  1804. s->dc_val[0][s->block_index[i]] = 0;
  1805. dst_idx += i >> 2;
  1806. val = ((cbp >> (5 - i)) & 1);
  1807. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1808. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1809. if (s->mb_intra) {
  1810. /* check if prediction blocks A and C are available */
  1811. v->a_avail = v->c_avail = 0;
  1812. if (i == 2 || i == 3 || !s->first_slice_line)
  1813. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1814. if (i == 1 || i == 3 || s->mb_x)
  1815. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1816. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1817. (i & 4) ? v->codingset2 : v->codingset);
  1818. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY))
  1819. continue;
  1820. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1821. if (v->rangeredfrm)
  1822. for (j = 0; j < 64; j++)
  1823. s->block[i][j] <<= 1;
  1824. s->idsp.put_signed_pixels_clamped(s->block[i],
  1825. s->dest[dst_idx] + off,
  1826. i & 4 ? s->uvlinesize
  1827. : s->linesize);
  1828. } else if (val) {
  1829. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1830. first_block, s->dest[dst_idx] + off,
  1831. (i & 4) ? s->uvlinesize : s->linesize,
  1832. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  1833. if (!v->ttmbf && ttmb < 8)
  1834. ttmb = -1;
  1835. first_block = 0;
  1836. }
  1837. }
  1838. }
  1839. /** Decode one B-frame MB (in interlaced field B picture)
  1840. */
  1841. static void vc1_decode_b_mb_intfi(VC1Context *v)
  1842. {
  1843. MpegEncContext *s = &v->s;
  1844. GetBitContext *gb = &s->gb;
  1845. int i, j;
  1846. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1847. int cbp = 0; /* cbp decoding stuff */
  1848. int mqdiff, mquant; /* MB quantization */
  1849. int ttmb = v->ttfrm; /* MB Transform type */
  1850. int mb_has_coeffs = 0; /* last_flag */
  1851. int val; /* temp value */
  1852. int first_block = 1;
  1853. int dst_idx, off;
  1854. int fwd;
  1855. int dmv_x[2], dmv_y[2], pred_flag[2];
  1856. int bmvtype = BMV_TYPE_BACKWARD;
  1857. int idx_mbmode;
  1858. mquant = v->pq; /* Lossy initialization */
  1859. s->mb_intra = 0;
  1860. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1861. if (idx_mbmode <= 1) { // intra MB
  1862. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1863. s->mb_intra = 1;
  1864. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1865. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1866. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1867. GET_MQUANT();
  1868. s->current_picture.qscale_table[mb_pos] = mquant;
  1869. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1870. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1871. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1872. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1873. mb_has_coeffs = idx_mbmode & 1;
  1874. if (mb_has_coeffs)
  1875. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1876. dst_idx = 0;
  1877. for (i = 0; i < 6; i++) {
  1878. v->a_avail = v->c_avail = 0;
  1879. v->mb_type[0][s->block_index[i]] = 1;
  1880. s->dc_val[0][s->block_index[i]] = 0;
  1881. dst_idx += i >> 2;
  1882. val = ((cbp >> (5 - i)) & 1);
  1883. if (i == 2 || i == 3 || !s->first_slice_line)
  1884. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1885. if (i == 1 || i == 3 || s->mb_x)
  1886. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1887. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1888. (i & 4) ? v->codingset2 : v->codingset);
  1889. if (CONFIG_GRAY && (i>3) && (s->flags & CODEC_FLAG_GRAY))
  1890. continue;
  1891. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1892. if (v->rangeredfrm)
  1893. for (j = 0; j < 64; j++)
  1894. s->block[i][j] <<= 1;
  1895. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1896. s->idsp.put_signed_pixels_clamped(s->block[i],
  1897. s->dest[dst_idx] + off,
  1898. (i & 4) ? s->uvlinesize
  1899. : s->linesize);
  1900. // TODO: yet to perform loop filter
  1901. }
  1902. } else {
  1903. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1904. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1905. for (i = 0; i < 6; i++)
  1906. v->mb_type[0][s->block_index[i]] = 0;
  1907. if (v->fmb_is_raw)
  1908. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1909. else
  1910. fwd = v->forward_mb_plane[mb_pos];
  1911. if (idx_mbmode <= 5) { // 1-MV
  1912. int interpmvp = 0;
  1913. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1914. pred_flag[0] = pred_flag[1] = 0;
  1915. if (fwd)
  1916. bmvtype = BMV_TYPE_FORWARD;
  1917. else {
  1918. bmvtype = decode012(gb);
  1919. switch (bmvtype) {
  1920. case 0:
  1921. bmvtype = BMV_TYPE_BACKWARD;
  1922. break;
  1923. case 1:
  1924. bmvtype = BMV_TYPE_DIRECT;
  1925. break;
  1926. case 2:
  1927. bmvtype = BMV_TYPE_INTERPOLATED;
  1928. interpmvp = get_bits1(gb);
  1929. }
  1930. }
  1931. v->bmvtype = bmvtype;
  1932. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1933. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1934. }
  1935. if (interpmvp) {
  1936. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1937. }
  1938. if (bmvtype == BMV_TYPE_DIRECT) {
  1939. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1940. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1941. if (!s->next_picture_ptr->field_picture) {
  1942. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1943. return;
  1944. }
  1945. }
  1946. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1947. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1948. mb_has_coeffs = !(idx_mbmode & 2);
  1949. } else { // 4-MV
  1950. if (fwd)
  1951. bmvtype = BMV_TYPE_FORWARD;
  1952. v->bmvtype = bmvtype;
  1953. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1954. for (i = 0; i < 4; i++) {
  1955. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1956. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1957. if (v->fourmvbp & (8 >> i)) {
  1958. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1959. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1960. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1961. }
  1962. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  1963. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  1964. }
  1965. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  1966. mb_has_coeffs = idx_mbmode & 1;
  1967. }
  1968. if (mb_has_coeffs)
  1969. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1970. if (cbp) {
  1971. GET_MQUANT();
  1972. }
  1973. s->current_picture.qscale_table[mb_pos] = mquant;
  1974. if (!v->ttmbf && cbp) {
  1975. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1976. }
  1977. dst_idx = 0;
  1978. for (i = 0; i < 6; i++) {
  1979. s->dc_val[0][s->block_index[i]] = 0;
  1980. dst_idx += i >> 2;
  1981. val = ((cbp >> (5 - i)) & 1);
  1982. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1983. if (val) {
  1984. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1985. first_block, s->dest[dst_idx] + off,
  1986. (i & 4) ? s->uvlinesize : s->linesize,
  1987. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  1988. if (!v->ttmbf && ttmb < 8)
  1989. ttmb = -1;
  1990. first_block = 0;
  1991. }
  1992. }
  1993. }
  1994. }
  1995. /** Decode one B-frame MB (in interlaced frame B picture)
  1996. */
  1997. static int vc1_decode_b_mb_intfr(VC1Context *v)
  1998. {
  1999. MpegEncContext *s = &v->s;
  2000. GetBitContext *gb = &s->gb;
  2001. int i, j;
  2002. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2003. int cbp = 0; /* cbp decoding stuff */
  2004. int mqdiff, mquant; /* MB quantization */
  2005. int ttmb = v->ttfrm; /* MB Transform type */
  2006. int mvsw = 0; /* motion vector switch */
  2007. int mb_has_coeffs = 1; /* last_flag */
  2008. int dmv_x, dmv_y; /* Differential MV components */
  2009. int val; /* temp value */
  2010. int first_block = 1;
  2011. int dst_idx, off;
  2012. int skipped, direct, twomv = 0;
  2013. int block_cbp = 0, pat, block_tt = 0;
  2014. int idx_mbmode = 0, mvbp;
  2015. int stride_y, fieldtx;
  2016. int bmvtype = BMV_TYPE_BACKWARD;
  2017. int dir, dir2;
  2018. mquant = v->pq; /* Lossy initialization */
  2019. s->mb_intra = 0;
  2020. if (v->skip_is_raw)
  2021. skipped = get_bits1(gb);
  2022. else
  2023. skipped = v->s.mbskip_table[mb_pos];
  2024. if (!skipped) {
  2025. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2026. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2027. twomv = 1;
  2028. v->blk_mv_type[s->block_index[0]] = 1;
  2029. v->blk_mv_type[s->block_index[1]] = 1;
  2030. v->blk_mv_type[s->block_index[2]] = 1;
  2031. v->blk_mv_type[s->block_index[3]] = 1;
  2032. } else {
  2033. v->blk_mv_type[s->block_index[0]] = 0;
  2034. v->blk_mv_type[s->block_index[1]] = 0;
  2035. v->blk_mv_type[s->block_index[2]] = 0;
  2036. v->blk_mv_type[s->block_index[3]] = 0;
  2037. }
  2038. }
  2039. if (v->dmb_is_raw)
  2040. direct = get_bits1(gb);
  2041. else
  2042. direct = v->direct_mb_plane[mb_pos];
  2043. if (direct) {
  2044. if (s->next_picture_ptr->field_picture)
  2045. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2046. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2047. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2048. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2049. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2050. if (twomv) {
  2051. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2052. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2053. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2054. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2055. for (i = 1; i < 4; i += 2) {
  2056. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2057. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2058. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2059. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2060. }
  2061. } else {
  2062. for (i = 1; i < 4; i++) {
  2063. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2064. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2065. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2066. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2067. }
  2068. }
  2069. }
  2070. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2071. for (i = 0; i < 4; i++) {
  2072. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2073. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2074. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2075. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2076. }
  2077. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2078. s->mb_intra = 1;
  2079. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2080. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2081. mb_has_coeffs = get_bits1(gb);
  2082. if (mb_has_coeffs)
  2083. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2084. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2085. GET_MQUANT();
  2086. s->current_picture.qscale_table[mb_pos] = mquant;
  2087. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2088. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2089. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2090. dst_idx = 0;
  2091. for (i = 0; i < 6; i++) {
  2092. v->a_avail = v->c_avail = 0;
  2093. v->mb_type[0][s->block_index[i]] = 1;
  2094. s->dc_val[0][s->block_index[i]] = 0;
  2095. dst_idx += i >> 2;
  2096. val = ((cbp >> (5 - i)) & 1);
  2097. if (i == 2 || i == 3 || !s->first_slice_line)
  2098. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2099. if (i == 1 || i == 3 || s->mb_x)
  2100. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2101. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2102. (i & 4) ? v->codingset2 : v->codingset);
  2103. if (CONFIG_GRAY && i > 3 && (s->flags & CODEC_FLAG_GRAY))
  2104. continue;
  2105. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2106. if (i < 4) {
  2107. stride_y = s->linesize << fieldtx;
  2108. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2109. } else {
  2110. stride_y = s->uvlinesize;
  2111. off = 0;
  2112. }
  2113. s->idsp.put_signed_pixels_clamped(s->block[i],
  2114. s->dest[dst_idx] + off,
  2115. stride_y);
  2116. }
  2117. } else {
  2118. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2119. if (!direct) {
  2120. if (skipped || !s->mb_intra) {
  2121. bmvtype = decode012(gb);
  2122. switch (bmvtype) {
  2123. case 0:
  2124. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2125. break;
  2126. case 1:
  2127. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2128. break;
  2129. case 2:
  2130. bmvtype = BMV_TYPE_INTERPOLATED;
  2131. }
  2132. }
  2133. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2134. mvsw = get_bits1(gb);
  2135. }
  2136. if (!skipped) { // inter MB
  2137. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2138. if (mb_has_coeffs)
  2139. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2140. if (!direct) {
  2141. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2142. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2143. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2144. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2145. }
  2146. }
  2147. for (i = 0; i < 6; i++)
  2148. v->mb_type[0][s->block_index[i]] = 0;
  2149. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2150. /* for all motion vector read MVDATA and motion compensate each block */
  2151. dst_idx = 0;
  2152. if (direct) {
  2153. if (twomv) {
  2154. for (i = 0; i < 4; i++) {
  2155. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2156. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2157. }
  2158. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2159. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2160. } else {
  2161. ff_vc1_mc_1mv(v, 0);
  2162. ff_vc1_interp_mc(v);
  2163. }
  2164. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2165. mvbp = v->fourmvbp;
  2166. for (i = 0; i < 4; i++) {
  2167. dir = i==1 || i==3;
  2168. dmv_x = dmv_y = 0;
  2169. val = ((mvbp >> (3 - i)) & 1);
  2170. if (val)
  2171. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2172. j = i > 1 ? 2 : 0;
  2173. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2174. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2175. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2176. }
  2177. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2178. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2179. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2180. mvbp = v->twomvbp;
  2181. dmv_x = dmv_y = 0;
  2182. if (mvbp & 2)
  2183. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2184. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2185. ff_vc1_mc_1mv(v, 0);
  2186. dmv_x = dmv_y = 0;
  2187. if (mvbp & 1)
  2188. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2189. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2190. ff_vc1_interp_mc(v);
  2191. } else if (twomv) {
  2192. dir = bmvtype == BMV_TYPE_BACKWARD;
  2193. dir2 = dir;
  2194. if (mvsw)
  2195. dir2 = !dir;
  2196. mvbp = v->twomvbp;
  2197. dmv_x = dmv_y = 0;
  2198. if (mvbp & 2)
  2199. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2200. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2201. dmv_x = dmv_y = 0;
  2202. if (mvbp & 1)
  2203. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2204. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2205. if (mvsw) {
  2206. for (i = 0; i < 2; i++) {
  2207. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2208. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2209. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2210. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2211. }
  2212. } else {
  2213. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2214. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2215. }
  2216. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2217. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2218. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2219. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2220. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2221. } else {
  2222. dir = bmvtype == BMV_TYPE_BACKWARD;
  2223. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2224. dmv_x = dmv_y = 0;
  2225. if (mvbp)
  2226. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2227. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2228. v->blk_mv_type[s->block_index[0]] = 1;
  2229. v->blk_mv_type[s->block_index[1]] = 1;
  2230. v->blk_mv_type[s->block_index[2]] = 1;
  2231. v->blk_mv_type[s->block_index[3]] = 1;
  2232. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2233. for (i = 0; i < 2; i++) {
  2234. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2235. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2236. }
  2237. ff_vc1_mc_1mv(v, dir);
  2238. }
  2239. if (cbp)
  2240. GET_MQUANT(); // p. 227
  2241. s->current_picture.qscale_table[mb_pos] = mquant;
  2242. if (!v->ttmbf && cbp)
  2243. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2244. for (i = 0; i < 6; i++) {
  2245. s->dc_val[0][s->block_index[i]] = 0;
  2246. dst_idx += i >> 2;
  2247. val = ((cbp >> (5 - i)) & 1);
  2248. if (!fieldtx)
  2249. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2250. else
  2251. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2252. if (val) {
  2253. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2254. first_block, s->dest[dst_idx] + off,
  2255. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2256. CONFIG_GRAY && (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2257. block_cbp |= pat << (i << 2);
  2258. if (!v->ttmbf && ttmb < 8)
  2259. ttmb = -1;
  2260. first_block = 0;
  2261. }
  2262. }
  2263. } else { // skipped
  2264. dir = 0;
  2265. for (i = 0; i < 6; i++) {
  2266. v->mb_type[0][s->block_index[i]] = 0;
  2267. s->dc_val[0][s->block_index[i]] = 0;
  2268. }
  2269. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2270. s->current_picture.qscale_table[mb_pos] = 0;
  2271. v->blk_mv_type[s->block_index[0]] = 0;
  2272. v->blk_mv_type[s->block_index[1]] = 0;
  2273. v->blk_mv_type[s->block_index[2]] = 0;
  2274. v->blk_mv_type[s->block_index[3]] = 0;
  2275. if (!direct) {
  2276. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2277. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2278. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2279. } else {
  2280. dir = bmvtype == BMV_TYPE_BACKWARD;
  2281. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2282. if (mvsw) {
  2283. int dir2 = dir;
  2284. if (mvsw)
  2285. dir2 = !dir;
  2286. for (i = 0; i < 2; i++) {
  2287. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2288. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2289. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2290. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2291. }
  2292. } else {
  2293. v->blk_mv_type[s->block_index[0]] = 1;
  2294. v->blk_mv_type[s->block_index[1]] = 1;
  2295. v->blk_mv_type[s->block_index[2]] = 1;
  2296. v->blk_mv_type[s->block_index[3]] = 1;
  2297. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2298. for (i = 0; i < 2; i++) {
  2299. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2300. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2301. }
  2302. }
  2303. }
  2304. }
  2305. ff_vc1_mc_1mv(v, dir);
  2306. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2307. ff_vc1_interp_mc(v);
  2308. }
  2309. }
  2310. }
  2311. if (s->mb_x == s->mb_width - 1)
  2312. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2313. v->cbp[s->mb_x] = block_cbp;
  2314. v->ttblk[s->mb_x] = block_tt;
  2315. return 0;
  2316. }
  2317. /** Decode blocks of I-frame
  2318. */
  2319. static void vc1_decode_i_blocks(VC1Context *v)
  2320. {
  2321. int k, j;
  2322. MpegEncContext *s = &v->s;
  2323. int cbp, val;
  2324. uint8_t *coded_val;
  2325. int mb_pos;
  2326. /* select codingmode used for VLC tables selection */
  2327. switch (v->y_ac_table_index) {
  2328. case 0:
  2329. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2330. break;
  2331. case 1:
  2332. v->codingset = CS_HIGH_MOT_INTRA;
  2333. break;
  2334. case 2:
  2335. v->codingset = CS_MID_RATE_INTRA;
  2336. break;
  2337. }
  2338. switch (v->c_ac_table_index) {
  2339. case 0:
  2340. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2341. break;
  2342. case 1:
  2343. v->codingset2 = CS_HIGH_MOT_INTER;
  2344. break;
  2345. case 2:
  2346. v->codingset2 = CS_MID_RATE_INTER;
  2347. break;
  2348. }
  2349. /* Set DC scale - y and c use the same */
  2350. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2351. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2352. //do frame decode
  2353. s->mb_x = s->mb_y = 0;
  2354. s->mb_intra = 1;
  2355. s->first_slice_line = 1;
  2356. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  2357. s->mb_x = 0;
  2358. init_block_index(v);
  2359. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2360. uint8_t *dst[6];
  2361. ff_update_block_index(s);
  2362. dst[0] = s->dest[0];
  2363. dst[1] = dst[0] + 8;
  2364. dst[2] = s->dest[0] + s->linesize * 8;
  2365. dst[3] = dst[2] + 8;
  2366. dst[4] = s->dest[1];
  2367. dst[5] = s->dest[2];
  2368. s->bdsp.clear_blocks(s->block[0]);
  2369. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2370. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2371. s->current_picture.qscale_table[mb_pos] = v->pq;
  2372. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2373. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2374. // do actual MB decoding and displaying
  2375. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2376. v->s.ac_pred = get_bits1(&v->s.gb);
  2377. for (k = 0; k < 6; k++) {
  2378. val = ((cbp >> (5 - k)) & 1);
  2379. if (k < 4) {
  2380. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2381. val = val ^ pred;
  2382. *coded_val = val;
  2383. }
  2384. cbp |= val << (5 - k);
  2385. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  2386. if (CONFIG_GRAY && k > 3 && (s->flags & CODEC_FLAG_GRAY))
  2387. continue;
  2388. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2389. if (v->pq >= 9 && v->overlap) {
  2390. if (v->rangeredfrm)
  2391. for (j = 0; j < 64; j++)
  2392. s->block[k][j] <<= 1;
  2393. s->idsp.put_signed_pixels_clamped(s->block[k], dst[k],
  2394. k & 4 ? s->uvlinesize
  2395. : s->linesize);
  2396. } else {
  2397. if (v->rangeredfrm)
  2398. for (j = 0; j < 64; j++)
  2399. s->block[k][j] = (s->block[k][j] - 64) << 1;
  2400. s->idsp.put_pixels_clamped(s->block[k], dst[k],
  2401. k & 4 ? s->uvlinesize
  2402. : s->linesize);
  2403. }
  2404. }
  2405. if (v->pq >= 9 && v->overlap) {
  2406. if (s->mb_x) {
  2407. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2408. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2409. if (!CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
  2410. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2411. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2412. }
  2413. }
  2414. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2415. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2416. if (!s->first_slice_line) {
  2417. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2418. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2419. if (!CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
  2420. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2421. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2422. }
  2423. }
  2424. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2425. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2426. }
  2427. if (v->s.loop_filter)
  2428. ff_vc1_loop_filter_iblk(v, v->pq);
  2429. if (get_bits_count(&s->gb) > v->bits) {
  2430. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2431. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2432. get_bits_count(&s->gb), v->bits);
  2433. return;
  2434. }
  2435. }
  2436. if (!v->s.loop_filter)
  2437. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2438. else if (s->mb_y)
  2439. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2440. s->first_slice_line = 0;
  2441. }
  2442. if (v->s.loop_filter)
  2443. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2444. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2445. * profile, these only differ are when decoding MSS2 rectangles. */
  2446. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2447. }
  2448. /** Decode blocks of I-frame for advanced profile
  2449. */
  2450. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2451. {
  2452. int k;
  2453. MpegEncContext *s = &v->s;
  2454. int cbp, val;
  2455. uint8_t *coded_val;
  2456. int mb_pos;
  2457. int mquant = v->pq;
  2458. int mqdiff;
  2459. GetBitContext *gb = &s->gb;
  2460. /* select codingmode used for VLC tables selection */
  2461. switch (v->y_ac_table_index) {
  2462. case 0:
  2463. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2464. break;
  2465. case 1:
  2466. v->codingset = CS_HIGH_MOT_INTRA;
  2467. break;
  2468. case 2:
  2469. v->codingset = CS_MID_RATE_INTRA;
  2470. break;
  2471. }
  2472. switch (v->c_ac_table_index) {
  2473. case 0:
  2474. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2475. break;
  2476. case 1:
  2477. v->codingset2 = CS_HIGH_MOT_INTER;
  2478. break;
  2479. case 2:
  2480. v->codingset2 = CS_MID_RATE_INTER;
  2481. break;
  2482. }
  2483. // do frame decode
  2484. s->mb_x = s->mb_y = 0;
  2485. s->mb_intra = 1;
  2486. s->first_slice_line = 1;
  2487. s->mb_y = s->start_mb_y;
  2488. if (s->start_mb_y) {
  2489. s->mb_x = 0;
  2490. init_block_index(v);
  2491. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2492. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2493. }
  2494. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2495. s->mb_x = 0;
  2496. init_block_index(v);
  2497. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2498. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  2499. ff_update_block_index(s);
  2500. s->bdsp.clear_blocks(block[0]);
  2501. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2502. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2503. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  2504. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  2505. // do actual MB decoding and displaying
  2506. if (v->fieldtx_is_raw)
  2507. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2508. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2509. if ( v->acpred_is_raw)
  2510. v->s.ac_pred = get_bits1(&v->s.gb);
  2511. else
  2512. v->s.ac_pred = v->acpred_plane[mb_pos];
  2513. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2514. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2515. GET_MQUANT();
  2516. s->current_picture.qscale_table[mb_pos] = mquant;
  2517. /* Set DC scale - y and c use the same */
  2518. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2519. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2520. for (k = 0; k < 6; k++) {
  2521. val = ((cbp >> (5 - k)) & 1);
  2522. if (k < 4) {
  2523. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2524. val = val ^ pred;
  2525. *coded_val = val;
  2526. }
  2527. cbp |= val << (5 - k);
  2528. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2529. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2530. vc1_decode_i_block_adv(v, block[k], k, val,
  2531. (k < 4) ? v->codingset : v->codingset2, mquant);
  2532. if (CONFIG_GRAY && k > 3 && (s->flags & CODEC_FLAG_GRAY))
  2533. continue;
  2534. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2535. }
  2536. ff_vc1_smooth_overlap_filter_iblk(v);
  2537. vc1_put_signed_blocks_clamped(v);
  2538. if (v->s.loop_filter)
  2539. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2540. if (get_bits_count(&s->gb) > v->bits) {
  2541. // TODO: may need modification to handle slice coding
  2542. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2543. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2544. get_bits_count(&s->gb), v->bits);
  2545. return;
  2546. }
  2547. }
  2548. if (!v->s.loop_filter)
  2549. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2550. else if (s->mb_y)
  2551. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2552. s->first_slice_line = 0;
  2553. }
  2554. /* raw bottom MB row */
  2555. s->mb_x = 0;
  2556. init_block_index(v);
  2557. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2558. ff_update_block_index(s);
  2559. vc1_put_signed_blocks_clamped(v);
  2560. if (v->s.loop_filter)
  2561. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2562. }
  2563. if (v->s.loop_filter)
  2564. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2565. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2566. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2567. }
  2568. static void vc1_decode_p_blocks(VC1Context *v)
  2569. {
  2570. MpegEncContext *s = &v->s;
  2571. int apply_loop_filter;
  2572. /* select codingmode used for VLC tables selection */
  2573. switch (v->c_ac_table_index) {
  2574. case 0:
  2575. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2576. break;
  2577. case 1:
  2578. v->codingset = CS_HIGH_MOT_INTRA;
  2579. break;
  2580. case 2:
  2581. v->codingset = CS_MID_RATE_INTRA;
  2582. break;
  2583. }
  2584. switch (v->c_ac_table_index) {
  2585. case 0:
  2586. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2587. break;
  2588. case 1:
  2589. v->codingset2 = CS_HIGH_MOT_INTER;
  2590. break;
  2591. case 2:
  2592. v->codingset2 = CS_MID_RATE_INTER;
  2593. break;
  2594. }
  2595. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  2596. v->fcm == PROGRESSIVE;
  2597. s->first_slice_line = 1;
  2598. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2599. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2600. s->mb_x = 0;
  2601. init_block_index(v);
  2602. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2603. ff_update_block_index(s);
  2604. if (v->fcm == ILACE_FIELD)
  2605. vc1_decode_p_mb_intfi(v);
  2606. else if (v->fcm == ILACE_FRAME)
  2607. vc1_decode_p_mb_intfr(v);
  2608. else vc1_decode_p_mb(v);
  2609. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  2610. ff_vc1_apply_p_loop_filter(v);
  2611. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2612. // TODO: may need modification to handle slice coding
  2613. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2614. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2615. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2616. return;
  2617. }
  2618. }
  2619. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  2620. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  2621. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2622. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  2623. if (s->mb_y != s->start_mb_y)
  2624. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2625. s->first_slice_line = 0;
  2626. }
  2627. if (apply_loop_filter) {
  2628. s->mb_x = 0;
  2629. init_block_index(v);
  2630. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2631. ff_update_block_index(s);
  2632. ff_vc1_apply_p_loop_filter(v);
  2633. }
  2634. }
  2635. if (s->end_mb_y >= s->start_mb_y)
  2636. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2637. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2638. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2639. }
  2640. static void vc1_decode_b_blocks(VC1Context *v)
  2641. {
  2642. MpegEncContext *s = &v->s;
  2643. /* select codingmode used for VLC tables selection */
  2644. switch (v->c_ac_table_index) {
  2645. case 0:
  2646. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2647. break;
  2648. case 1:
  2649. v->codingset = CS_HIGH_MOT_INTRA;
  2650. break;
  2651. case 2:
  2652. v->codingset = CS_MID_RATE_INTRA;
  2653. break;
  2654. }
  2655. switch (v->c_ac_table_index) {
  2656. case 0:
  2657. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2658. break;
  2659. case 1:
  2660. v->codingset2 = CS_HIGH_MOT_INTER;
  2661. break;
  2662. case 2:
  2663. v->codingset2 = CS_MID_RATE_INTER;
  2664. break;
  2665. }
  2666. s->first_slice_line = 1;
  2667. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2668. s->mb_x = 0;
  2669. init_block_index(v);
  2670. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2671. ff_update_block_index(s);
  2672. if (v->fcm == ILACE_FIELD)
  2673. vc1_decode_b_mb_intfi(v);
  2674. else if (v->fcm == ILACE_FRAME)
  2675. vc1_decode_b_mb_intfr(v);
  2676. else
  2677. vc1_decode_b_mb(v);
  2678. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2679. // TODO: may need modification to handle slice coding
  2680. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2681. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2682. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2683. return;
  2684. }
  2685. if (v->s.loop_filter)
  2686. ff_vc1_loop_filter_iblk(v, v->pq);
  2687. }
  2688. if (!v->s.loop_filter)
  2689. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2690. else if (s->mb_y)
  2691. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2692. s->first_slice_line = 0;
  2693. }
  2694. if (v->s.loop_filter)
  2695. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2696. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2697. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2698. }
  2699. static void vc1_decode_skip_blocks(VC1Context *v)
  2700. {
  2701. MpegEncContext *s = &v->s;
  2702. if (!v->s.last_picture.f->data[0])
  2703. return;
  2704. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2705. s->first_slice_line = 1;
  2706. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2707. s->mb_x = 0;
  2708. init_block_index(v);
  2709. ff_update_block_index(s);
  2710. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2711. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2712. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2713. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2714. s->first_slice_line = 0;
  2715. }
  2716. s->pict_type = AV_PICTURE_TYPE_P;
  2717. }
  2718. void ff_vc1_decode_blocks(VC1Context *v)
  2719. {
  2720. v->s.esc3_level_length = 0;
  2721. if (v->x8_type) {
  2722. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  2723. } else {
  2724. v->cur_blk_idx = 0;
  2725. v->left_blk_idx = -1;
  2726. v->topleft_blk_idx = 1;
  2727. v->top_blk_idx = 2;
  2728. switch (v->s.pict_type) {
  2729. case AV_PICTURE_TYPE_I:
  2730. if (v->profile == PROFILE_ADVANCED)
  2731. vc1_decode_i_blocks_adv(v);
  2732. else
  2733. vc1_decode_i_blocks(v);
  2734. break;
  2735. case AV_PICTURE_TYPE_P:
  2736. if (v->p_frame_skipped)
  2737. vc1_decode_skip_blocks(v);
  2738. else
  2739. vc1_decode_p_blocks(v);
  2740. break;
  2741. case AV_PICTURE_TYPE_B:
  2742. if (v->bi_type) {
  2743. if (v->profile == PROFILE_ADVANCED)
  2744. vc1_decode_i_blocks_adv(v);
  2745. else
  2746. vc1_decode_i_blocks(v);
  2747. } else
  2748. vc1_decode_b_blocks(v);
  2749. break;
  2750. }
  2751. }
  2752. }